首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cochlea removal severs peripheral processes of cochlear ganglion cells and permanently abolishes afferent input to nucleus magnocellularis (NM) neurons. Deafferented chick NM neurons undergo a series of morphologic and metabolic changes, which ultimately trigger the death of 20%–40% of neurons. Previous studies suggested that this cell specific death involves activation of the intrinsic apoptotic pathway, including increased presence of cytochrome c and active caspase-9 in the cytoplasm of deafferented NM neurons. Interestingly, however, both markers were detected pan-neuronally, in both degenerating and surviving NM neurons [Wilkinson BL, Elam JS, Fadool DA, Hyson RL (2003) Afferent regulation of cytochrome-c and active caspase-9 in the avian cochlear nucleus. Neuroscience 120:1071–1079]. Here, we provide evidence for the increased appearance of late apoptotic indicators and describe novel characteristics of cell death in deafferented auditory neurons. Young broiler chickens were subjected to unilateral cochlea removal, and brainstem sections through NM were reacted for active caspase-3 and terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL). Caspase-3 activation is observed in the cytoplasm of both dying and surviving deafferented NM neurons 24 h to 7 days following cochlea removal, suggesting that caspase-3, usually considered an “executioner” of apoptotic death, may also function as a “modulator” of death. In addition, we find that TUNEL labeling of degraded DNA is observed in deafferented NM. In contrast to upstream apoptotic markers, however, TUNEL labeling is restricted to a subpopulation of deafferented neurons. Twelve hours following cochlea removal, TUNEL labeling is observed as punctate accumulations within nuclei. Twenty-four hours following cochlea removal, TUNEL accumulates diffusely throughout neuronal cytoplasm in those neurons likely to die. This cytoplasmic TUNEL labeling may implicate mitochondrial nucleic acid degradation in the selective death of some deafferented NM neurons. Our study examines the subcellular distributions of two prominent apoptotic mediators, active caspase-3 and TUNEL, relative to known histochemical markers, in deafferented NM; provides new insight into the apoptotic mechanism of cell death; and proposes a role for mitochondrial DNA in deafferentation-induced cell death.  相似文献   

2.
Wilkinson BL  Elam JS  Fadool DA  Hyson RL 《Neuroscience》2003,120(4):1071-1079
During development, a subpopulation (approximately 30%) of neurons in the avian cochlear nucleus, nucleus magnocellularis (NM), dies following removal of the cochlea. It is clear that neuronal activity coming from the auditory nerve provides trophic support critical for cell survival in the NM. Several aspects of the intracellular signaling cascades that regulate apoptosis have been defined for naturally occurring, or programmed cell death, in neurons. These intracellular cascades involve the extrusion of cytochrome-c from the mitochondria into the cytosol and the subsequent activation of proteolytic caspase cascades, which ultimately act on substrates that lead to the death of the cell. In contrast, the intracellular signaling cascades responsible for deafferentation-induced cell death are not fully understood. In the present series of experiments, the potential extrusion of cytochrome-c from the mitochondria into the cytosol, and the activation of caspases were examined in the NM following deafferentation. Cytochrome-c immunoreactivity increased within 6 h following deafferentation and persisted for at least 3–5 days following surgery. However, cytochrome-c was not detectable within immunoprecipitates obtained from cytosolic fractions of deafferented NM neurons. This suggests that the increased immunoreactivity of cytochrome-c is related to mitochondrial proliferation. As a positive control, cytochrome-c was detected in cytosolic fractions of deafferented NM neurons treated with kainic acid, a substance known to cause cytochrome-c release into the cytosol. In addition, immunoreactivity for downstream active caspase-9 did increase following cochlea ablation. This increase was observed within 3 h following cochlea removal, but was not observed 4 days following surgery, a time point after the dying population of NM neurons have already degenerated. Together, these findings suggest that deafferentation of NM neurons results in caspase activation, but this activation may be cytochrome-c independent.  相似文献   

