首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
3.
One of the pathologic hallmarks of Alzheimer's disease is the excessive deposition of beta-amyloid peptides (Abeta) in senile plaques. Abeta is generated when beta-amyloid precursor protein (APP) is cleaved sequentially by beta-secretase, identified as beta-site APP-cleaving enzyme 1 (BACE1), and gamma-secretase, a putative enzymatic complex containing presenilin 1 (PS1). However, functional interaction between PS1 and BACE1 has never been known. In addition to this classical role in the generation of Abeta peptides, it has also been proposed that PS1 affects the intracellular trafficking and maturation of selected membrane proteins. We show that the levels of exogenous and endogenous mature BACE1 expressed in presenilin-deficient mouse embryonic fibroblasts (PS-/-MEFs) were reduced significantly compared to those in wild-type MEFs. Moreover, the levels of mature BACE1 were increased in human neuroblastoma cell line, SH-SY5Y, stably expressing wild-type PS1, compared to native cells. Conversely, the maturation of BACE1 was compromised under the stable expression of dominant-negative mutant PS1 overexpression. Immunoprecipitation assay showed that PS1 preferably interacts with proBACE1 rather than mature BACE1, indicating that PS1 can be directly involved in the maturation process of BACE1. Further, endogenous PS1 was immunoprecipitated with endogenous BACE1 in SH-SY5Y cells and mouse brain tissue. We conclude that PS1 is directly involved in the maturation of BACE1, thus possibly functioning as a regulator of both beta- and gamma-secretase in Abeta generation.  相似文献   

4.
5.
6.
The beta-amyloid peptides derived by proteolytic cleavage from the amyloid precursor protein (APP) play a major role in the pathogenesis of Alzheimer's disease (AD) by forming aggregated, fibrillary complexes that have been shown to be neurotoxic. The beta-site APP-cleaving enzyme (BACE1) has been identified as the key enzyme leading to beta-amyloid formation, and cholinergic mechanisms have been shown to control APP processing. The present study sought to determine whether BACE1 expression is controlled by muscarinic acetylcholine receptor (mAChR) subtypes in the neuroblastoma cell line SK-SH-SY5Y. Stimulation of cells with the M1/M3-selective mAChR agonist talsaclidine for 1 hr resulted in a dose-dependent increase in BACE1 expression up to twofold over basal levels. Similar effects of BACE1 up-regulation were observed when protein kinase C was directly activated by phorbol esters. However, when the MAP kinases MEK/ERK were inhibited, BACE1 expression was no longer up-regulated by the activation of M1-mAChR. In contrast, BACE1 expression was suppressed by stimulation of M2-mediated pathways via selective M2-agonist binding or direct activation of adenylate cyclase with forskolin, an effect that was prevented by inhibiting protein kinase A. These results may explain the observed deterioration of AD patients after initial improvements with AChE inhibitor or M1-mAChR agonist treatment.  相似文献   

7.
8.
9.
10.
The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. Our previous studies have shown that the proteasome can cleave the C-terminal cytoplasmic domain of APP. To identify proteasome cleavage sites in APP, two peptides homologous to the C-terminus of APP were incubated with recombinant 20S proteasome. Cleavage of the peptides was monitored by reversed phase high-performance liquid chromatography and mass spectrometry. Proteasome cleaved the APP C-terminal peptides at several sites, including a region around the sequence YENPTY that interacts with several APP-binding proteins. To examine the effect of this cleavage on Abeta production, APP-CTFbeta and mutant forms of APP-CTFbeta terminating on either side of the YENPTY sequence were expressed in CHO cells. Truncation of APP-CTFbeta on the N-terminal side of the YENPTY sequence at residue 677 significantly decreased the amount of Abeta produced, whereas truncation on the C-terminal side of residue 690 had little effect. The results suggest that proteasomal cleavage of the cytosolic domain of APP at the YENPTY sequence decreases gamma-secretase processing, and consequently inhibits Abeta production. Therefore, the proteasome-dependent trafficking pathway of APP may be a valid therapeutic target for altering Abeta production in the Alzheimer's disease brain.  相似文献   

11.
12.
The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental animals such as mice and rats. In addition, we have recently shown that BACE1 protein is expressed by reactive astrocytes in close proximity to beta-amyloid plaques in the brains of aged transgenic Tg2576 mice that overexpress human amyloid precursor protein carrying the double mutation K670N-M671L. To address the question whether astrocytic BACE1 expression is an event specifically triggered by beta-amyloid plaques or whether glial cell activation by other mechanisms also induces BACE1 expression, we used six different experimental strategies to activate brain glial cells acutely or chronically. Brain sections were processed for the expression of BACE1 and glial markers by double immunofluorescence labeling and evaluated by confocal laser scanning microscopy. There was no detectable expression of BACE1 protein by activated microglial cells of the ameboid or ramified phenotype in any of the lesion paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients.  相似文献   

