首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Neuronal excitability is inhibited by somatostatin, which might play important roles in seizure and neuroprotection. The possibility of whether the effect of somatostatin on neurotransmission is susceptible to desensitization was investigated. We tested the effects of prolonged exposure to somatostatin on 0.1 mM extracellular Mg(2+) concentration ([Mg(2+)](o))-induced intracellular free Ca(2+) concentration ([Ca(2+)](i)) spikes in cultured rat hippocampal neurons using fura-2-based microfluorimetry. Reducing [Mg(2+)](o) to 0.1 mM elicited repetitive [Ca(2+)](i) spikes. These [Ca(2+)](i) spikes were inhibited by exposure to somatostatin-14. The inhibitory effects of somatostatin were blocked by pretreatment with pertussis toxin (PTX, 100 ng/ml) for 18-24 h. Prolonged exposure to somatostatin induced a desensitization of the somatostatin-induced inhibition of [Ca(2+)](i) spikes in a concentration-dependent manner. The somatostatin-induced desensitization was retarded by the nonspecific protein kinase C (PKC) inhibitor staurosporin (100 nM) or chronic treatment with phorbol dibutyrate (1 microM) for 24 h, but not by the protein kinase A inhibitor KT5720. The desensitization was significantly retarded by the novel PKCepsilon translocation inhibitor peptide (1 microM). In addition, suramin (3 microM), an inhibitor of G-protein-coupled receptor kinase 2 (GRK2), caused a reduction in the desensitization. After tetrodotoxin (TTX, 1 microM) completely blocked the low [Mg(2+)](o)-induced [Ca(2+)](i) spikes, glutamate-induced [Ca(2+)](i) transients were slightly inhibited by somatostatin and the inhibition was desensitized by prolonged exposure to somatostatin. These results indicate that the prolonged activation of somatostatin receptors induces the desensitization of somatostatin-induced inhibition on low [Mg(2+)](o)-induced [Ca(2+)](i) spikes through the activation of GRK2 and partly a novel PKCepsilon in cultured rat hippocampal neurons.  相似文献   

3.
Intracellular calcium handling by rat olfactory ensheathing cells (OECs) is implicated in their support for regrowth of adult CNS neurites in a coculture model of axonal regeneration. Pretreatment of OECs with BAPTA-AM to sequester glial intracellular calcium ([Ca(2+)](i)) reduces significantly the numbers of cocultured neurons regrowing neurites. The mean resting [Ca(2+)](i) of OECs cultured alone or with neurons was 300 nM in an external solution containing 2.5 mM calcium ([Ca(2+)](o)). In high [K(+)](o) or zero [Ca(2+)](o), resting [Ca(2+)](i) significantly decreased. [Ca(2+)](i) significantly increased when [Ca(2+)](o) was increased to 20 mM, lonomycin, thapsigargin, and thimerosal increased [Ca(2+)](i), and caffeine, ryanodine, and cyclopiazonic acid were without effect. Of the receptor agonists tested, none induced a change in [Ca(2+)](i). The calcium influx induced by high [Ca(2+)](o) was blocked by La(3+) and SKF96365, partially inhibited by Cd(2+), and insensitive to Ni(2+) and nifedipine. Pretreatment of OECs with La(3+) reduced neurite regrowth in cocultures in a concentration-dependent manner over the range that blocked the non-voltage-gated calcium flux through a putative TRP-like channel, which, we propose, is activated in OEC-mediated axonal regeneration.  相似文献   