3.
Bush AL  Hyson RL 《Neuroscience》2006,138(4):1341-1349
Approximately 20-30% of neurons in the avian cochlear nucleus (nucleus magnocellularis) die following deafferentation (i.e. deafness produced by cochlea removal) and the remaining neurons show a decrease in soma size. Cell death is generally accepted to be a highly regulated process involving various pro-survival and pro-death molecules. One treatment that has been shown to modify the expression of these molecules is chronic administration of lithium. The present experiments examined whether lithium treatment can protect neurons from deafferentation-induced cell death. Post-hatch chicks were treated with LiCl or saline for 17 consecutive days, beginning on the day of hatching. On the 17th day, a unilateral cochlea ablation was performed. Five days following surgery, the nucleus magnocellularis neurons were counted stereologically on opposite sides of the same brains. Lithium reduced deafferentation-induced cell death by more than 50% (9.8% cell death as compared with 22.4% in saline-treated subjects). Lithium did not affect cell number on the intact side of the brain. Lithium also did not prevent the deafferentation-induced decrease in soma size, suggesting a dissociation between the mechanisms involved in the afferent control of soma size and those involved in the afferent control of cell viability. A possible mechanism for lithium's neuroprotective influence was examined in a second set of subjects. Previous studies suggest that the pro-survival molecule, bcl-2, may play a role in regulating cell death following deafferentation. Tissues from lithium- and saline-treated subjects were examined using immunocytochemistry. Chronic administration of lithium dramatically increased the expression of bcl-2 protein in nucleus magnocellularis neurons. These data suggest that lithium may impart its neuroprotective effect by altering the expression of molecules that regulate cell death.  相似文献   

4.
5.
Neurons in the avian cochlear nucleus, nucleus magnocellularis (NM), are highly sensitive to manipulations of afferent input, and removal of afferent activity through cochlear ablation results in the death of approximately 20-40% of ipsilateral NM neurons. The intracellular cascades that determine whether an individual NM neuron will die or survive are not fully understood. One early event observed in NM following deafferentation is a rapid rise in intracellular calcium concentration. In most cellular systems, the activity of calcium-binding proteins is believed to accommodate calcium influx. The calcium-binding protein, neuronal calcium sensor-1 (NCS-1), is an intracellular neuronal calcium sensor belonging to the EF-hand superfamily. NCS-1 has been implicated in calcium-dependent regulation of signaling cascades. To evaluate NCS-1 action in NM neurons, the localization of NCS-1 protein was examined. Double-label immunofluorescence experiments revealed that NCS-1 expression is evident in both the presynaptic nerve terminal and postsynaptic NM neuron. The postsynaptic expression of NCS-1 typically appears to be closely associated with the cell membrane. This close proximity of NCS-1 to the postsynaptic membrane could allow NCS-1 to function as a modulator of postsynaptic signaling events. Following deafferentation, NM neurons were more likely to show diffuse cytoplasmic NCS-1 labeling. This increase in the number of cells showing diffuse cytoplasmic labeling was observed 12 and 24 h following cochlea ablation, but was not observed 4 days following surgery. This activity-dependent regulation of NCS-1 subcellular localization suggests it may be associated with, or influenced by, processes important for the survival of NM neurons.  相似文献   