13.
This article focuses on beta-amyloid (Abeta) peptide production and secretion in the regulated secretory pathway and how this process relates to accumulation of toxic Abeta in Alzheimer's disease. New findings are presented demonstrating that most of the Abeta is produced and secreted, in an activity-dependent manner, through the regulated secretory pathway in neurons. Only a minor portion of cellular Abeta is secreted via the basal, constitutive secretory pathway. Therefore, regulated secretory vesicles contain the primary beta-secretases that are responsible for producing the majority of secreted Abeta. Investigation of beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells demonstrated that cysteine proteases account for the majority of the beta-secretase activity. BACE 1 is present in regulated secretory vesicles but provides only a small percentage of the beta-secretase activity. Moreover, the cysteine protease activities prefer to cleave the wild-type beta-secretase site, which is relevant to the majority of AD cases. In contrast, BACE 1 prefers to cleave the Swedish mutant beta-secretase site that is expressed in a minor percentage of the AD population. These new findings lead to a unifying hypothesis in which cysteine proteases are the major beta-secretases for the production of Abeta in the major regulated secretory pathway and BACE 1 is the beta-secretase responsible for Abeta production in the minor constitutive secretory pathway. These results indicate that inhibition of multiple proteases may be needed to decrease Abeta production as a therapeutic strategy for Alzheimer's disease.  相似文献   

14.
Cerebral hypometabolism, mitochondrial dysfunction, and beta-amyloid peptide (Abeta) accumulation are well-characterized manifestations of Alzheimer's disease (AD). beta-Secretase (BACE) is a prerequisite for amyloidogenesis, and it is up-regulated in sporadic AD. To explore a potential in vivo mechanism by which Abeta production is modulated by neuronal activity and/or oxidative metabolism, we compared BACE expression with cytochrome c oxidase (CO) or succinic dehydrogenase (SDH) activity in normal and functionally deprived adult rat olfactory bulb. In normal bulb, BACE was expressed predominantly in the glomerular layer, but labeling intensity within individual glomeruli varied substantially. A strong negative correlation existed between BACE labeling intensity and CO or SDH activity among individual glomeruli. Unilateral naris occlusion resulted in elevated glomerular BACE labeling in the deprived bulbs relative to the nondeprived counterparts, which was correlated with decreased CO activity in the same anatomic location. Enhanced BACE labeling was confirmed by measurements of elevated protein levels, enzymatic activity, and beta-site cleavage products of amyloid precursor protein in bulb extracts. Our findings reveal a negative regulation of BACE expression by physiological neuronal activity and an intrinsic inverse correlation between BACE expression and oxidative metabolism at the first synapse on the olfactory pathway. The results point to a biological role of BACE in synapse function and plasticity as well as a potential mechanism whereby reduced neuronal activity or metabolism could lead to amyloid overproduction in synaptic terminals.  相似文献   

15.
High serum cholesterol level has been shown as one of the risk factors for Alzheimer's disease (AD), and epidemiological studies indicate that treatment with cholesterol-lowering substances, statins, may provide protection against AD. An acute-phase reaction and inflammation, with increased levels of proinflammatory cytokines, are well known in the AD brain. Notably, there is evidence for antiinflammatory activities of statins, such as reduction in proinflammatory cytokines. Consequently, it is of interest to analyze the effects of statins on microglia, the main source of inflammatory factors in the brain, such as in AD. The aims of this study were to determine the effects of statins (atorvastatin and simvastatin) on microglial cells with regard to the secretion of the inflammatory cytokine interleukin-6 (IL-6) and cell viability after activation of the cells with bacterial lipopolysaccharides (LPS) or beta-amyloid1-40 (Abeta1-40) and in unstimulated cells. Cells of the human microglial cell line CHME-3 and primary cultures of rat neonatal cortical microglia were used. Incubation with LPS or Abeta1-40 induced secretion of IL-6, and Abeta1-40, but not LPS, reduced cell viability. Both atorvastatin and simvastatin reduced the basal secretion of IL-6 and the cell viability of the microglia, but only atorvastatin reduced LPS- and Abeta1-40-induced IL-6 secretion. Both statins potentiated the Abeta1-40-induced reduction in cell viability. The data indicate the importance of also considering the microglial responses to statins in evaluation of their effects in AD and other neurodegenerative disorders with an inflammatory component.  相似文献   

16.
Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.  相似文献   

17.
18.
19.
The amyloid precursor protein (APP) in brain is processed either by an amyloidogenic pathway by beta-secretase and gamma-secretase to yield Abeta (beta-amyloid 4 kDa) peptide or by alpha-secretase within the beta-amyloid domain to yield non-amyloidogenic products. We have studied blood platelet levels of a 22-kDa fragment containing the Abeta (beta-amyloid 4 kDa) peptide, beta-secretase (BACE1), alpha-secretase (ADAM10), and APP isoform ratios of the 120-130 kDa to 110 kDa peptides from 31 Alzheimer's disease (AD) patients and 10 age-matched healthy control subjects. We found increased levels of Abeta4, increased activation of beta-secretase (BACE1), decreased activation of alpha-secretase (ADAM10) and decreased APP ratios in AD patients compared to normal control subjects. These observations indicate that the blood platelet APP is processed by the same amyloidogenic and non-amyloidogenic pathways as utilized in brain and that APP processing in AD patients is altered compared to control subjects and may be a useful bio-marker for the diagnosis of AD, the progression of disease and for monitoring drug responses in clinical trials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号