4.
Nitric oxide (NO) can have opposite effects on peripheral sensory neuron sensitivity depending on the concentration and source of NO, and the experimental setting. The aim of this study was to determine the role of endogenous NO production in the regulation of mechanosensitive Ca(2+) influx of dorsal root ganglion (DRG) neurons. Adult mouse DRG neurons were grown in primary culture for 2-5 days, loaded with Fura-2, and tested for mechanically mediated changes in [Ca(2+)](i) by fluorescent ratio imaging. In the presence of the NOS inhibitors L-NAME, TRIM, or 7-NI, but not the inactive analogue D-NAME, peak [Ca(2+)](i) transients to mechanical stimulation were increased more than 2-fold. Neither La(3+) (25 microM), an inhibitor of voltage activated Ca(2+) channels, or tetrodotoxin (TTX, 1 microM), a selective inhibitor of voltage-gated Na(+) channels, had an effect on mechanically activated [Ca(2+)](i) transients under control conditions. However, in the presence of L-NAME, both La(3+) and TTX partially blocked the [Ca(2+)](i) response. Addition of Gd(3+), a blocker of mechanosensitive cation channels and L-type Ca(2+) channels, at a concentration (100 microM) that markedly inhibited the mechanical response under control conditions, only partially inhibited the response in the presence of L-NAME. The combination of either La(3+) or TTX with Gd(3+) caused near complete inhibition of mechanically stimulated [Ca(2+)](i) transients in the presence of L-NAME. We conclude that focal mechanical stimulation of DRG neurons causes Ca(2+) influx occurs primarily through mechanosensitive cation channels under control conditions. In the presence of NOS inhibitors, additional Ca(2+) influx occurs through voltage-sensitive Ca(2+) channels. These results suggest that endogenously produced NO in cultured DRG neurons decreases mechanosensitivity by inhibiting voltage-gated Na(+) and Ca(2+) channels.  相似文献   

5.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca(2+)](i)) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by kappa-opioids. [Ca(2+)](i) responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca(2+)](i) increases which were abolished in Ca(2+)-free solution, but unaffected by lanthanum (25 microM) or tetrodotoxin (10(-6) M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd(3+); 250 microM) and amiloride (100 microM) abolished the [Ca(2+)](i) transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca(2+)](i) transients. The kappa-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca(2+)](i) transients but had little effect on capsaicin-induced [Ca(2+)](i) transients. The inhibitory effect of U50,488 was abolished by the kappa-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30-100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca(2+)](i) transients in small diameter DRG somas are mediated by influx of Ca(2+) through a Gd(3+)- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca(2+) transients are sensitive to kappa-opioid agonists.  相似文献   

6.
We investigated the role of dendritic spine morphology in spine-dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo-4-loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the parent dendrites of only short, but not long, spines. Delayed elevated fluorescence in the dendrite of the short spines was also seen with a membrane-bound fluorophore and fluorescence recovery from bleaching of a calcium-bound fluorophore had a much slower kinetics, indicating that the dendritic fluorescence change reflects a genuine diffusion of free [Ca2+]i from the spine head to the parent dendrite. Calcium diffusion between spine head and the parent dendrite was regulated by calcium stores as well as by a Na-Ca exchanger. Spine length varied with the recent history of the [Ca2+]i variations in the spine, such that small numbers of calcium transients resulted in elongation of spines whereas large numbers of calcium transients caused shrinkage of the spines. Consequently, spine elongation resulted in a complete isolation of the spine from the dendrite, while shrinkage caused an enhanced coupling with the parent dendrite. These studies highlight a dynamically regulated coupling between a dendritic spine head and its parent dendrite.  相似文献   

