首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the clinical setting, antidotes are generally administered after the occurrence of a drug overdose. Therefore, the most pertinent evaluation of any new agent should model human exposure. This study tested whether acetaminophen (APAP) hepatotoxicity was reversed when S-adenosyl-L-methionine (SAMe) was administered after APAP exposure, similar to what occurs in clinical situations. Comparisons were made for potency between SAMe and N-acetylcysteine (NAC), the current treatment for APAP toxicity. Male C57BL/6 mice were fasted overnight and divided into groups: control (VEH), SAMe treated (SAMe), APAP treated (APAP), N-acetylcysteine treated (NAC), SAMe or NAC administered 1h after APAP (SAMe+APAP) and (NAC+APAP), respectively. Mice were injected intraperitoneal (i.p.) with water (VEH) or 250 mg/kg APAP (15 ml/kg). One hour later, mice were injected (i.p.) with 1.25 mmol/kg SAMe (SAMe+APAP) or NAC (NAC+APAP). Hepatotoxicity was evaluated 4h after APAP or VEH treatment. APAP induced centrilobular necrosis, increased liver weight and alanine transaminase (ALT) levels, depressed total hepatic glutathione (GSH), increased protein carbonyls and 4-hydroxynonenal (4-HNE) adducted proteins. Treatment with SAMe 1h after APAP overdose (SAMe+APAP) was hepatoprotective and was comparable to NAC+APAP. Treatment with SAMe or NAC 1h after APAP was sufficient to return total hepatic glutathione (GSH) to levels comparable to the VEH group. Western blot showed reversal of APAP mediated effects in the SAMe+APAP and NAC+APAP groups. In summary, SAMe was protective when given 1h after APAP and was comparable to NAC.  相似文献   

2.
Song Z  McClain CJ  Chen T 《Pharmacology》2004,71(4):199-208
An overdose of acetaminophen (APAP) is the most frequent cause of fulminant liver failure in the United States. Increasing evidence demonstrates that oxidative stress plays an important etiologic role in APAP-induced liver injury. S-Adenosylmethionine (SAMe) is a key intermediate in the hepatic trans-sulfuration pathway and serves as a precursor for glutathione (GSH) as well as the methyl donor in most transmethylation reactions. In the present study, we investigated effects of SAMe on liver injury induced by APAP administration in male C57BL/6 mice. Two related studies were performed. In the first experiment, SAMe (1g/kg BW) was injected intraperitoneally 4 h before APAP (600 mg/kg BW) administration. In the second experiment, SAMe was injected intraperitoneally 1 h after APAP administration. Our results showed that APAP administration induced changes typical of confluent centrilobular necrosis by histological examination and a marked elevation in serum alanine aminotransferase (ALT) activity. APAP administration induced significant decreases in both hepatic and blood SAMe concentrations. In addition, APAP decreased intracellular (both cytosolic and mitochondrial) GSH concentrations along with increased lipid peroxidation in conjunction with mitochondrial dysfunction as documented by Ca2+-induced mitochondrial permeability transition. SAMe treatment (both before and after APAP) significantly attenuated the liver injury. Exogenous SAMe prevented the decrease in liver and blood SAMe concentrations. Moreover, SAMe treatment attenuated both cytosolic and mitochondrial GSH depletion as well as mitochondrial dysfunction. We conclude that SAMe at least in part protects the liver from APAP-induced injury by preventing intracellular GSH depletion and mitochondrial dysfunction.  相似文献   

3.
Acetaminophen (APAP) is the leading cause of drug induced liver failure in the United States. Previous studies in our laboratory have shown that S-adenosyl methionine (SAMe) is protective for APAP hepatic toxicity. SAMe is critical for glutathione synthesis and transmethylation of nucleic acids, proteins and phospholipids which would facilitate recovery from APAP toxicity. SAMe is synthesized in cells through the action of methionine adenosyltransferase (MAT). This study tested the hypothesis that total hepatic and subcellular SAMe levels are decreased by APAP toxicity. Studies further examined MAT expression and activity in response to APAP toxicity. Male C57BL/6 mice (16-22 g) were treated with vehicle (Veh; water 15 ml/kg ip injections), 250 mg/kg APAP (15 ml/kg, ip), SAMe (1.25 mmol/kg) or SAMe administered 1 h after APAP injection (SAMe and SAMe + APAP). Hepatic tissue was collected 2, 4, and 6 h after APAP administration. Levels of SAMe and its metabolite S-adenosylhomocysteine (SAH) were determined by HPLC analysis. MAT expression was examined by Western blot. MAT activity was determined by fluorescence assay. Total liver SAMe levels were depressed at 4 h by APAP overdose, but not at 2 or 6 h. APAP depressed mitochondrial SAMe levels at 4 and 6 h relative to the Veh group. In the nucleus, levels of SAMe were depressed below detectable limits 4 h following APAP administration. SAMe administration following APAP (SAMe + APAP) prevented APAP associated decline in mitochondrial and nuclear SAMe levels. In conclusion, the maintenance of SAMe may provide benefit in preventing damage associated with APAP toxicity.  相似文献   

