首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stagg J  Wu JH  Bouganim N  Galipeau J 《Cancer research》2004,64(24):8795-8799
Genetic engineering of tumor cells to express both granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-2 can induce synergistic immune antitumor effects. Paradoxically, the combination has also been reported to down-regulate certain immune functions, highlighting the unpredictability of dual cytokine use. We hypothesized that a GM-CSF and IL-2 fusion transgene (GIFT) could circumvent such limitations yet preserve synergistic features. We designed a fusion cDNA of murine GM-CSF and IL-2. Protein structure computer modeling of GIFT protein predicted for intact ligand binding domains for both cytokines. B16 mouse melanoma cells were gene modified to express GIFT (B16GIFT), and these cells were unable to form tumors in C57bl/6 mice. Irradiated B16GIFT whole-cell tumor vaccine could also induce absolute protective immunity against challenge by live B16 cells. In mice with established melanoma, B16GIFT therapeutic cellular vaccine significantly improved tumor-free survival when compared with B16 expressing both IL-2 and GM-CSF. We show that GIFT induced a significantly greater tumor site recruitment of macrophages than combined GM-CSF and IL-2 and that macrophage recruitment arises from novel chemotactic feature of GIFT. In contrast to suppression by GM-CSF of natural killer (NK) cell recruitment despite coexpression of IL-2, GIFT leads to significant functional NK cell infiltration as confirmed in NK-defective beige mice. In conclusion, we demonstrated that a fusion between GM-CSF and IL-2 can invoke greater antitumor effect than both cytokines in combination, and novel immunobiological properties can arise from such chimeric constructs.  相似文献   

2.
We demonstrate that a mouse-human chimeric anti-ganglioside GD2-interleukin (IL)-2 fusion protein (ch14.18-IL2) substantially amplifies tumor-protective immunity against murine melanoma induced by an autologous oral DNA vaccine containing the murine ubiquitin gene fused to murine melanoma peptide epitopes gp100(25-35) and TRP-2(181-188). This combination therapy led to the complete rejection of a lethal challenge with B78D14 murine melanoma cells in six of eight mice and a marked suppression of s.c. tumor growth in the two remaining animals. The tumor-protective immunity was mediated by MHC class I antigen- restricted CD8(+) T cells together with CD4(+) T cell help, which was required only for tumor cell killing in the effector phase of the immune response. A single oral vaccination with the DNA vaccine, which was carried by attenuated Salmonella typhimurium, was equally as effective as three such vaccinations applied at 2-week intervals. The immunological mechanisms involved in this antitumor effect were suggested by a decisively increased secretion of tumor necrosis factor alpha TNFTnTNa and IFN-gamma from CD4(+) and CD8(+) T cells and a markedly up-regulated expression on CD8(+) T cells of high-affinity IL-2 receptor alpha chain (CD25), costimulatory molecule CD28, and adhesion molecule lymphocyte function-associated antigen-2 (LFA-2/CD2). Additionally, the combination therapy induced increased expression of costimulatory molecules B7.1 and CD48 on murine antigen-presenting cells. Taken together, our results suggest that IL-2 targeted to the tumor microenvironment by a specific antibody-IL-2 fusion protein is a potent enhancer of tumor-protective immunity induced by an oral DNA vaccine that may ultimately enhance the chances of success in its clinical application.  相似文献   