7.
The pilocarpine model of temporal lobe epilepsy is an animal model that shares many of the clinical and pathophysiological characteristics of temporal lobe or limbic epilepsy in humans. This model of acquired epilepsy produces spontaneous recurrent seizure discharges following an initial brain injury produced by pilocarpine-induced status epilepticus. Understanding the molecular mechanisms mediating these long lasting changes in neuronal excitability would provide an important insight into developing new strategies for the treatment and possible prevention of this condition. Our laboratory has been studying the role of alterations in calcium and calcium-dependent systems in mediating some of the long-term neuroplasticity changes associated with epileptogenesis. In this study, [Ca(2+)](i) imaging fluorescence microscopy was performed on CA1 hippocampal neurons acutely isolated from control and chronically epileptic animals at 1 year after the induction of epileptogenesis with two different fluorescent dyes (Fura-2 and Fura-FF) having high and low affinities for [Ca(2+)](i). The high affinity Ca(2+) indicator Fura-2 was utilized to evaluate [Ca(2+)](i) levels up to 900 nM and the low affinity indicator Fura-FF was employed for evaluating [Ca(2+)](i) levels above this range. Baseline [Ca(2+)](i) levels and the ability to restore resting [Ca(2+)](i) levels after a brief exposure to several glutamate concentrations in control and epileptic neurons were evaluated. Epileptic neurons demonstrated a statistically significantly higher baseline [Ca(2+)](i) level in comparison to age-matched control animals. This alteration in basal [Ca(2+)](i) levels persisted up to 1 year after the induction of epileptogenesis. In addition, the epileptic neurons were unable to rapidly restore [Ca(2+)](i) levels to baseline following the glutamate-induced [Ca(2+)](i) loads. These changes in Ca(2+) regulation were not produced by a single seizure and were not normalized by controlling the seizures in the epileptic animals with anticonvulsant treatment. Peak [Ca(2+)](i) levels in response to different concentrations of glutamate were the same in both epileptic and control neurons. Thus, glutamate produced the same initial [Ca(2+)](i) load in both epileptic and control neurons. Characterization of the viability of acutely isolated neurons from control and epileptic animals utilizing standard techniques to identify apoptotic or necrotic neurons demonstrated that epileptic neurons had no statistically significant difference in viability compared to age-matched controls. These results provide the first direct measurement of [Ca(2+)](i) levels in an intact model of epilepsy and indicate that epileptogenesis in this model produced long-lasting alterations in [Ca(2+)](i) homeostatic mechanisms that persist for up to 1 year after induction of epileptogenesis. These observations suggest that altered [Ca(2+)](i) homeostatic mechanisms may underlie some aspects of the epileptic phenotype and contribute to the persistent neuroplasticity changes associated with epilepsy.  相似文献   

8.
Neuronal vulnerability to excitotoxicity changes dramatically during postnatal maturation. To study the intracellular mechanisms by which maturation alters vulnerability in single neurons, we developed techniques to maintain hippocampal neurons from postnatal rats in vitro. After establishing their neuronal phenotype with immunohistochemistry and electrophysiology, we determined that these neurons exhibit developmentally regulated vulnerability to excitotoxicity. At 5 days in vitro, NMDA-induced cell death at 24 h increased from 3.6% in 3-day-old rats to >90% in rats older than 21 days. Time-lapse imaging of neuronal morphology following NMDA demonstrated increasingly prevalent and severe injury as a function of postnatal age. Neither high- nor low-affinity calcium dyes demonstrated differences in peak NMDA-induced [Ca(2+)](i) increases between neurons from younger and older animals. However, neurons from older animals were uniformly distinguished from those from younger animals by their subsequent loss of [Ca(2+)](i) homeostasis. Because of the role of mitochondrial Ca(2+) buffering in [Ca(2+)](i) homeostasis, we measured NMDA-induced changes in mitochondrial membrane potential (DeltaPsi) as a function of postnatal age. NMDA markedly dissipated DeltaPsi in neurons from mature rats, but minimally in those from younger rats. These data demonstrate that, in cultures of postnatal hippocampal neurons, (a) vulnerability to excitotoxicity increases as a function of the postnatal age of the animal from which they were harvested, and (b) developmental regulation of vulnerability to NMDA occurs at the level of the mitochondrion.  相似文献   

9.
We investigated the role of kainate (KA) receptor activation and desensitization in inducing the increase in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) in individual cultured rat hippocampal neurons. The rat hippocampal neurons in the cultures were shown to express kainate receptor subunits, KA2 and GluR6/7, either by immunocytochemistry or by immunoblot analysis. The effect of LY303070, an alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist, on the alterations in the [Ca(2+)](i) caused by kainate showed cell-to-cell variability. The [Ca(2+)](i) increase caused by kainate was mostly mediated by the activation of AMPA receptors because LY303070 inhibited the response to kainate in a high percentage of neurons. The response to kainate was potentiated by concanavalin A (Con A), which inhibits kainate receptor desensitization, in 82.1% of the neurons, and this potentiation was not reversed by LY303070 in about 38% of the neurons. Also, upon stimulation of the cells with 4-methylglutamate (MGA), a selective kainate receptor agonist, in the presence of Con A, it was possible to observe [Ca(2+)](i) changes induced by kainate receptor activation, because LY303070 did not inhibit the response in all neurons analyzed. In toxicity studies, cultured rat hippocampal neurons were exposed to the drugs for 30 min, and the cell viability was evaluated at 24 hr using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The selective activation of kainate receptors with MGA, in the presence of Con A, induced a toxic effect, which was not prevented by LY303070, revealing a contribution of a small subpopulation of neurons expressing kainate receptors that independently mediate cytotoxicity. Taken together, these results indicate that cultured hippocampal neurons express not only AMPA receptors, but also kainate receptors, which can modulate the [Ca(2+)](i) and toxicity.  相似文献   

