首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
A new series of 2-(diethylaminoalkyl)-isoindoline-1,3-dione derivatives intended as dual binding site cholinesterase inhibitors were designed using molecular modeling and evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and the formation of the β-amyloid (Aβ) plaques. For AChE inhibitory activity, the spectrophotometric method of Ellman and the electrophoretically mediated microanalysis assay were used, giving good results. Most of the synthesized compounds had AChE inhibitory activity with IC(50) values ranging from IC(50) = 0.9 to 19.5 μM and weak Aβ anti-aggregation inhibitory activity. These results support the outcome of docking studies which tested compounds targeting both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. The most promising selective AChE inhibitors are compounds 10 (IC(50) = 1.2 μM) and 11 (IC(50) = 1.1 μM), with 6-7 methylene chains, which also inhibit Aβ fibril formation.  相似文献   

2.
A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.2±1.1 nM) and MAO-B (IC50=43±8.0 nM) and is a moderately potent inhibitor of AChE (IC50=0.35±0.01 μM) and BuChE (IC50=0.46±0.06 μM). Moreover, molecular modeling and kinetic studies support the dual binding site to AChE, which explains the inhibitory effect exerted on Aβ aggregation. Overall, the results suggest that the new compounds are promising multitarget drug candidates with potential impact for Alzheimer's disease therapy.  相似文献   

3.
A novel series of donepezil-tacrine hybrids designed to simultaneously interact with the active, peripheral and midgorge binding sites of acetylcholinesterase (AChE) have been synthesized and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), and AChE-induced A beta aggregation. These compounds consist of a unit of tacrine or 6-chlorotacrine, which occupies the same position as tacrine at the AChE active site, and the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone moiety of donepezil (or the indane derivative thereof), whose position along the enzyme gorge and the peripheral site can be modulated by a suitable tether that connects tacrine and donepezil fragments. All of the new compounds are highly potent inhibitors of bovine and human AChE and BChE, exhibiting IC50 values in the subnanomolar or low nanomolar range in most cases. Moreover, six out of the eight hybrids of the series, particularly those bearing an indane moiety, exhibit a significant A beta antiaggregating activity, which makes them promising anti-Alzheimer drug candidates.  相似文献   

4.
The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC50 values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC50 values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD.  相似文献   

5.
Xie Q  Wang H  Xia Z  Lu M  Zhang W  Wang X  Fu W  Tang Y  Sheng W  Li W  Zhou W  Zhu X  Qiu Z  Chen H 《Journal of medicinal chemistry》2008,51(7):2027-2036
Bis-(-)-nor-meptazinols (bis-(-)-nor-MEPs) 5 were designed and synthesized by connecting two (-)-nor-MEP monomers with alkylene linkers of different lengths via the secondary amino groups. Their acetylcholinesterase (AChE) inhibitory activities were more greatly influenced by the length of the alkylene chain than butyrylcholinesterase (BChE) inhibition. The most potent nonamethylene-tethered dimer 5h exhibited low-nanomolar IC 50 values for both ChEs, having a 10 000-fold and 1500-fold increase in inhibition of AChE and BChE compared with (-)-MEP. Molecular docking elucidated that 5h simultaneously bound to the catalytic and peripheral sites in AChE via hydrophobic interactions with Trp86 and Trp286. In comparison, it folded in the large aliphatic cavity of BChE because of the absence of peripheral site and the enlargement of the active site. Furthermore, 5h and 5i markedly prevented the AChE-induced Abeta aggregation with IC 50 values of 16.6 and 5.8 microM, similar to that of propidium (IC 50 = 12.8 microM), which suggests promising disease-modifying agents for the treatment of AD patients.  相似文献   

6.
本文设计合成了一系列他克林单甲氧芳基杂合物(5a~5i)作为胆碱酯酶抑制剂,并对其进行了活性评价。结果表明该类化合物比他克林具有更好的胆碱酯酶抑制活性,IC50值均达到纳摩尔级,其中化合物5h对乙酰胆碱酯酶的抑制活性最强,IC50值为6.74 nmol.L 1,5f对丁酰胆碱酯酶的活性最强,IC50值为3.83 nmol.L 1。酶动力学及分子对接表明该类杂合物能够同时作用于AChE的催化活性位点和外周结合位点。  相似文献   