6.
1. Effects of deafferentation of the tooth pulps of the posterior mandibular teeth were studied in single neurons recorded in the ipsilateral subnucleus caudalis of the trigeminal (V) spinal tract nucleus of adult cats and kittens. The functional properties of neurons in each anesthetized animal were determined electro-physiologically in a series of microelectrode penetrations of the subnucleus. 2. The more than 800 neurons investigated could be subdivided on the basis of their cutaneous mechanoreceptive field properties into low-threshold mechanoreceptive (LTM) neurons, wide dynamic range (WDR) neurons, or nociceptive-specific (NS) neurons. Comparisons of neuronal properties were made between control (intact) cats and 7-15 day deafferented cats studied in a blind design, as well as groups of longer term deafferented cats, and kittens undergoing a "natural" deafferentation as a result of exfoliation of primary teeth. 3. There was no apparent change in the somatotopic pattern of organization of the subnucleus in the kittens and pulp-deafferented cats and no statistically significant differences were noted between kittens and control cats in any property except for alterations in the incidence of spontaneously active neurons. 4. Limited but statistically significant alterations were noted in some of the neuronal properties in the deafferented cats. These changes were especially apparent in the LTM neurons. The incidence of spontaneous activity was significantly decreased in the neurons of most long-term deafferented groups of cats. In the 7-15 day deafferented group, significantly more LTM neurons had a mechanoreceptive field involving all three divisions of the V nerve, and there was a significant increase in the incidence of LTM neurons activated by electrical stimulation of intraoral sites. Mechanosensitive neurons responsive only to tap stimuli were found only in the deafferented groups of cats. 5. These alterations in caudalis contrast with previous reports claiming marked hyperexcitability of caudal V brain stem neurons as a consequence of deafferentation and implicating such effects in the development of pain. However, some of the changes are in general not inconsistent with deafferentation-induced changes reported in spinal somatosensory neurons and with the pulp deafferentation-induced changes that we have recently documented in LTM neurons of subnucleus oralis of the V spinal tract nucleus of adult cats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Wang Y  Rubel EW 《Neuroscience》2008,154(1):381-389
Differential innervation of segregated dendritic domains in the chick nucleus laminaris (NL), composed of third-order auditory neurons, provides a unique model to study synaptic regulation of dendritic structure. Altering the synaptic input to one dendritic domain affects the structure and length of the manipulated dendrites while leaving the other set of unmanipulated dendrites largely unchanged. Little is known about the effects of neuronal input on the cytoskeletal structure of NL dendrites and whether changes in the cytoskeleton are responsible for dendritic remodeling following manipulations of synaptic input. In this study, we investigate changes in the immunoreactivity of high-molecular weight microtubule associated protein 2 (MAP2) in NL dendrites following two different manipulations of their afferent input. Unilateral cochlea removal eliminates excitatory synaptic input to the ventral dendrites of the contralateral NL and the dorsal dendrites of the ipsilateral NL. This manipulation produced a dramatic decrease in MAP2 immunoreactivity in the deafferented dendrites. This decrease was detected as early as 3 h following the surgery, well before any degeneration of afferent axons. A similar decrease in MAP2 immunoreactivity in deafferented NL dendrites was detected following a midline transection that silences the excitatory synaptic input to the ventral dendrites on both sides of the brain. These changes were most distinct in the caudal portion of the nucleus where individual deafferented dendritic branches contained less immunoreactivity than intact dendrites. Our results suggest that the cytoskeletal protein MAP2, which is distributed in dendrites, perikarya, and postsynaptic densities, may play a role in deafferentation-induced dendritic remodeling.  相似文献   

8.
Vestibular compensation for the postural and oculomotor deficits induced by unilateral labyrinthectomy is a model of post-lesional plasticity in the central nervous system. Just after the removal of one labyrinth, the deafferented, ipsilateral vestibular nucleus neurons are almost silent, and the discharge of the contralateral vestibular nucleus neurons is increased. The associated static disorders disappear in a few days, as normal activity is restored in both vestibular nuclei. In this study, we searched for traces of vestibular compensation in isolated whole brains taken from adult guinea-pigs. The electrophysiological responses evoked in control brains were compared to those evoked in brains taken from animals that had previously been labyrinthectomized. Guinea-pigs compensated for an initial labyrinthectomy within three days. In vivo, subsequent deafferentation of vestibular nucleus neurons on the intact side triggered "Bechterew's phenomenon": a new postural and oculomotor syndrome appeared, similar to the one induced by the first lesion, but directed to the newly deafferented side. These disturbances would be caused by the new imbalance between the discharges of neurons in the two vestibular nuclei triggered by the second deafferentation. Experiments were designed to search for a similar imbalance in vitro in brains taken from labyrinthectomized animals, where the intact vestibular nerve is cut during the dissection. Isolated whole brains were obtained from young guinea-pigs at various times (one to seven days) following an initial labyrinthectomy. An imbalance between the resting activities of medial vestibular nucleus neurons on both sides of the brainstem was revealed in brains taken more than three days after the lesion: their discharge was higher on the compensated, initially lesioned side than on the newly deafferented side. In some cases, an oscillatory pattern of discharge, reminiscent of the spontaneous nystagmus associated in vivo with Bechterew's syndrome, appeared in both abducens nerves. These data demonstrate that most of the changes underlying vestibular compensation persist, and can thus be investigated in the isolated whole brain preparation. Brains removed only one day after the lesion displayed normal commissural responses and symmetric spinal inputs to vestibular nucleus neurons. However, an unusually large proportion of the neurons recorded on both sides of the preparation had very irregular spontaneous discharge rates. These data suggest that the first stages of vestibular compensation might be associated with transient changes in the membrane properties of vestibular nucleus neurons. Brains taken from compensated animals displayed a significant, bilateral decrease of the inhibitory commissural responses evoked in the medial vestibular nucleus by single-shock stimulation of the contralateral vestibular nerve. The sensitivity of abducens motoneurons on the initially lesioned, compensated side to synaptic activation from the contralesional vestibular nucleus neurons was also decreased. Both changes may explain the long-term, bilateral decrease of vestibular-related reflexes observed following unilateral labyrinthectomy. Spinal inputs to vestibular nucleus neurons became progressively asymmetric: their efficacy was increased on the lesioned side and decreased on the intact one. This last modification may support a functional substitution of the deficient, vestibular-related synergies involved in gaze and posture stabilization by neck-related reflexes.  相似文献   