10.
Chronic ethanol treatment (CET) during development produces cellular adaptations resulting in tolerance to the acute effects of ethanol (EtOH). The objectives of this study were to determine whether CET during the prenatal period (PCET) followed by a period of in vitro CET (PCET-CET) altered intracellular calcium [Ca(2+)](i) and produced tolerance to acute EtOH treatment (AET), and whether nerve growth factor (NGF) modulated the effects of PCET-CET in cultured developing rat septal neurons. Fetuses were obtained from EtOH-fed and sucrose-fed (diet-control) female rats. Neurons from PCET fetuses were cultured in the presence of NGF (+NGF) and 200 mg/dl (mg %) EtOH and diet-control cultures received NGF and no EtOH. PCET and diet-control cultures were then divided into two groups, +NGF and -NGF (withdrawn from NGF), and exposed acutely to one of five doses of EtOH during stimulation with potassium (K(+)) chloride. [Ca(2+)](i) was measured using fura-2. PCET-CET did not affect resting [Ca(2+)](i). PCET-CET decreased and acute EtOH withdrawal increased overall K(+)-stimulated changes in [Ca(2+)](i), but only in +NGF PCET neurons. Reducing the level of EtOH from 200 to 100 mg % decreased overall K(+)-stimulated [Ca(2+)](i) in -NGF PCET neurons. The effects of PCET-CET or PCET-CET combined with NGF on overall K(+)-stimulated changes in [Ca(2+)](i) occurred mostly in the early and middle phases of the K(+)-response. NGF reduced overall K(+)-stimulated changes in [Ca(2+)](i) in PCET neurons during EtOH withdrawal and during AET with 200 mg % EtOH and increased overall K(+)-stimulated changes in [Ca(2+)](i) during AET with 400 and 800 mg % EtOH. There was no effect of NGF on overall K(+)-stimulated changes in [Ca(2+)](i) in diet-control neurons with the exception that NGF-treatment decreased overall K(+)-stimulated changes in [Ca(2+)](i) during AET with 400 mg % EtOH. The effects of AET on overall K(+)-stimulated changes in [Ca(2+)](i) mostly occurred in +NGF PCET neurons. In conclusion, CET during development of the brain could adversely affect Ca(2+)-dependent functions such as neuronal migration, neurite outgrowth, and synaptogenesis in neurons even in the presence of neurotrophin support.  相似文献   

11.
Gao J  Wu LJ  Xu L  Xu TL 《Brain research》2004,1017(1-2):197-207
The characterization of acid-sensing ion channel (ASIC)-like currents has been reported in hippocampal neurons in primary culture. However, it is suggested that the profile of expression of ASICs changes in culture. In this study, we investigated the properties of proton-activated current and its modulation by extracellular Ca(2+) and Zn(2+) in neurons acutely dissociated from the rat hippocampal CA1 using conventional whole-cell patch-clamp recording. A rapidly decaying inward current and membrane depolarization was induced by exogenous application of acidic solution. The current was sensitive to the extracellular proton with a response threshold of pH 7.0-6.8 and the pH(50) of 6.1, the reversal potential close to the Na(+) equilibrium potential. It had a characteristic of acid-sensing ion channels (ASICs) as demonstrated by its sensitivity to amiloride (IC(50)=19.6+/-2.1 microM). Either low [Ca(2+)](o) or high [Zn(2+)](o) increased the amplitude of the current. All these characteristics are consistent with a current mediated through a mixture of homomeric ASIC1a and heteromeric ASIC1a+2a channels and closely replicate many of the characteristics that have been previously reported for hippocampal neurons cultured for a week or more, indicating that culture artifacts do not necessarily flaw the properties of ASICs. Interestingly, we found that high [Zn(2+)](o) (>10(-4) M) slowed the decay time constant of the ASIC-like current significantly in both acutely dissociated and cultured hippocampal neurons. In addition, the facilitating effects of low [Ca(2+)](o) and high [Zn(2+)](o) on the ASIC-like current were not additive. Since tissue acidosis, extracellular Zn(2+) elevation and/or Ca(2+) reduction occur concurrently under some physiological and/or pathological conditions, the present observations suggest that hippocampal ASICs may offer a novel pharmacological target for therapeutic invention.  相似文献   