3.
In previous reports, systemic administration of a stimulatory monoclonal antibody directed against the 4-1BB receptor had no effect on survival or tumor burden in mice inoculated with the poorly immunogenic B16-F10 melanoma. We combined IL-12 gene transfer with 4-1BB costimulation to explore a previously noted cooperative anti-tumor effect against this model tumor. We hypothesize that the innate immune response mediated by IL-12-activated natural killer (NK) cells initiates the activation of the immune system, leading to the priming of T cells, whereas 4-1BB costimulation enhances the function of primed tumor-specific T cells. The effect of the combination therapy on the growth of subcutaneous (s.c.) tumors and pulmonary metastasis was examined. The combination therapy significantly retarded the growth of subcutaneously-inoculated tumors, and 50% of tumor-bearing mice survived with complete tumor regression. In contrast, neither IL-12 gene transfer nor anti-4-1BB antibody administration alone was as effective. Enhanced CTL activity against both B16-F10 tumor cells and TRP-2-pulsed EL4 syngeneic tumor cells was observed in tumor-bearing animals treated with the combination therapy 2 weeks after treatment and, in long-term survivors from this combination therapy, at >120 days. In a pulmonary metastatic model, only the combination therapy generated significant protection against metastasis. In vivo depletion of NK or CD8(+) but not CD4(+) subsets eliminated the protective immunity. Furthermore, NK cell depletion significantly reduced both tumor-specific CTL activity and the number of tumor-specific IFN-gamma-producing cells, suggesting that this synergistic effect requires the participation of both NK and CD8(+) T cells.  相似文献   

4.
J Steitz  J Brück  J Lenz  J Knop  T Tüting 《Cancer research》2001,61(24):8643-8646
Transduction of B16 melanoma cells with IFN alpha (B16-IFN alpha) enhances CD8(+) T-cell-dependent tumor immunity in mice, resulting in delayed outgrowth in vivo. Here we provide evidence that CD4(+) T cells down-regulate the IFN alpha-induced tumor immune defense. Importantly, depletion of regulatory CD25(+) CD4(+) T cells prevented growth of B16-IFN alpha in most mice and promoted long-lasting protective tumor immunity. Rejection of B16-IFN alpha could also be achieved with therapeutic injections of dendritic cells genetically engineered to express the melanoma antigen tyrosinase-related protein 2. These results support the development of novel strategies for the immunotherapy of melanoma using IFN alpha in combination with elimination of regulatory T cells or antigen-specific immunization.  相似文献   

5.
We have demonstrated previously that gene transfer of the mature human interleukin-1beta (IL-1beta) gene, fused to a signal sequence (ss), into mouse B16 melanoma cells results in an inhibition of their growth in vivo compared with control B16 cells. We here extend these results to show that intraperitoneal vaccinations with irradiated IL-1beta-secreting cells result in protection against subsequent subcutaneous challenge with wild-type (wt) B16 tumor cells in syngeneic C57BL/6 mice. This protection appears to be long-lasting, because rechallenge of cured mice 4 months after the first challenge also demonstrated resistance. In addition, we demonstrate that mice with established wt tumors subjected to therapeutic vaccinations with irradiated B16/ssIL-1beta cells starting 3 days after challenge isografting have a significantly inhibited tumor growth and 25-40% survival at the challenge doses given. In vitro coculture of spleen cells from B16/ssIL-1beta vaccinated animals and wt B16 cells induced an enhanced proliferative response, which correlated with elevated production of IL-2 and interferon-gamma. A significantly enhanced cytolytic activity against B16 wt target tumor cells was observed when spleen cells from B16/ssIL-1beta vaccinated mice were used as effector cells compared with spleen cells from control vaccinated mice. In vitro depletion experiments using anti-asialo GM1 revealed a prominent role for natural killer cells as effector cells. The data suggest that local IL-1beta secretion during the vaccination phase can provoke or augment protective immune responses to B16 melanoma cells, which are otherwise not recorded in mice bearing B16 tumors.  相似文献   

6.
For immunotherapy to become more effective, there is a need to maximize the antitumor response at the tumor site as well as to eliminate tumor cell variants that lack a given tumor antigen or the ability to present it. We have previously shown that wild-type (WT) cells from the K1735 melanoma (K1735-WT) are rejected following vaccination with cells (K1735-1D8) transfected to express scFv from the anti-CD137 monoclonal antibody 1D8, and that CD4(+) T cells and natural killer (NK) cells are needed for this rejection. We now show that tumors harvested 4 to 10 days after mice had been transplanted with K1735-1D8 cells or a mixture of K1735-1D8 and K1735-WT cells contained more NK cells and that they had an increased percentage of CD4(+) T lymphocytes producing IFNgamma or tumor necrosis factor-alpha. We further show that the percentage of NK cells was higher in B16-1D8 melanomas expressing anti-CD137 scFv than in the WT tumors and that the percentage of FoxP3(+) cells was lower. Admixture of 10% K1735-1D8 cells prevented the progressive growth of transplanted K1735-WT cells in syngeneic mice and also of cells from the antigenically different sarcoma Ag104. Inhibition of WT tumor cells by tumor cells transfected to express anti-CD137 scFv was shown also with the TC1 carcinoma and B16 melanoma. Furthermore, injection of an adenovirus vector, Ad-1D8, which encodes anti-CD137 scFv into established B16 melanomas, significantly prolonged the survival of tumor-bearing mice and could induce regression. Our data suggest that targeting of anti-CD137 scFv to tumors should be explored for therapy for some human cancers.  相似文献   