9.
The effects of deafferentation of the tooth pulps of mandibular or maxillary teeth were investigated on the functional properties of single neurons recorded in the subnucleus oralis of the trigeminal (V) spinal tract nucleus of adult cats. Deafferentation was produced by endodontic removal, under sterile conditions, of the coronal pulp of the canine, premolar, and molar teeth. The subnucleus oralis of each animal was then studied electrophysiologically in a series of microelectrode penetrations of the subnucleus at a single postoperative time that varied between 3 days and 2 yr. Data from deafferented cats were compared with those obtained from control (unoperated) animals. The study was based on an examination of over 2,000 single units recorded on the side ipsilateral to the pulp deafferentation. In animals deafferented 7-15 days prior to brain stem neuron recording, tooth pulp deafferentation was associated with a statistically significant decrease compared with control animals in the incidence of neurons having a mechanoreceptive field localized within the mandibular or maxillary division; this decrease in incidence was coincident with a significant increase in the occurrence of neurons having a mechanoreceptive field involving two or three V divisions. Linear trend analysis indicated a progressive return to control values from the 7- to 15-day postoperative period. In deafferented cats there were also statistically significant increases in the incidence of neurons having spontaneous activity or showing rapidly habituating responses to brisk tap stimuli applied to the orofacial region; neurons having a receptive field consisting of discontinuous zones of mechanosensitivity were also encountered. The mean impulse frequency of spontaneous activity was not, however, significantly different between control and deafferented animals. The responsiveness of the habituating tap-sensitive neurons was further quantified and compared with neurons showing normal rapidly adapting (RA) features of their responses to mechanical orofacial stimuli. Whereas most (85%) of the RA neurons could faithfully follow stimuli applied by a mechanical stimulator at a mean maximal following frequency of 6.6 Hz and showed entrainment and 'turning curve' profiles comparable to those previously described for oralis neurons in normal animals, most of the habituating tap-sensitive neurons could not follow mechanical stimulus frequencies greater than 1 Hz (mean maximal following frequency 0.3 Hz) and none could be entrained sufficiently to allow for a determination of their tuning curve.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
将HRP溶液注入鸣禽黄雀的耳蜗内,顺行追踪了耳蜗神经元至延髓听觉核团的上行投射。①在同侧的听神经(NⅧ)有密集标记的神经纤维束并分别投射至延髓的巨细胞杉和角状核;②在巨细胞核和角状核出现大量密集的标记终末,表明:黄雀的耳蜗神经元发出的纤维组成听神经后分别投射至同侧的巨细胞核和角状核做为听觉通路的第一级换元站的延髓耳蜗主核只由此二亚核组成,延髓的层状核并不接受耳蜗纤维的直接投射。  相似文献   

11.
The possible plastic reorganization of projections from the somatosensory relay nucleus Z of the cat medulla oblongata to the partially deafferented ventrolateral nucleus of the thalamus was studied by retrograde labeling with horseradish peroxidase. Partial deafferentation of the ventrolateral nucleus of the thalamus was produced by prior (three months) electrolytic destruction of the contralateral cerebellar interpositus nucleus or the lateral vestibular nucleus of Deiters. The results demonstrated local intense labeling of a group of neurons in nucleus Z, and there was a small group of labeled neurons in cell group x of the vestibular complex projecting to the ventrolateral nucleus of the thalamus, where these projections were found to overlap with those from the cerebellar nuclei. After lesioning of the cerebellar interpositus nucleus or lateral vestibular nucleus of Deiters, ipsilateral projections in the monosynaptic circuit consisting of nucleus Z and the ventrolateral nucleus of the thalamus did not form. The absence of reorganization of projections from nucleus Z to the ventrolateral nucleus of the thalamus in terms of the formation of ipsilateral projections may be associated with its being part of the somatosensory relay nucleus, which is specialized for relaying and transmitting information strictly of the specific proprioceptive modality.  相似文献   