7.
In continuing research that led us to identify a new class of carbamate derivatives acting as potent (Rampa et al. J. Med. Chem. 1998, 41, 3976) and long-lasting (Rampa et al. J. Med. Chem. 2001, 44, 3810) acetylcholinesterase (AChE) inhibitors, we obtained some analogues able to simultaneously block both the catalytic and the beta-amyloid (Abeta) proaggregatory activities of AChE. The key feature of these derivatives is a 2-arylidenebenzocycloalkanone moiety that provides the ability to bind at the AChE peripheral site responsible for promoting the Abeta aggregation. The new carbamates were tested in vitro for the inhibition of both cholinesterases and also for the ability to prevent the AChE-induced Abeta aggregation. All of the compounds had AChE IC(50) values in the nanomolar range and showed the ability to block the AChE-induced Abeta aggregation, thus supporting the feasibility of this new strategy in the search of compounds for the treatment of Alzheimer's disease.  相似文献   

8.
A family of huprine-tacrine heterodimers has been developed to simultaneously block the active and peripheral sites of acetylcholinesterase (AChE). Their dual site binding for AChE, supported by kinetic and molecular modeling studies, results in a highly potent inhibition of the catalytic activity of human AChE and, more importantly, in the in vitro neutralization of the pathological chaperoning effect of AChE toward the aggregation of both the β-amyloid peptide (Aβ) and a prion peptide with a key role in the aggregation of the prion protein. Huprine-tacrine heterodimers take on added value in that they display a potent in vitro inhibitory activity toward human butyrylcholinesterase, self-induced Aβ aggregation, and β-secretase. Finally, they are able to cross the blood-brain barrier, as predicted in an artificial membrane model assay and demonstrated in ex vivo experiments with OF1 mice, reaching their multiple biological targets in the central nervous system. Overall, these compounds are promising lead compounds for the treatment of Alzheimer's and prion diseases.  相似文献   

9.
Heterodimers 4 and 5 were effective inhibitors of acetylcholinesterase (AChE) activity and AChE-induced amyloid-beta (A beta) aggregation. The peculiar biological profile of 4 can be relevant in studying the molecular basis underlying the nonclassical action of AChE and in addressing the question whether AChE inhibitors can affect the neurotoxic cascade leading to Alzheimer's disease. Compound 4 emerged as the most potent heterodimer so far available to inhibit AChE-induced A beta aggregation.  相似文献   

10.
The therapeutic potential of aldose reductase inhibitors for the prevention of the secondary complications of diabetes has been extensively reported. On the other hand, the hyperaggregability of platelets in diabetic patients has also been reported as a cause of chronic diabetic complications. The purpose of this study was to develop new compounds with these dual effects from pyridyloxy- or phenoxylphenoxyalkanate synthesized derivatives and examine the effect of their structure-activity relationships on the inhibition of rat lens aldose reductase (RLAR) as well as on platelet aggregation. 2-[4-(2,6-dichloro-3-methyl-phenoxy)-3-nitro-phenoxy]-propionic acid (3) exhibited the most potent inhibitory effect (IC(50) = 3.0 +/- 0.21 microM), comparable to tetramethylene glutaric acid (IC(50) = 6.1 +/- 0.2 microM), which is used as a positive control on RLAR, and showed potent inhibitory activities on rat platelet aggregation induced by ADP and collagen (IC(50) = 0.093 +/- 0.01 and 0.032 +/- 0.01 microM, respectively) comparable with aspirin (IC(50) = 0.15 +/- 0.05 and 0.047 +/- 0.01 microM, respectively), used as a positive control.  相似文献   

11.
The therapeutic arsenal for the treatment of Alzheimer's disease (AD) remains confined to a group of four inhibitors of AChE and one NMDA receptor antagonist, which are used to provide a relief of the very late symptoms of the dementia, i.e. the cognitive and functional decline. In line with the growing body of evidence of the pivotal role of the beta-amyloid peptide (Abeta) in the pathogenesis of AD, alternative classes of drugs targeting mainly the formation or the aggregation of Abeta are actively pursued by the pharmaceutical industry, as they could positively modify the course of AD, stopping or slowing down disease progression. While the first amyloid-directed disease-modifying drugs go ahead with their clinical development and could reach the market as soon as 2009, mounting preclinical and clinical evidences is pointing towards a disease-modifying role also for currently marketed anti-Alzheimer AChE inhibitors (AChEIs), particularly for donepezil. In this review, the neuroprotective effects exhibited by currently commercialized AChEIs will be briefly discussed, together with the secondary mechanisms through which they could exert such effects. This review will focus also on particular classes of AChEIs, namely dual binding site AChEIs, which are being purposely designed to target Abeta aggregation and / or other biological targets that contribute to AD pathogenesis, thus constituting very promising disease-modifying anti-Alzheimer drug candidates.  相似文献   