4.
Acetaminophen (APAP) overdose leads to severe hepatotoxicity, increased oxidative stress and mitochondrial dysfunction. S-adenosyl-L-methionine (SAMe) protects against APAP toxicity at a mmol/kg equivalent dose to N-acetylcysteine (NAC). SAMe acts as a principle biological methyl donor and participates in polyamine synthesis which increase cell growth and has a role in mitochondrial protection. The purpose of the current study tested the hypothesis that SAMe protects against APAP toxicity by maintaining critical antioxidant enzymes and markers of oxidative stress. Male C57Bl/6 mice were treated with vehicle (Veh; water 15 ml/kg, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg, ip), and SAMe+APAP (SAMe given 1 h following APAP). Liver was collected 2 and 4 h following APAP administration; mitochondrial swelling as well as hepatic catalase, glutathione peroxidase (GPx), glutathione reductase, and both Mn- and Cu/Zn-superoxide dismutase (SOD) enzyme activity were evaluated. Mitochondrial protein carbonyl, 3-nitrotyrosine cytochrome c leakage were analyzed by Western blot. SAMe significantly increased SOD, GPx, and glutathione reductase activity at 4 h following APAP overdose. SAMe greatly reduced markers of oxidative stress and cytochrome C leakage following APAP overdose. Our studies also demonstrate that a 1.25 mmol/kg dose of SAMe does not inhibit CYP 2E1 enzyme activity. The current study identifies a plausible mechanism for the decreased oxidative stress observed when SAMe is given following APAP.  相似文献   

5.
The hepatoprotective effect of DA-9601, a quality-controlled extract ofArtemisia asiatica, on liver damage induced by acetaminophen (APAP) and carbon tetrachloride (CCI4) was investigated by means of serum-biochemical, hepatic-biochemical, and histopathological examinations. Doses of DA-9601 (10, 30, or 100mg/kg) were administered intragastrically to each rat on three consecutive days i.e. 48 h, 24 h and 2 h before a single administration of APAP (640 mg/kg, i.p.) or CCl4 (2 ml/kg, p.o.). Four h and 24 h after hepatotoxin treatment, the animals were sacrificed for evaluation of liver damage. Pretreatment of DA-9601 reduced the elevation of serum ALT, AST, LDH and histopathological changes such as centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration dose-dependently. DA-9601 also prevented APAP- and CCl4-induced hepatic glutathione (GSH) depletion and CCl4-induced increase of hepatic malondialdehyde (MDA), a parameter of lipid peroxidation, in a dose-dependent manner. These findings suggest that pretreatment with DA-9601 may reduce chemically induced liver injury by complex mechanisms which involve prevention of lipid peroxidation and preservation of hepatic GSH.  相似文献   

6.
Acetaminophen (APAP) toxicity involves both arylative and oxidative mechanisms. The shark bile salt, 5 beta-scymnol (5beta-S), has been demonstrated to act as an antioxidant and free radical scavenger in vitro. To determine if 5beta-S protects against either APAP-induced hepatic or renal toxicity, 3-4-month-old male Swiss Laca mice were given APAP (500 mg/kg), and 5beta-S (100 mg/kg) was given at 0 and 2 h after APAP. Plasma SDH at 12 h after APAP alone was 1630 U/l and BUN was 19 mg/dl versus 20 U/l and 10 mg/dl, respectively, in controls. Either simultaneous or 2 h delayed treatment with 5beta-S significantly decreased the APAP-induced SDH increase while only the simultaneous pretreatment prevented the BUN elevation. 5beta-S alone did not increase liver glutathione content. Western analysis of APAP covalent binding using anti-APAP antibodies indicated the 5beta-S did not alter protein arylation either qualitatively or quantitatively. These results suggest that 5beta-S treatment did not impair APAP activation and are consistent with 5beta-S protection that likely results from its antioxidant activity.  相似文献   

7.
Abstract

Background: Acetaminophen (APAP) is an antipyretic analgesic drug that when taken in overdose causes depletion of glutathione (GSH) and hepatotoxicity. N-acetylcysteine (NAC) is the antidote of choice for the treatment of APAP toxicity; however, due to its short-half-life repeated dosing of NAC is required.