12.
13.
The effects of hypo-osmotic membrane stretch on intracellular calcium concentration ([Ca(2+)](i)), cell volume and cellular excitability were investigated in cultured mouse primary sensory trigeminal neurons. Hypotonic solutions (15--45%) led to rapid cell swelling in all neurons. Swelling was accompanied by dose-dependent elevations in [Ca(2+)](i) in a large fraction of neurons. Responses could be classified into three categories. (i) In 57% of the neurons [Ca(2+)](i) responses had a slow rise time and were generally of small amplitude. (ii) In 21% of the neurons, responses had a faster rise and were larger in amplitude. (iii) The remaining cells (22%) did not show [Ca(2+)](i) responses to hypo-osmotic stretch. Slow and fast [Ca(2+)](i) changes were observed in trigeminal neurons of different sizes with variable responses to capsaicin (0.5 microM). The swelling-induced [Ca(2+)](i) responses were not abolished after depletion of intracellular Ca2+ stores with cyclopiazonic acid or preincubation in thapsigargin, but were suppressed in the absence of external Ca(2+). They were strongly attenuated by extracellular nickel and gadolinium. Hypotonic stimulation led to a decrease in input resistance and to membrane potential depolarization. Under voltage-clamp, the [Ca(2+)](i) elevation produced by hypotonic stimulation was accompanied by the development of an inward current and a conductance increase. The time course and amplitude of the [Ca(2+)](i) response to hypo-osmotic stimulation showed a close correlation with electrophysiological properties of the neurons. Fast [Ca(2+)](i) responses were characteristic of trigeminal neurons with short duration action potentials and marked inward rectification. These findings suggest that hypo-osmotic stimulation activates several Ca(2+)-influx pathways, including Gd(3+)-sensitive stretch-activated ion channels, in a large fraction of trigeminal ganglion neurons. Opening of voltage-gated Ca(2+) channels also contributes to the response. The pattern and rate of Ca(2+) influx may be correlated with functional subtypes of sensory neurons.  相似文献   

14.
Neurons of the enteric nervous system (ENS) arise from neural crest cells that migrate into and along the developing gastrointestinal tract. A subpopulation of these neural-crest derived cells express pan-neuronal markers early in development, shortly after they first enter the gut. However, it is unknown whether these early enteric "neurons" are electrically active. In this study we used live Ca(2+) imaging to examine the activity of enteric neurons from mice at embryonic day 11.5 (E11.5), E12.5, E15.5, and E18.5 that were dissociated and cultured overnight. PGP9.5-immunoreactive neurons from E11.5 gut cultures responded to electrical field stimulation with fast [Ca(2+)](i) transients that were sensitive to TTX and ω-conotoxin GVIA, suggesting roles for voltage-gated Na(+) channels and N-type voltage-gated Ca(2+) channels. E11.5 neurons were also responsive to the nicotinic cholinergic agonist, dimethylphenylpiperazinium, and to ATP. In addition, spontaneous [Ca(2+)](i) transients were present. Similar responses were observed in neurons from older embryonic gut. Whole-cell patch-clamp recordings performed on E12.5 enteric neurons after 2-10 h in culture revealed that these neurons fired both spontaneous and evoked action potentials. Together, our results show that enteric neurons exhibit mature forms of activity at early stages of ENS development. This is the first investigation to directly examine the presence of neural activity during enteric neuron development. Along with the spinal cord and hindbrain, the ENS appears to be one of the earliest parts of the nervous system to exhibit electrical activity.  相似文献   