12.
We investigated whether a unilateral inner ear lesion that destroyed the labyrinthine receptors, the cochlear receptors, and the spiral ganglion induced collateral sprouting in rat vestibular and auditory brainstem nuclei, using growth-associated protein-43 (GAP-43) as an indicator of synaptic remodeling. Both immunocytochemistry and in situ hybridization were performed to detect a potential modulation of GAP-43 and of its messenger RNA (mRNA) at different times after surgery. We failed to observe a reemergence of GAP-43 or a modulation of its mRNA in the deafferented vestibular nuclei at all survival times tested. In contrast, a substantial increase in the expression of GAP-43 was observed in the neuropil of the ipsilateral deafferented cochlear nuclei and in cell bodies of the ipsilateral superior olive. This increase was associated with an up- and downregulation of the mRNA coding for GAP-43 in the ipsilateral ventral cochlear nucleus and in the ipsilateral superior olive, respectively. These data indicate that synaptic remodeling, as assessed by GAP-43 expression, does not seem to occur in the deafferented vestibular complex during the first 6 weeks after labyrinthectomy, whereas it occurs within the first deafferented auditory relays at times as early as 4 days following spiral ganglion and cochlear receptors removal. We conclude that recovery of a normal resting discharge of the deafferented central vestibular neurons and consequently recovery of a normal resting posture and eye position may not depend on collateral sprouting of the remaining vestibular afferents. In contrast, we confirmed that a reactive synaptogenesis occurs in the brainstem auditory nuclei following cochlea and spiral ganglion removal. Its functional significance remains an open question.  相似文献   

13.
A comparative mapping of γ-aminobutyric acid neurons identified by means of glutamic acid decarboxylase (GAD) immunohistochemistry was performed in the red nucleus (RN) in both intact and hemicerebellectomized adult cats (21 days postoperative). In the deafferented RN (controlateral to the lesion) as well as in the adjacent dorsolateral reticular formation, a marked increase in the number of GAD-positive perikarya was observed. In this mesencephalic area, some neurons may therefore increase their endogenous levels of immunodetectable GAD, as a response to cerebellar deafferentation. This can be viewed as one of the events contributing to functional recovery.  相似文献   

14.
The long-term consequences of thoracic spinothalamic tract lesion on the physiological properties of neurons in the ventral posterior lateral nucleus of the thalamus in monkeys were assessed. Neurons responding to both compressive and phasic brush stimuli (multireceptive neurons), but not brush-specific (low-threshold) neurons, in the partially deafferented thalamus showed increased spontaneous activity, increased responses evoked by cutaneous stimuli and larger mean receptive field size than the same types of cells in the thalamus with intact innervation. The spike train properties of both the spontaneous and evoked discharges of cells were also altered so that there was an increased incidence of spike-bursts in cells of deafferented thalamus. These changes were widespread in the thalamus, and included cells in both the fully innervated forelimb representation and the partially denervated hindlimb representation ipsilateral to the lesion. The spontaneous and evoked spike trains in the ipsilateral thalamus also show increased frequency of both spike-burst and non-burst events compared to the intact thalamus. These results indicate that chronic spinothalamic tract lesion produces widespread changes in the physiological properties of a discrete cell population of the thalamus.The findings in this study indicate that the thalamic processing of somatosensory information conveyed by the lemniscal system is altered by transection of the spinothalamic tract. This change in sensory processing in the thalamus would result in altered cortical processing of innocuous somatosensory inputs following deafferentation and so possibly contribute to the generation of the central pain syndrome.  相似文献   

15.
Summary In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarily, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudateputamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.  相似文献   