Purpose: To determine whether a NAC-loaded liposomal formulation (Lipo-NAC) is more effective than the conventional NAC in protecting against acute APAP-induced hepatotoxicity.

Methods: Male Sprague–Dawley rats were challenged with an intragastric dose of APAP (850?mg/kg b.wt.); 4?h later, animals were administered saline, NAC, Lipo-NAC or empty liposomes and sacrificed 24?h post-APAP treatment.

Results: APAP administration resulted in hepatic injury as evidenced by increases in plasma bilirubin, alanine (AST) and aspartate (ALT) aminotransferase levels and tissue levels of lipid peroxidation and myeloperoxidase as well as decreases in hepatic levels of reduced GSH, GSH peroxidase and GSH reductase. Treatment of animals with Lipo-NAC was significantly more effective than free NAC in reducing APAP-induced hepatotoxicity. Histological evaluation showed that APAP caused periacinar hepatocellular apoptosis and/or necrosis of hepatocytes around the terminal hepatic venules which was reduced by NAC treatment, the degree of reduction being greater for Lipo-NAC.

Conclusion: These data suggest that administration of Lipo-NAC ameliorated the APAP-induced hepatotoxicity.  相似文献   

8.
Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. This study investigated whether sulforaphane (SFN), as a HO-1 inducer, plays a protective role against APAP hepatotoxicity in vitro and in vivo. Pretreatment of primary hepatocyte with SFN induced nuclear factor E2-factor related factor (Nrf2) target gene expression, especially HO-1 mRNA and protein expression, and suppressed APAP-induced glutathione (GSH) depletion and lipid peroxidation, which eventually leads to hepatocyte cell death. A comparable effect was observed in mice treated with APAP. Mice were treated with 300 mg/kg APAP 30 min after SFN (5 mg/kg) administration and were then sacrificed after 6 h. APAP alone caused severe liver injuries as characterized by increased plasma AST and ALT levels, GSH depletion, apoptosis, and 4-hydroxynonenal (4-HNE) formations. This APAP-induced liver damage was significantly attenuated by pretreatment with SFN. Furthermore, while hepatic reactive oxygen species (ROS) levels were increased by APAP exposure, pretreatment with SFN completely blocked ROS formation. These results suggest that SFN plays a protective role against APAP-mediated hepatotoxicity through antioxidant effects mediated by HO-1 induction. SFN has preventive action in oxidative stress-mediated liver injury.  相似文献   

9.
Acetaminophen (APAP)-induced hepatocellular necrosis can be prevented by treatment with peroxisome proliferators. This protection is associated with lowered protein arylation and glutathione depletion in mice. Peroxisome proliferators have been shown to activate nuclear receptors. These receptors, termed peroxisome proliferator activated receptors (PPARs), can also be activated by free fatty acids. This study was designed to determine if treatment with the PPAR activator docosahexaenoic acid (DHA) would also lower APAP toxicity. Male CD-1 mice received 250 mg DHA/kg or 500 mg clofibrate (CFB)/kg, i.p., for 5 d. Controls received corn oil vehicle, i.p. After overnight fasting, mice received 800 mg APAP/kg, p.o. At 24 h after APAP, hepatotoxicity was evident in control mice by elevated plasma sorbitol dehydrogenase activity (SDH) and histologic evidence of hepatic degeneration and necrosis. As expected, CFB pretreatment significantly decreased this. Similarly, DHA protected against APAP-induced hepatotoxicity at 24 h after challenge. However, treatment with DHA did not increase hepatic glutathione prior to APAP, as previously shown with CFB. Interestingly, DHA did not increase palmitoyl coenzyme A (CoA) oxidase activity or other biochemical parameters associated with peroxisome proliferation after 5 d of treatment at 250 mg/kg. No significant alterations in microsomal APAP glucuronidation or cytochrome P-450-mediated bioactivation were detected either. Collectively, these results show that DHA also prevents APAP-induced hepatotoxicity at 24 h after challenge. However, the association between resistance against APAP-induced liver injury, PPAR activation, and peroxisome proliferation is not clearly understood.  相似文献   