15.
Experimental models of traumatic cortical brain injury in rodents reveal that specific regions of the hippocampus (e.g., CA3 and hilar subfields) are severely injured despite their distance from the initial insult. Hippocampal neurons may be intrinsically more vulnerable to mechanical insult than cortical neurons due to increased NMDA receptor densities and lower energy capacities, as evidenced by increased susceptibility to ischemic insults. The selective vulnerability of hippocampal neurons was evaluated using an in vitro model of TBI in which either primary rat cortical or hippocampal neurons (E17) seeded onto silicone substrates were subjected to graded levels of mechanical stretch. Although cortical neurons exhibited significantly longer increases in stretch-induced membrane permeability, injury of hippocampal neurons resulted in larger increases in intracellular free calcium concentration [Ca(2+)](i) and cell death. [ATP](i) deficits due to stretch were apparent by 60 min after injury in cortical neurons but recovered by 24 h, whereas significant deficits in [ATP](i) were not observed in hippocampal neurons until 24 h after injury. MK801 pretreatment decreased the stretch-induced [Ca(2+)](i) transients in both hippocampal and cortical cultures, thereby negating the regional specificity. However, MK801 pretreatment did not improve hippocampal viability and paradoxically, significantly increased cell death among cortical neurons. As the hippocampus is the primary brain region responsible for the memory deficits and epileptic seizures associated with TBI, understanding why this region is selectively damaged could lead to the development of more accurate mechanical tolerances as well as effective pharmaceutical agents.  相似文献   

16.
Pryazhnikov E  Khiroug L 《Glia》2008,56(1):38-49
Astrocytes release a variety of transmitter molecules, which mediate communication between glial cells in the brain and modulate synaptic transmission. ATP is a major glia-derived transmitter, but the mechanisms and kinetics of ATP release from astrocytes remain largely unknown. Here, we combined epifluorescence and total internal reflection fluorescence microscopy to monitor individual quinacrine-loaded ATP-containing vesicles undergoing exocytosis in cultured astrocytes. In resting cells, vesicles exhibited three-dimensional motility, spontaneous docking and release at low rate. Extracellular ATP application induced a Ca(2+)-dependent increase in the rate of exocytosis, which persisted for several minutes. Using UV flash photolysis of caged Ca(2+), the threshold [Ca(2+)](i) for ATP exocytosis was found to be approximately 350 nM. Subthreshold [Ca(2+)](i) transients predominantly induced vesicle docking at plasma membrane without subsequent release. ATP exocytosis triggered either by purinergic stimulation or by Ca(2+) uncaging occurred after a substantial delay ranging from tens to hundreds of seconds, with only approximately 4% of release occurring during the first 30 s. The time course of the cargo release from vesicles had two peaks centered on 相似文献   

17.
The relationship between intracellular Ca(2+) ([Ca(2+)](i)) regulation and programmed cell death is not well-defined; both increases and decreases in [Ca(2+)](i) have been observed in cells undergoing apoptosis. We determined [Ca(2+)](i) in cultured murine cortical neurons undergoing apoptosis after exposure to staurosporine or following oxygen-glucose deprivation in the presence of glutamate receptor antagonists. Neuronal [Ca(2+)](i) was decreased 1-4 h after exposure to staurosporine (30 nM). A [Ca(2+)](i) decrease was also observed 1 h after the end of the oxygen-glucose deprivation period when MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were added to the bathing medium during the deprivation period. A similar decrease in [Ca(2+)](i) produced by reducing extracellular Ca(2+) or chelating intracellular Ca(2+) was sufficient to induce neuronal apoptosis. Raising [Ca(2+)](i) either by activating voltage-sensitive Ca(2+) channels with (-) Bay K8644 or by application of low concentrations of kainate attenuated both staurosporine and oxygen-glucose deprivation-induced apoptosis.  相似文献   