16.
The purpose of this study was to investigate adaptive changes in the activity of vestibular nuclei neurons unilaterally deprived of their primary afferent inputs when influenced by visual motion cues. These neuronal changes might account for the established role that vision plays in the compensation for posturo-kinetic deficits after the loss of vestibular inputs. Neuronal recordings were made in alert, non-paralysed cats that had undergone unilateral vestibular nerve sections. The unit responses collected in both Deiters' nuclei were compared to those previously recorded in intact cats. We analysed the extracellular activity of Deiters' nucleus neurons, as well as the optokinetic reflex (OKR) evoked during sinusoidal translation of a whole-field optokinetic stimulus in the vertical plane. In intact cats, we found the unit firing rate closely correlated with the visual surround translation velocity, and the relationship between the discharge rate and the motion frequency was tuned around an optimal frequency. The maximum firing rate modulation was generally below the 0.25 Hz stimulus frequency; unit responses were weak or even absent above 0.25 Hz. From the 4th day to the end of the 3rd week after ipsilateral deafferentation, a majority of cells was found to display maximum discharge modulation during vertical visual stimulation at 0.50 Hz, and even at 0.75 Hz, indicating that the frequency bandwidth of the visually induced responses of deafferented vestibular nuclei neurons had been extended. Consequently, the frequency-dependent attenuation in the sensitivity of vestibular neurons to visual inputs was much less pronounced. After the first 3 weeks postlesion, the unit response characteristics were very similar to those observed prior to the deafferentation. On the nucleus contralateral to the neurectomy, the maximum modulation of most cells was tuned to the low frequencies of optokinetic stimulation, as also seen prior to the lesion. We found, however, a subgroup of cells displaying well-developed responses above 0.50 Hz. Under all experimental conditions, the neuronal response phase still remained closely correlated with the motion velocity of the vertical sinusoidal visual pattern. We hypothesize that Deiters' neurons deprived of their primary afferents may transiently acquire the ability to code fast head movements on the basis of visual messages, thus compensating, at least partially, for the loss of dynamic vestibular inputs during the early stages of the recovery process. Since the overall vertical OKR gain was not significantly altered within the 0.0125 Hz–1 Hz range of stimulation after the unilateral neurectomy, it can be postulated that the increased sensitivity of deafferented vestibular neurons to visual motion cues was accounted for by plasticity mechanisms operating within the deafferented Deiters' nucleus. The neuroplasticity mechanisms underlying this rapid and temporary increase in neuronal sensitivity are discussed.  相似文献   

17.
Severe transient forebrain ischemia causes selective neuronal death in the hippocampal cornus ammonis 1 region. We tested the hypothesis that fimbria-fornix deafferentation can provide long-term protection to cornus ammonis 1 neurons and modulate neurogenesis following ischemia. Fimbria-fornix lesion or sham-fimbria-fornix lesion was performed on Wistar rats 13 days prior to 10 min forebrain ischemia or sham ischemia. Temperature was regulated and rats survived for 7, 14 or 28 days. Immunofluorescent bromodeoxyuridine and neuron specific nuclear protein staining and immunochemistry terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining were performed. At 7 days after ischemia, 73%+/-14% of cornus ammonis 1 neurons were damaged, while deafferentation reduced the injury to 36%+/-17% of cornus ammonis 1 neurons. This protection persisted for at least 28 days. Ischemia significantly increased the number of bromodeoxyuridine-positive cells (85-90 cells/section in stroke group vs. 6 to 11 cells/section in normal or sham stroke group), with very few terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-stained cells adjacent to the hippocampal cornus ammonis 1. Fimbria-fornix lesioning followed by ischemia increased the percentage of new neurons 13-fold over ischemia alone and 6.5-fold over sham lesion plus ischemia. The results indicate that fimbria-fornix deafferentation provides long-term neuroprotection in cornus ammonis 1 following forebrain ischemia and promotes neurogenesis after ischemic insults.  相似文献   