10.
The relationship between acetaminophen (APAP) reactive metabolite formation, nitrotyrosine (NT) production, and cytokine elevation in APAP toxicity was investigated. Mice were dosed with 300 mg/kg of APAP and sacrificed at 1, 2, 4, 8, and 12 h. Serum aspartate aminotransferase (AST) was elevated by 4 h. The relative amount of NT correlated with toxicity and was localized in the necrotic cells. IL-1b was increased at 1 h, whereas IL-6, MIP-2, and MCP-1 were increased by 4-8 h. To determine the importance of reversible versus toxic events, N-acetylcysteine (NAC) was administered to mice either before APAP or 1, 2, or 4 h after APAP. The animals were sacrificed at 12 h. NAC treatment before APAP resulted in serum AST, serum nitrate plus nitrite as a measure of nitric oxide (NO) production, and hepatic cytokine levels that were similar to the controls. No APAP protein adducts or NT was present in these animals. In mice treated with NAC at 1 h, cytokines and serum AST were normal at 12 h, but APAP protein adducts were present in the hepatic centrilobular areas. No NT was present in these animals. In mice treated with NAC at 2 h and sacrificed at 12 h, serum AST was reduced by 80%. APAP adducts and NT were present in the centrilobular areas. Mice receiving NAC at 4 h had no protection from toxicity and serum nitrate plus nitrite. The NT and cytokine levels were similar to those of mice receiving APAP alone. The data suggest a relationship between metabolic events in APAP toxicity and the upregulation of NO, and IL-1b. IL-6, MIP-2, and MCP-1 appear to follow the toxicity. While it is a pre-requisite event, covalent binding per se does not appear to be a toxic event in the development of toxicity.  相似文献   

11.
Acetaminophen (APAP)-induced hepatocellular necrosis can be prevented by treatment with peroxisome proliferators. This protection is associated with lowered protein arylation and glutathione depletion in mice. Peroxisome proliferators have been shown to activate nuclear receptors. These receptors, termed peroxisome proliferator activated receptors (PPARs), can also be activated by free fatty acids. This study was designed to determine if treatment with the PPAR activator docosahexaenoic acid (DHA) would also lower APAP toxicity. Male CD-1 mice received 250 mg DHA/kg or 500 mg clofibrate (CFB)/kg, ip, for 5 d. Controls received corn oil vehicle, ip. After overnight fasting, mice received 800 mg APAP/kg, po. At 24 h after APAP, hepatotoxicity was evident in control mice by elevated plasma sorbitol dehydrogenase activity (SDH) and histologic evidence of hepatic degeneration and necrosis. As expected, CFB pretreatment significantly decreased this. Similarly, DHA protected against APAP-induced hepatotoxicity at 24 h after challenge. However, treatment with DHA did not increase hepatic glutathione prior to APAP, as previously shown with CFB. Interestingly, DHA did not increase palmitoyl coenzyme A (CoA) oxidase activity or other biochemical parameters associated with peroxisome proliferation after 5 d of treatment at 250 mg/kg. No significant alterations in microsomal APAP glucuronidation or cytochrome P-450-mediated bioactivation were detected either. Collectively, these results show that DHA also prevents APAP-induced hepatotoxicity at 24 h after challenge. However, the association between resistance against APAP-induced liver injury, PPAR activation, and peroxisome proliferation is not clearly understood.  相似文献   

12.
The effect of zinc on mercuric chloride-induced lipid peroxidation in the rat kidney was investigated. The rats received zinc acetate (2.0 mmol/kg, po) for 2 days before being given mercuric chloride (15 mumol/kg, sc) and were killed 6, 12, and 24 hr after the last injection. Lipid peroxidation occurred in the rat kidney 12 hr after mercury administration, and this mercury-induced lipid peroxidation was significantly reduced by zinc pretreatment. A decrease in vitamin C and E contents in the kidney was observed 12 hr after the administration of mercury, and this decrease was prevented by zinc pretreatment. In the kidney of rats pretreated with zinc, the activities of the protective enzymes, glutathione peroxidase and glucose-6-phosphate dehydrogenase, were increased after mercury injection. Non-protein sulfhydryl content (mostly glutathione) also rose markedly. The results indicate that zinc not only induces metallothionein, but also increases protective enzyme activities and glutathione content, which would tend to inhibit lipid peroxidation and suppress mercury toxicity.  相似文献   