12.
The inhibitory effects of five calcium channel blockers (diltiazem, isradipine, mibefradil, nifedipine and verapamil) and three azole antifungal agents (itraconazole, hydroxyitraconazole and ketoconazole) on the alpha-hydroxylation of midazolam, a probe drug for CYP3A4-mediated interactions in humans, were studied in vitro using human liver microsomes. IC50 and Ki values were determined for each inhibitor. The kinetics of the formation of alpha-hydroxymidazolam were best described by simple Michaelis-Menten kinetics. The estimated values of Vmax and Km were 696 pmol min.-(1) mg(-1) and 7.46 micromol l(-1), respectively. All the compounds studied inhibited midazolam alpha-hydroxylation activity in a concentration-dependent manner, but there were marked differences in their relative inhibitory potency. Ketoconazole was the most potent inhibitor of midazolam alpha-hydroxylation (IC50 0.12 micromol l (-1)), being 10 times more potent than itraconazole (IC50 1.2 micromol l(-1)). The inhibitory effect of hydroxyitraconazole (IC50 2.3 micromol l (-1) was almost as large as that of itraconazole. Among the calcium channel blockers, mibefradil was the most potent inhibitor of the alpha-hydroxylation of midazolam, with an IC50 value (1.6 micromol l (-1)) similar to that of itraconazole. The other calcium channel blockers were much weaker inhibitors than mibefradil: verapamil exhibited a modest inhibitory effect with an IC50 of 23 micromol l(-1), while isradipine, nifedipine and diltiazem, with IC50 values ranging from 57 to >100 micromol l (-1), were weak inhibitors. This rank order of potency against the alpha-hydroxylation Qf midazolam was verified by the Ki values. With the exception of diltiazem, these in vitro results conform with the observed interaction potential of these agents with midazolam and many other CYP3A4 substrates in vivo in man.  相似文献   

13.
The formation of β-amyloid plaques in the brain is a key neurodegenerative event in Alzheimer’s disease (AD). Interestingly, research on acetylcholinesterase (AChE) enzyme has increased due to findings supporting this enzyme involvement in the β-amyloid peptide fibril formation during AD pathogenesis. In this investigation, chemical features based 3D pharmacophore models were developed from structurally diverse xanthostigmine derivatives, known inhibitors of AChE enzyme, using 3D-QSAR pharmacophore generation module in Discovery Studio2.5 (DS2.5). The constructed pharmacophore models for AChE inhibitors was further cross-validated using test set and Cat-Scramble methodology. The best quantitative pharmacophore model Hypo1, was used for screening the chemical databases of small compounds including Specs, NCI, and IBScreen, to identify the new compounds that are presumably able to act as dual-binding site AChE inhibitors. The screened virtual hits were then subjected to the Lipinski’s rule of five, blood–brain barrier (BBB), PSA, LogS, percent human oral absorption, and toxicity analysis. Finally, 32 compounds were identified as potential leads against AChE enzyme, showing good estimated activities and promising ADMET properties. Molecular docking of these compounds using FlexX software showed catalytic and peripheral anionic binding site interactions, so called dual binding of the AChE enzyme. Docking study was also performed on butyrylcholinesterase in order to understand the compound selectivity. This study may assist in the discovery and design of novel dual binding site and selective AChE inhibitors with potent inhibitory activity.  相似文献   

14.
Thiosemicarbazones of the microbial metabolite madurahydroxylactone, a polysubstituted benzo[a]naphthacenequinone, have been previously reported by us as potent nonsteroidal inhibitors of the enzyme estrone sulfatase (cyclohexylthiosemicarbazone 1, IC50 0.46 microM). The active pharmacophore of 1 has now been identified to be 2-formyl-6-hydroxybenzoic acid cyclohexylthiosemicarbazone (25, IC50 4.2 microM). The active partial structure was derivatized in the search for novel agents against hormone-dependent breast cancer. Further substantial increases in activity were achieved by reversal of functional groups leading to the cyclohexylthiosemicarbazones of 5-formylsalicylic acid (35, IC50 0.05 microM) and 3-formylsalicylic acid (34, IC50 0.15 microM) as the most potent analogues identified to date. Both compounds were shown to be noncompetitive inhibitors of estrone sulfatase with Ki values of 0.13 microM and 0.12 microM, respectively. The compounds showed low acute toxicity in the hen's fertile egg screening test.  相似文献   