18.
Glutamate-induced excitotoxicity has been implicated as an important mechanism underlying a variety of brain injuries and neurodegenerative diseases. Previously we have shown that taurine has protective effects against glutamate-induced neuronal injury in cultured neurons. Here we propose that the primary underlying mechanism of the neuroprotective function of taurine is due to its action in preventing or reducing glutamate-induced elevation of intracellular free calcium, [Ca(2+)](i). This hypothesis is supported by the following findings. First, taurine transport inhibitors, e.g., guanidinoethyl sulfonate and beta-alanine, have no effect on taurine's neuroprotective function, suggesting that taurine protects against glutamate-induced neuronal damage through its action on the extracellular membranes. Second, glutamate-induced elevation of [Ca(2+)](i) is reduced to the basal level upon addition of taurine. Third, pretreatment of cultured neurons with taurine prevents or greatly suppresses the elevation of [Ca(2+)](i) induced by glutamate. Furthermore, taurine was found to inhibit the influx but not the efflux of (45)Ca(2+) in cultured neurons. Taurine has little effect on the binding of [(3)H]glutamate to the agonist binding site and of [(3)H]MDL 105,519 to the glycine binding site of the N-methyl-D-aspartic acid receptors, suggesting that taurine inhibits (45)Ca(2+) influx through other mechanisms, including its inhibitory effect on the reverse mode of the Na(+)/Ca(2+) exchangers (Wu et al. [2000] In: Taurine 4: taurine and excitable tissues. New York: Kluwer Academic/Plenum Publishers. p 35-44) rather than serving as an antagonist to the N-methyl-D-aspartic acid receptors.  相似文献   

19.
Calmodulin (CaM) and neurogranin (Ng) are two abundant neuronal proteins whose interactions are implicated in the regulation of synaptic responses and plasticity. We employed the "low-calcium" model of epilepsy in hippocampal slices to investigate the mobilization of these two proteins in CA1 pyramidal neurons. Perfusion of mouse hippocampal slices with Ca(2+)-free artificial CSF (ACSF) caused a suppression of synaptic transmission and generation of epileptic activity; these responses could be reversed by normal Ca(2+)-containing ACSF. Fluorescence immunochemical staining of control hippocampal slices bathed in normal ACSF revealed that CaM and Ng were more concentrated in soma than in dendrites; especially for CaM, it was concentrated in the nucleus. Perfusion of hippocampal slices with Ca(2+)-free ACSF caused translocation of these two proteins from soma to dendrites, and this trafficking was also reversed by Ca(2+)-containing buffer. A reduction of ~15 and 40 nM intracellular Ca(2+), [Ca(2+)](i), caused half-maximum translocation of Ng and CaM, respectively. Hippocampal CA1 pyramidal neurons were the most responsive to this Ca(2+)-sensitive translocation as compared to those from other areas of the hippocampus. These results illustrated the unique feature of hippocampal CA1 pyramidal neurons in sequestering high concentrations of CaM and Ng in soma and releasing them to distal dendrites at reducing level of [Ca(2+)](i).  相似文献   

20.
Low serum concentrations of Mg(2+) ions have been reported, recently, in patients with coronary disease, atherosclerosis and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [alpha-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Ca(2+) ([Ca(2+)](i)) overload associated with cerebral vascular injury induced by low extracellular free Mg(2+) ([Mg(2+)](o)). Exposure of cultured canine cerebral vascular smooth muscle cells to low [Mg(2+)](o) (0.15-0.6 mM) vs. normal [Mg(2+)](o) (1.2 mM) for either 10 min or 2 h induced concentration-dependent rises in [Ca(2+)](i). Treatment of the cultured cells with either PDTC (0.1 microM) or alpha-tocopherol (15 microM) for 24 h, alone, failed to interfere with basal [Ca(2+)](i) levels. However, preincubation of the cells with either alpha-tocopherol or PDTC for 24 h completely inhibited the elevation of [Ca(2+)](i) induced by exposure to low [Mg(2+)](o), not only for 10 min, but also for 2 h. These results indicate that alpha-tocopherol and PDTC prevent rises in [Ca(2+)](i) produced by low [Mg(2+)](o), which probably result from low [Mg(2+)](o)-induced lipid peroxidation of cerebral vascular smooth muscle cell membranes. Moreover, these new results suggest that such protective effects of alpha-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in cerebral vascular injury associated with low [Mg(2+)](o) and accumulation of [Ca(2+)](i).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号