13.
The purpose of this study was to investigate whether activation of the nuclear receptor PPARalpha is needed for protection from acetaminophen (APAP) hepatotoxicity produced by repeated administration of the peroxisome proliferator clofibrate (CFB). Female wild-type and PPARalpha-null mice received corn oil vehicle or 500 mg CFB/kg, ip, daily for 10 days. They were then fasted overnight (18 h) and either killed at 4 or 24 h after challenge with 400 mg APAP/kg. Controls received 50% propylene glycol vehicle only. In this model of CFB hepatoprotection, liver injury was assessed by measuring plasma sorbitol dehydrogenase activity and by histopathology at 24 h after APAP challenge. Significant hepatocellular necrosis was evident in both corn oil-pretreated PPARalpha-null and wild-type mice at 24 h after APAP challenge. In agreement with previous studies, CFB-pretreated wild-type mice showed marked protection against APAP toxicity. In contrast, CFB did not provide protection against APAP hepatotoxicity in the PPARalpha-null mice. Similarly, at 4 h after APAP challenge, hepatic glutathione depletion and selective arylation of cytosolic proteins were reduced significantly in CFB-pretreated wild-type mice, but not in PPARalpha-null mice. The lack of changes in APAP binding and NPSH depletion in CFB-pretreated, PPARalpha-null mice is consistent with the presence of significant liver injury at 24 h in this treatment group. These findings demonstrate that the protection against APAP hepatotoxicity by peroxisome proliferator treatment is mediated by the activation of PPARalpha.  相似文献   

14.
15.
《Toxin reviews》2013,32(3-4):275-304
Effects of different doses of vitamin C against acetaminophen (APAP)-induced hepatorenal toxicity was investigated in male rats. The experimental groups included, a control group which received vehicle, a group intraperitoneally injected with a single dose of vitamin C (320 mg/kg body weight (b.wt.)), a group which received an oral overdose of APAP (1 g / kg b.wt.), as well as three groups administered the APAP overdose followed by a single dose of vitamin C (80, 160 or 320 mg/kg b.wt). All animals were watched for 24 hours, after which the mortality rate and serum levels of the hepatorenal indices were measured. Liver glutathione level and the ultrastructure of hepatic and renal tissues were also studied.

Administration of APAP overdose induced a high mortality rate and hepatorenal toxicity as indicated by significantly higher levels of hepatorenal indices and decreased liver glutathione. It also caused cellular alterations and necrosis of hepatocytes and some renal cortical cells. However, injection of vitamin C alone caused no abnormalities. The injection of vitamin C after APAP administration decreased the hepatorenal toxicity in a dose-dependent manner. The highest dose of vitamin C normalized the levels of liver glutathione and serum hepatorenal indices except for bilirubin. It also protected hepatic and renal cells except for slight dilatation of rough endoplasmic reticulum and glycogen depletion in some hepatocytes, as well as the presence of lysosomal structures in cortical tubular epithelia. No fatalities were seen in rats treated with the highest two doses of vitamin C. It could be concluded that the highest dose of vitamin C prevented against the lethal effect of APAP overdose, although it incompletely protected against hepatorenal toxicity.  相似文献   

16.
Geranylgeranylacetone (GGA), an anti-ulcer drug, has been reported to induce heat shock protein (HSP) 70 in several animal organs. The present study was performed to determine whether GGA protects mouse liver against acetaminophen (APAP)-induced injury and whether it has potential as a therapeutic agent for APAP overdose. Hepatic damage was induced by single oral administration of APAP (500 mg/kg). GGA at 400 mg/kg was given orally 4 or 8h before, or 0.5h after APAP administration. Treatment of mice with GGA 4h before or 0.5h after APAP administration suppressed increases in transaminase activities and ammonia content in blood as well as hepatic necrosis. Such GGA treatment significantly increased hepatic HSP70 accumulation after APAP administration. Furthermore, GGA inhibited increases in hepatic lipid peroxide content and hepatic myeloperoxidase activity after APAP administration. In contrast, GGA neither inhibited hepatic cytochrome P450 2E1 activity nor suppressed hepatic glutathione depletion after APAP administration. The protective effect of GGA treatment 4h before APAP on hepatotoxicity induced by APAP was completely inhibited with quercetin, known as an HSP inhibitor. In conclusion, GGA has been identified as a new antidote to APAP injury, acting by induction of HSP70. The potential of GGA as a therapeutic tool is strongly supported by its ability to inhibit hepatic injury even when administered after ingestion of APAP.  相似文献   