7.
Ubiquitous pro-oxidative stressor ultraviolet B radiation (UVB) to human or mouse skin generates platelet-activating factor (PAF) and novel oxidatively modified glycerophosphocholines (Ox-GPCs) with PAF-receptor (PAF-R) agonistic activity. These lipids mediate systemic immunosuppression in a process involving IL-10. The current studies sought to determine the functional significance of UVB-mediated systemic immunosuppression in an established model of murine melanoma. We show that UVB irradiation augments B16F10 tumor growth and is dependent on host, but not melanoma cell; PAF-R-expression as UVB or the PAF-R agonist, carbamoyl PAF (CPAF), both promote B16F10 tumor growth in wild-type (WT) mice, independent of whether B16F10 cells express PAF-Rs, but do not augment tumor growth in Pafr -/- mice. UVB-mediated augmentation of experimental murine tumor growth was inhibited with antioxidants, demonstrating the importance of Ox-GPC PAF-R agonists produced non-enzymatically. Host immune cells are required as CPAF-induced augmentation of tumor growth which is not seen in immunodeficient NOD SCID mice. Finally, depleting antibodies against IL-10 in WT mice or depletion of CD25-positive cells in FoxP3(EGFP) transgenic mice block UVB and/or CPAF-induced tumor growth supporting a requirement for IL-10 and Tregs in this process. These findings indicate that UVB-generated Ox-GPCs with PAF-R agonistic activity enhance experimental murine melanoma tumor growth through targeting host immune cells, most notably Tregs, to mediate systemic immunosuppression.  相似文献   

8.
THEHUMORALANTITUMORRESPONSESINDUCEDBYIL4GENEMODIFIEDTUMORVACCINE1YuYizhi于益芝CaoXuetao2曹雪涛ZhangMinghui张明徽LeiHong雷虹TaoQun陶群Dep...  相似文献   

9.
PURPOSE: Recent findings indicating that many genes related to cancer development are silenced by an aberrant DNA methylation suggest that inhibitors of this process may be effective cancer therapeutics. In this study we investigated the efficacy of low-dose 5-aza-2'-deoxycitydine (DAC), a methylation inhibitor, with interleukin (IL) 12, one of the most potent cytokines with antitumor activity. Experimental Design: Mice inoculated with L1210 leukemia cells or with B16F10 melanoma cells were treated with 7 daily injections of low-dose DAC (0.2 mg/kg) and/or 7 daily doses of IL-12 (100 ng/dose). Scid/scid mice as well as monoclonal antibodies against CD4, CD8, and NK1.1 were used to investigate the mechanisms of the antitumor effects of the combination treatment. The activity of murine lymphocytes was measured with enzyme-linked immunospot and (51)Cr release assays. RESULTS: Treatment with DAC or IL-12 given alone produced moderate antitumor effects. In both tumor models combined treatment resulted in potentiated antitumor effects and produced 70% long-term survivors among mice inoculated with L1210 cells. The antitumor efficacy of combined treatment was abrogated in scid/scid mice, and after depletion of CD4(+) and CD8(+) T cells. Mice inoculated with B16F10 melanoma cells had significantly delayed tumor growth after combined treatment with DAC and IL-12. Strong antitumor effect correlated with a significant activation of lymph node-derived CD8(+) and CD4(+) cells. Transient neutropenia was observed in mice under treatment of DAC alone, but remarkably this effect was not potentiated by IL-12. CONCLUSIONS: This study provides the first evidence that antitumor effects of DAC can be strongly potentiated by IL-12 and could be beneficial in an effective low-dose-based antitumor therapy.  相似文献   