15.
A series of novel benzo[d]oxazole derivatives ( 6a–n ) have been synthesized and biologically evaluated as potential inhibitors of acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). The chemical structures of all final compounds were confirmed by spectroscopic methods. In vitro studies showed that most of the synthesized compounds are potent acetylcholinesterase and butyrylcholinesterase inhibitors. Among them, compounds 6a and 6j strongly inhibited AChE and BChE activities with IC50 values of 1.03–1.35 and 6.6–8.1 μm , respectively. Docking studies also provided the binding modes of action and identified hydrophobic pi forces as the main interaction.  相似文献   

16.
High-throughput screening against the human sirtuin SIRT1 led to the discovery of a series of indoles as potent inhibitors that are selective for SIRT1 over other deacetylases and NAD-processing enzymes. The most potent compounds described herein inhibit SIRT1 with IC50 values of 60-100 nM, representing a 500-fold improvement over previously reported SIRT inhibitors. Preparation of enantiomerically pure indole derivatives allowed for their characterization in vitro and in vivo. Kinetic analyses suggest that these inhibitors bind after the release of nicotinamide from the enzyme and prevent the release of deacetylated peptide and O-acetyl-ADP-ribose, the products of enzyme-catalyzed deacetylation. These SIRT1 inhibitors are low molecular weight, cell-permeable, orally bioavailable, and metabolically stable. These compounds provide chemical tools to study the biology of SIRT1 and to explore therapeutic uses for SIRT1 inhibitors.  相似文献   

17.
BackgroundAcetylcholine deficiencies in hippocampus and cortex, aggregation of β-amyloid, and β-secretase over activity have been introduced as main reasons in pathogenesis of Alzheimer’s disease.MethodsColorimetric Ellman’s method was used for determination of IC50 value in AChE and BChE inhibitory activity. The kinetic studies, neuroprotective and β-secretase inhibitory activities, evaluation of inhibitory potency on β-amyloid (Aβ) aggregations induced by AChE, and docking study were performed for prediction of the mechanism of action.Result and discussionA new series of cinnamic acids-tryptamine hybrid was designed, synthesized, and evaluated as dual cholinesterase inhibitors. These compounds demonstrated in-vitro inhibitory activities against acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE). Among of these synthesized compounds, (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(3,4-dimethoxyphenyl)acrylamide (5q) demonstrated the most potent AChE inhibitory activity (IC50 = 11.51 μM) and (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(2-chlorophenyl)acrylamide (5b) were the best anti-BChE (IC50 = 1.95 μM) compounds. In addition, the molecular modeling and kinetic studies depicted 5q and 5b were mixed type inhibitor and bound with both the peripheral anionic site (PAS) and catalytic sites (CAS) of AChE and BChE. Moreover, compound 5q showed mild neuroprotective in PC12 cell line and weak β-secretase inhibitory activities. This compound also inhibited aggregation of β-amyloid (Aβ) in self-induced peptide aggregation test at concentration of 10 μM.ConclusionIt is worth noting that both the kinetic study and the molecular modeling of 5q and 5b depicted that these compounds simultaneously interacted with both the catalytic active site and the peripheral anionic site of AChE and BChE. These findings match with those resulted data from the enzyme inhibition assay. Graphical abstractOpen in a separate windowA new series of cinnamic-derived acids-tryptamine hybrid derivatives were designed, synthesized and evaluated as butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors and neuroprotective agents. Compound 5b and 5q, as the more potent compounds, interacted with both the peripheral site and the choline binding site having mixed type inhibition. Results suggested that derivatives have a therapeutic potential for the treatment of AD.Electronic supplementary materialThe online version of this article (10.1007/s40199-020-00346-9) contains supplementary material, which is available to authorized users.  相似文献   