18.
A G Woods  F R Poulsen  C M Gall 《Neuroscience》1999,91(4):1277-1289
Hippocampal deafferentation increases the expression of insulin-like growth factor-1 by microglia, and of ciliary neurotrophic factor and basic fibroblast growth factor by astroglia in fields and periods of reactive axonal growth. Glucocorticoids attenuate lesion-induced hippocampal sprouting, possibly by reducing trophic signals that stimulate growth. With an interest in this hypothesis, the present studies evaluated the influence of systemic treatment with the synthetic glucocorticoid dexamethasone on entorhinal lesion-induced increases in neurotrophic factor expression in young adult rat hippocampus. Daily dexamethasone injections almost completely blocked increases in insulin-like growth factor-1 messenger RNA content, but did not perturb increases in ciliary neurotrophic factor or basic fibroblast growth factor messenger RNA content, in the deafferented dentate gyrus molecular layer. To determine if the suppression of insulin-like growth factor-1 expression was secondary to a general inhibition of microglial responses, and to identify the time period of glucocorticoid sensitivity, additional rats were prepared to evaluate the effects of semi-chronic (i.e. daily) and single dexamethasone injections on microglial proliferation, ED-1 immunoreactivity (a marker of microglial reactivity) and insulin-like growth factor-1 messenger RNA expression. Semi-chronic dexamethasone treatment attenuated all three measures of deafferentation-induced microglial reactivity. However, a single dexamethasone injection given two (but not one or three) days postlesion inhibited deafferentation-induced increases in insulin-like growth factor-1 messenger RNA content, without having significant effects on other measures. These results demonstrate that dexamethasone treatment preferentially suppresses microglial, as opposed to astroglial, trophic responses to deafferentation, and suggest that glucocorticoids attenuate reactive axonal sprouting by inhibiting the microglial production of insulin-like growth factor-1.  相似文献   

19.
We investigated the molecular mechanisms of cell death in the dorsal lateral geniculate nucleus of the rat, following suction lesion of the visual cortex at birth or in the third postnatal week, using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) technique and immunohistochemistry for caspase-3, -7, -8, and cleaved poly(ADP-ribose) polymerase.Following lesion at birth, TUNEL-positive neurons were found in the dorsal lateral geniculate nucleus between 24 h and 3 days after lesion, with a peak on the second day. Shorter survival times (12-18 h) resulted in labeling of very few neurons in dorsal lateral geniculate nucleus and of several neurons in the perilesional cortex. Activated caspase-3 was expressed from the first to the third days after lesion, whereas cleaved poly(ADP-ribose) polymerase and activated caspase-8 were expressed on the second and third day. Activated caspase-7 was expressed mainly in pretectal nuclei. Caspase-3 activation coincided with the appearance of TUNEL-positive profiles, but decreased earlier than TUNEL. In the ipsi- and contralateral cerebral cortex, all parameters were unchanged. In animals lesioned in the third week, rare apoptotic thalamic neurons were detected as TUNEL- and activated caspase-3-positive profiles 2 days after cortical ablation, and were still present 1 week after lesion.Thus, early target ablation has dramatic effects on neonatal thalamic neurons, which die following activation of caspases 3 and 8. In contrast, cortical neurons are relatively unaffected by target deprivation. Compared with early lesions, late lesions induce a limited thalamic cell death, that persists over time.  相似文献   

20.
The effects of neonatal visual deafferentation on the final adult pattern of cortico-collicular connections from the rat primary somatosensory cortex barrel field were studied by injecting an anterograde tracer (BDA) into different locations of the barrel cortex. Collicular afferents originating in the barrel cortex normally end in the intermediate collicular strata (SGI and SAI). However, neonatal visual deafferentation caused an invasion of abundant somatosensory cortical afferents into the lateral portions of the superficial collicular strata (SGS and SO). Moreover, anterograde-labelled fibers in the intermediate strata were more densely packed in visually deafferented animals. In order to study the activity of the altered somatosensory cortico-collicular connection, the effects of two different types of whisker stimuli on c-fos expression in the SC were analyzed (apomorphine treatment and enriched environment exploration). In stimulated control animals, c-fos expression was clearly evident in neurons of the intermediate layers 2 h after whisker stimulation. Similar stimulation in adult animals that underwent neonatal visual deafferentation triggered higher levels of c-fos expression in the superficial collicular layers that were invaded by cortico-collicular axonal branches. In exploration experiments, increased levels of c-fos expression were also detected in lateral parts of the intermediate layers of visually deafferented animals. These results suggest that the ascending fibers of somatosensory cortical origin can recruit deafferented superficial collicular neurons that enabling them to participate in extravisual behavioural responses mediated by collicular circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号