10.
11.
Lu R  Kujawski M  Pan H  Shively JE 《Cancer research》2012,72(9):2239-2250
Bv8 (prokineticin 2) expressed by Gr1(+)CD11b(+) myeloid cells is critical for VEGF-independent tumor angiogenesis. Although granulocyte colony-stimulating factor (G-CSF) has been shown to be a key inducer of Bv8 expression, the basis for Bv8 production in driving tumor angiogenesis is undefined. Because the cell adhesion molecule CEACAM1, which is highly expressed on Gr1(+)CD11b(+) myeloid cells, is known to regulate G-CSF receptor (G-CSFR) signaling, we hypothesized that CEACAM1 would regulate Bv8 production in these cells. In support of this hypothesis, we found that Bv8 expression was elevated in Gr1(+)CD11b(+) cells from Ceacam1-deficient mice implanted with B16 melanoma, increasing the infiltration of Gr1(+)CD11b(+) myeloid cells in melanoma tumors and enhancing their growth and angiogenesis. Furthermore, treatment with anti-Gr1 or anti-Bv8 or anti-G-CSF monoclonal antibody reduced myeloid cell infiltration, tumor growth, and angiogenesis to levels observed in tumor-bearing wild-type (WT) mice. Reconstitution of CEACAM1-deficient mice with WT bone marrow cells restored tumor infiltration of Gr1(+)CD11b(+) cells along with tumor growth and angiogenesis to WT levels. Treatment of tumor-bearing WT mice with anti-CEACAM1 antibody limited tumor outgrowth and angiogenesis, albeit to a lesser extent. Tumor growth in Ceacam1-deficient mice was not affected significantly in Rag(-/-) background, indicating that CEACAM1 expression in T and B lymphocytes had a negligible role in this pathway. Together, our findings show that CEACAM1 negatively regulates Gr1(+)CD11b(+) myeloid cell-dependent tumor angiogenesis by inhibiting the G-CSF-Bv8 signaling pathway.  相似文献   

12.
Many studies have demonstrated that interleukin 15 (IL-15) is a cytokine with strong antitumor properties and have suggested its potential use in tumor immunotherapy. IL-15 exerts its effect on innate and acquired immunity with the most prominent action in NK cells and CD8(+) memory T cells. Therefore, many authors have proposed that IL-15 could be a good candidate for augmenting the efficacy of vaccination strategies. In our experiments, in a model of B78-H1 murine transplantable melanoma, tumor-bearing mice were treated with different cytokine-gene modified tumor cell vaccines (producing TNF-alpha, GM-CSF, IL-12 or IL-6/sIL-6R) followed by a series of IL-15 injections. In order to investigate the infiltration of treated tumors by leukocytes, immunohistochemical staining was performed. In every case, the combined therapy was superior to the treatment with either a vaccine or IL-15 alone. Tumors treated with the combination of B78-H1 melanoma cells secreting IL-12 (B78/IL-12 vaccine) and IL-15 were heavily infiltrated by granulocytes. IL-15, either alone or in combination with the B78/IL-12 vaccine, influenced infiltration of tumors with CD3(+) lymphocytes, CD4(+)and CD8(+). To our knowledge, this is the first report that shows the universal genetically-modified tumor cell vaccine-augmenting properties of IL-15. The cytokine can be useful as an adjuvant in cancer gene therapy in humans.  相似文献   