18.
The recent finding that acetylcholinesterase (AChE) colocalizes with β-amyloid (Aβ), promotes and accelerates Aβ aggregation has renewed an intense interest in developing new multitarget AChE inhibitors as potential disease-modifying drugs for Alzheimer's therapy. In this review, we first briefly discuss the linkage and complex interplay among the three characteristic hallmarks of Alzheimer's disease (AD): amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), and cholinergic hypofunction. We then review the recent studies on the four marketed cholinesterase inhibitors in term of their multiple activities, potential disease-modifying effects, and the underlying mechanisms of these actions. We finally focus on a new emerging strategy or multitarget AChE inhibitors as effective drugs for AD therapy. We explore some examples of multitarget ChE inhibitors developed in our own and other laboratories, which were purposely designed to address multiple AD etiological targets. These new AChE inhibitors hold great promise for improving cognitive functions in AD patients, slowing down the disease progression, as well as treating behavior problems related to AD.  相似文献   

19.
New amino acids are reported in which component macrocycles are constrained to mimic tripeptides locked in a beta-strand conformation. The novel amino acids involve macrocycles functionalized with both an N- and a C-terminus enabling addition of appendages at either end to modify receptor affinity, selectivity, or membrane permeability. We show that the cycles herein are effective templates within inhibitors of HIV-1 protease. Eleven compounds originating from such bifunctionalized cyclic templates are potent inhibitors of HIV-1 protease (Ki 0.3-50 nM; pH 6.5, I = 0.1 M). Unlike normal peptides comprising amino acids, five of these macrocycle-containing compounds are potent antiviral agents with sub-micromolar potencies (IC(50) 170-900 nM) against HIV-1 replication in human MT2 cells. The most active antiviral agents are the most lipophilic, with calculated values of LogD(6.5) > or = 4. All molecules have a conformationally constrained 17-membered macrocyclic ring that has been shown to structurally mimic a tripeptide segment (Xaa)-(Val/Ile)-(Phe/Tyr) of a peptide substrate in the extended conformation. The presence of two trans amide bonds and a para-substituted aromatic ring prevents intramolecular hydrogen bonds and fixes the macrocycle in the extended conformation. Similarly constrained macrocycles may be useful templates for the creation of inhibitors for the many other proteins and proteases that recognize peptide beta-strands.  相似文献   

20.
Agents that interact with cytoskeletal elements such as tubulin include synthetic spiroketal pyrans (SPIKET), targeting the spongistatin binding site of beta-tubulin, and monotetrahydrofuran compounds (COBRA compounds), targeting a unique binding cavity on alpha-tubulin. At nanomolar concentrations, the SPIKET compound SPIKET-P caused tubulin depolymerization and demonstrated potent cytotoxic activity against cancer cells. COBRA-1 inhibited GTP-induced tubulin polymerization. Treatment of human breast cancer and brain tumor cells with COBRA-1 caused destruction of microtubule organization and apoptosis. Other agents that have shown promise for cancer treatment include phorboxazoles, natural products that are extremely cytostatic towards the National Cancer Institute's panel of 60 tumor cell lines. In standard MTT assays, synthetic phorboxazole A exhibited potent cytotoxicity against NALM-6 acute lymphoblastic leukemia cells (IC50 = 1.7 nM), BT-20 breast cancer cells (IC50 = 3.4 nM), and U373 glioblastoma cells (IC50 = 6.7 nM). Structure-activity studies were reported for seven synthetic analogs of phorboxazole A. Out of these, two showed potent anti-cancer activity. Phorboxazole analog 2 was active against NALM-6 cells (IC50 = 4.8 nM), BT-20 cells (IC50 = 12.6 nM) and U373 cells (IC50 = 27.4 nM), as was analog 3 (NALM-6 IC50 = 5.2 nM, BT-20 IC50 = 11.3 nM, and U373 IC50 = 29.2 nM). Anticancer activity of the phorboxazole analogs was correlated to the presence of certain structural moieties such as portions of the macrolide group, the central oxazole group, and the polyene side chain. The requirement of more than one structural element for activity suggested that at least bimodal interactions of the natural product with key cellular components may occur. Promising anti-mitotic agents with pro-apoptotic activity include inhibitors of the tyrosine kinase BTK. The leflunomide metabolite analog LFM-A13 inhibited BTK in leukemia and lymphoma cells (IC50 = 17 microM). Consistent with the anti-apoptotic function of BTK, treatment of leukemic cells with LFM-A13 enhanced their sensitivity to chemotherapy-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号