17.
The Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl4) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression. Additionally, we studied whether hepatic Nrf2 nuclear translocation is a general response during the early stages of acute hepatic chemical stress in vivo. Male CD-1 mice were administered APAP (3.5 mmol/kg), FS (1.21 mmol/kg), BB (4.8 mmol/kg) and CCl4 (1 mmol/kg) for 1, 5 and 24h. Each compound elicited significant serum ALT increases after 24h (ALT U/L: APAP, 3036+/-1462; BB, 5308+/-2210; CCl4, 5089+/-1665; FS, 2301+/-1053), accompanied by centrilobular damage as assessed by histopathology. Treatment with APAP also elicited toxicity at a much earlier time point (5h) than the other hepatotoxins (ALT U/L: APAP, 1780+/-661; BB, 161+/-15; CCl4, 90+/-23; FS, 136+/-27). Significant GSH depletion was seen with APAP (9.6+/-1.7% of control levels) and BB (52.8+/-6.2% of control levels) 1h after administration, but not with FS and CCl4. Western Blot analysis revealed an increase in nuclear Nrf2, 1h after administration of BB (209+/-10% control), CCl4 (146+/-3% control) and FS (254+/-41% control), however this was significantly lower than the levels observed in the APAP-treated mice (462+/-36% control). The levels of Nrf2-dependent gene induction were also analysed by quantitative real-time PCR and Western blotting. Treatment with APAP for 1h caused a significant increase in the levels of haem oxygenase-1 (HO-1; 2.85-fold) and glutamate cysteine ligase (GCLC; 1.62-fold) mRNA. BB and FS did not affect the mRNA levels of either gene after 1h of treatment; however CCl4 significantly increased HO-1 mRNA at this time point. After 24h treatment with the hepatotoxins, there was evidence for the initiation of a late defence response. BB significantly increased both HO-1 and GCLC protein at this time point, CCl4 increased GCLC protein alone, although FS did not alter either of these proteins. In summary, we have demonstrated that the hepatotoxins BB, CCl4 and FS can induce a small but significant increase in Nrf2 accumulation in hepatic nuclei. However, this was associated with modest changes in hepatic GSH, a delayed development of toxicity and was insufficient to activate an early functional adaptive response to these hepatotoxins.  相似文献   

18.
19.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1β. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication.  相似文献   

20.
The hepatotoxicity of acetaminophen (APAP) overdose depends on metabolic activation to a toxic reactive metabolite via hepatic mixed function oxidase. In vitro studies have indicated that APAP may also be cooxidized by prostaglandin H synthetase. The present experiments were designed to assess the possible contribution of hepatic prostaglandin synthesis to APAP toxicity. Adult fed male mice were overdosed with 400 mg APAP/kg. Liver toxicity was estimated by measurement of serum transaminases. Hypertonic xylitol or sodium chloride (2250 mOsm/l), administered intragastrically to stimulate prostaglandin synthesis, increased APAP toxicity. By contrast, the cyclooxygenase inhibiting drugs aspirin (at 25 mg/kg) and indomethacin (at 10 mg/kg) protected against APAP-induced toxicity. APAP kinetics were not affected by hypertonic xylitol or indomethacin, nor were hepatic glutathione levels in overdosed mice. Imidazole, a nonspecific thromboxane synthetase inhibitor, also protected overdosed mice. This drug prolonged hexobarbital sleeping time and prevented the depletion of hepatic glutathione that followed APAP intoxication. Thus, the data support the conclusion that APAP-induced hepatotoxicity may be modulated not only by inhibition of cytochrome P450 mediated oxidation, but also by controlling hepatic cyclooxygenase activity.The Eugene Hecht Chair in Clinical Pharmacology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号