13.
To investigate the mechanism of the antitumor effect of locally secreted interleukin-12 (IL-12), we introduced the IL-12 p35 and p40 cDNAs into mouse B16 melanoma cells. IL-12 gene-transfected B16 melanoma (B16/IL12) showed marked retardation of tumor growth when implanted subcutaneously into syngeneic mice. In these mice, depletion of not only Natural Killer (NK) cells but also CD8+ T cells diminished the antitumor effect of locally secreted IL-12. Immunohistochemical analysis showed that NK cells and macrophages accumulated more densely at the center and periphery of B16/IL12 tumors than that of parental B16 tumors, whereas CD4+ T cells and CD8+ T cells accumulated sparsely only at the periphery of both transfected and untransfected tumors. Systemic treatment with interleukin-18 (IL-18) markedly inhibited the growth of B16/IL12 but did not influence the tumor growth of parental B16 cells in vivo. These results suggest that local IL-12 secretion can retard the growth of B16 melanoma mediated primarily by NK cells and indirectly by CD8+ T cells and that its antitumor effect is augmented by systemic treatment with the novel cytokine IL-18.  相似文献   

14.
Recent studies revealed that two novel interleukin (IL)-12-related cytokines, IL-23 and IL-27, have potent antitumor activities. However, the antitumor effects were mainly evaluated in relatively highly immunogenic tumors and have not been fully evaluated against nonimmunogenic or poorly immunogenic tumors. In this study, we investigated the antitumor efficacies of IL-23 and IL-27 on poorly immunogenic B16F10 melanoma and found that the antitumor responses mediated by IL-23 and IL-27 were clearly different. In syngeneic mice, mouse single-chain (sc) IL-23-transfected B16F10 (B16/IL-23) tumors exhibited almost the same growth curve as B16F10 parental tumor about until day 20 after tumor injection and then showed growth inhibition or even regression. In contrast, scIL-27-transfected B16F10 (B16/IL-27) tumors exhibited significant retardation of tumor growth from the early stage. In vivo depletion assay revealed that the antitumor effect of B16/IL-23 was mainly mediated by CD8+ T cells and IFN-gamma whereas that of B16/IL-27 mainly involved natural killer cells and was independent of IFN-gamma. We also found that antitumor effects of B16/IL-23 and B16/IL-27 were synergistically enhanced by treatment with IL-18 and IL-12, respectively. Furthermore, B16/IL-23-vaccinated mice developed protective immunity against parental B16F10 tumors but B16/IL-27-vaccinated mice did not. When combined with prior in vivo depletion of CD25+ T cells, 80% of B16/IL-23-vaccinated mice completely rejected subsequent tumor challenge. Finally, we showed that the systemic administration of neither IL-23 nor IL-27 induced such intense toxicity as IL-12. Our data support that IL-23 and IL-27 might play a role in future cytokine-based immunotherapy against poorly immunogenic tumors.  相似文献   

15.
Mouse fibroblasts (H-2(b)) were genetically engineered to express a co-stimulatory B7.1 and an IFN-gamma (Fb/IFN-gamma/B7.1). The Fb/IFN-gamma/B7.1 cells were then pulsed with an ovalbumin epitope (amino acids 257-264, SIINFEKL, H-2K(b)-restricted) as a model antigen (Fb/IFN-gamma/B7.1/OVA) and tested for the induction of OVA-specific cytotoxic T lymphocytes (CTLs) in C57BL/6 mice (H-2(b)). Genetically engineered fibroblasts lacking either IFN-gamma or B7.1 were constructed and used as controls. Immunization with the Fb/IFN-gamma/B7.1/OVA cells induced strong cytotoxic activity against OVA-expressing EL4 (EG7) tumor cells but not against other H-2(b) tumor cells, such as EL4, C1498, and B16F1. The magnitude of the cytotoxic response in mice with the Fb/IFN-gamma/B7.1/OVA cells was significantly higher than that in mice immunized with any other cell construct. CD8(+) T cells with OVA-specific cytotoxic activity were predominant in mice immunized with Fb/IFN-gamma/B7.1/OVA cells. Furthermore, treatment with Fb/IFN-gamma/B7.1/OVA cells significantly prolonged the survival period of EG7 tumor-bearing mice. Anti-tumor CTL immunity by the Fb/IFN-gamma/B7.1/OVA cells could be induced without the help of host antigen-presenting cells, CD4(+) T cells, or NK1.1(+) cells. Our results suggest that fibroblasts can be genetically modified into efficient antigen-presenting cells for the induction of antigen-specific CTL response in cancer immunotherapy.  相似文献   

16.
In the present study, TNF-alpha gene-transduced B78 melanoma cells (B78/TNF) were used as a vaccine and combined with interleukin (IL)-12 in the treatment of B78 melanoma-bearing mice. The combined administration of genetically modified melanoma cells and IL-12 induced specific protective antitumor immunity resulting in a decreased rate of the tumor take following a rechallenge with parental B78 cells. When used therapeutically, intratumoral injections of irradiated B78/TNF melanoma cells and IL-12 exerted strong antitumor effects and led to complete regression of established tumors in 50% of mice. Injections of irradiated B78/TNF cells alone did not influence tumor development and IL-12 itself significantly delayed tumor growth but without curative effect. FACS analysis of parental B78 melanoma cells and its B78/TNF genetically modified variant showed that a proportion of cells of both cell lines expressed 87-1 (CD80) costimulatory molecule and that the expression of this molecule was increased during incubation with IFN-gamma. Moreover, IFN-gamma markedly augmented expression of major histocompatibility class (MHC) class I and II molecules on B78/TNF cells that were primarily MHC class I and II negative with no substantial effect on MHC-negative parental B78 melanoma. IFN-gamma also synergized in cytostatic/cytotoxic effects with TNF-alpha against B78 melanoma in vitro. Lymphocyte depletion studies in vivo showed reduction of the antitumor response in mice treated with anti - NK monoclonal antibodies (mAbs) as well as in mice treated with anti-CD4+ anti-CD8 mAbs. The results suggest that, when used therapeutically, IL-12 and a vaccine containing TNF-alpha gene-transduced tumor cells may reciprocally augment their overall antitumor effectiveness by facilitating development of systemic antitumor immunity and by stimulating local effector mechanisms of the tumor destruction.  相似文献   

17.
Xiang J  Chen Z  Huang H  Moyana T 《Leukemia research》2001,25(10):909-915
IL-18 is a novel cytokine that stimulates T and NK cell activity and has potent antitumor effects. In this study, a mouse IL-18 gene was transfected into the mouse myeloma cell line J558. Our data demonstrated that (i) inoculation of 0.5x10(6) engineered tumor cells J558/IL-18 into syngeneic mice induced a Th1 dominant immune response and resulted in tumor regression in all 8/8 mice; (ii) the IL-18 antitumor effect was significantly decreased in mice depleted of either the CD4(+), or CD8(+), or NK cell subset, respectively but was completely abrogated in mice depleted of both CD4(+) and CD8(+) T cells; (iii) in vivo neutralization of IFN-gamma was accompanied by the growth of J558/IL-18 tumor in all the mice; and (iv) the J558/IL-18 tumor regression further induced protective immunity against a subsequent challenge by the parental J558 tumor, which is mediated by CD8(+) T cells as examined in the cytotoxicity assay in vitro and in the animal study in vivo. Taken together, our findings indicate that: (i) IL-18 can induce antitumor immune responses mediated by both CD4(+)/CD8(+) T cells and NK cells; and (ii) it is associated with IFN-gamma production. This study thus highlights the potential utility of IL-18 as an antitumor agent, a role that it can fulfil alone or in combination with other immunomodulatory cytokines such as IL-12.  相似文献   

18.
PURPOSE: To investigate the antitumor efficacy of T-cell anergy reversal through homeostatic proliferation and regulatory T-cell (Treg) depletion in a clinically relevant murine adoptive immunotherapy model. EXPERIMENTAL DESIGN: B16 melanoma cells were engineered to express the model SIYRYYGL (SIY) antigen to enable immune monitoring. Tumor-specific T cells expanded in tumor-challenged wild-type hosts but became hyporesponsive. To examine whether lymphopenia-induced homeostatic proliferation could reverse tumor-induced T-cell anergy, total splenic T cells were transferred into lymphopenic RAG2-/- mice or control P14/RAG2-/- mice. Tumor growth was measured, and SIY-specific immune responses were monitored using ELISPOT and SIY/K(b) tetramers. To determine whether Treg depletion could synergize with homeostatic proliferation, RAG2-/- mice received total or CD25-depleted T cells, followed or preceded by B16.SIY challenge. This approach was further investigated in wild-type mice lymphodepleted with sublethal total body irradiation. RESULTS: Adoptive transfer of total splenic T cells into RAG2-/- mice moderately affected the growth rate of B16.SIY. As Treg expansion occurred in tumor-bearing mice, CD25+ T cells were depleted from total T cells before adoptive transfer. Interestingly, transfer of CD25-depleted T cells into RAG2-/- mice resulted in potent rejection of B16 melanoma in both prophylactic and short-term preimplanted tumor settings and was associated with maintained T-cell effector function. Using a clinically applicable approach, wild-type mice were lymphodepleted using sublethal total body irradiation, which similarly supported tumor rejection upon transfer of CD25-depleted T cells. CONCLUSIONS: Our results indicate that combined CD25 depletion and homeostatic proliferation support a potent antitumor immune response--an approach with potential for clinical translation.  相似文献   

19.
The human CXC chemokine, stromal cell-derived factor 1 (SDF-1alpha), is known to function in vitro as a chemotactic factor for lymphocytes, monocytes, and dendritic cells. In the context that dendritic cells are powerful antigen-presenting cells, we hypothesized that adenoviral gene transfer of SDF-1alpha to tumors might inhibit growth of preexisting tumors through attracting dendritic cells to the tumor. AdSDF-1alpha mediated the expression of SDF-1alpha mRNA and protein in A549 cells in vitro, and the supernatant of the AdSDF-1alpha-infected A549 cells showed chemotactic activity for dendritic cells. When syngeneic murine CT26 colon carcinoma tumors (BALB/c) and B16 melanoma and Lewis lung cell carcinoma (C57Bl/6) were injected with AdSDF-1alpha (5 x 10(8) plaque-forming units), there was an accumulation of dendritic cells and CD8(+) cells within the tumor and significant inhibition of tumor growth compared with tumors injected with PBS or AdNull (control vector). The injection of AdSDF-1alpha into tumors induced the inflammatory enlargement and the accumulation of dendritic cells in the draining lymph node. Intratumoral AdSDF-1alpha administration elicited tumor-specific CTLs and adoptive transfer of splenocytes from AdSDF-1alpha-treated mice resulted in the elongation of survival after tumor challenge. Interestingly, in wild-type and CD4(-/-) mice but not in CD8(-/-) mice, AdSDF-1alpha inhibited the growth of the tumor. These observations suggest that adenoviral gene transfer of SDF-1alpha may be a useful strategy to accumulate dendritic cells in tumors and evoke antitumor immune responses to inhibit tumor growth.  相似文献   

20.
Adoptive T-cell therapy holds great promise for the treatment of metastatic melanoma. However, prohibitive costs associated with current technology required for culture and expansion of tumor-reactive T-cells, the need for intense preconditioning regimens to induce lymphopenia, and the unpredictable anti-tumor effect of adoptively transferred T-cells remain significant impediments for its clinical implementation. Here we report a simplified combinatorial approach that involves short activation of CD8(+) T cells in the presence of IL-12 followed by adoptive transfer into tumor bearing animals after a single injection of cyclophosphamide. This approach resulted in complete eradication of B16 melanoma, and the establishment of long term immunological memory capable of fully protecting mice after a second B16 melanoma challenge. The activated donor cells were unique because they simultaneously exhibited traits for cytotoxic effector function, central memory-like, homing, and senescence. After tumor eradication and within three months after transfer, CD8+ cells exhibited a conventional memory CTL phenotype. Moreover, these memory CTLs acquired functional attributes characteristic of memory stem cells, including the ability to resist chemotherapy-induced toxicity. Our results suggest that short-term T-cell receptor signaling in the presence of IL-12 promotes promiscuous qualities in na?ve CTL which - upon transfer into lymphopenic hosts- are sufficient to eradicate tumors and generate life-long tumor-specific memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号