首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Substance P-like immunoreactivity (SPLI) was localized in the superficial spinal dorsal horn of the rat by means of light and electron microscopic immunocytochemical techniques. Serial immunocytochemical sections were subjected to densitometric measurements with an electronic Image Analyser, and with aid of a computer program, a two-dimensional reconstruction of the fine neuroanatomical structure of the SPLI-active regions of the lumbosacral upper superficial spinal dorsal horn was obtained. SPLI activity in the superficial dorsal horn outlines four well-marked and distinctly differing regions, called, in the mediolateral sequence, areas A, B, C, and D, plus Cajal's noyeau interstitiel ("lateral spinal nucleus" = "nucleus of the dorsolateral fascicle," L). Lumbosacral dorsal rhizotomy results in an almost complete depletion of SPLI from ipsilateral areas A, B, C, and D; it induces decreased SPLI in the area of the lateral spinal nucleus (L), ipsi- or contralaterally in an alternating fashion. Transection of the segmentally related, ipsilateral peripheral nerve induces a marked depletion of SPLI from areas A, B, and C but only a slight decrease in area D and virtually none in the area of L. Whereas a simple crush of the peripheral nerve (axocompression) induces only a slight depletion of SPLI, if any, semiautomatic densitometric analysis of serial immunocytochemical sections proves that a controlled crush injury (axocontusion) results in depletion of SPLI from the upper dorsal horn, similar to transection of the peripheral nerve. Following regeneration of the ipsilateral, segmentally related peripheral nerve, the original immunocytochemical structure of the superficial dorsal horn is re-established by SPLI-positive axonal sprouts originating from previously damaged dorsal root axons.  相似文献   

2.
Transganglionic transport of horseradish peroxidase was used to study the potential for collateral sprouting of saphenous nerve afferent fibers in the lumbar dorsal horn of the adult rat following (1) combined unilateral saphenous nerve crush and ipsilateral sciatic nerve resection, (2) unilateral saphenous nerve crush, and (3) unilateral sciatic nerve resection. The saphenous nerve on the nonlesioned contralateral side served as control. Eight weeks after the lesion(s) the animals were subjected to bilateral application of horseradish peroxidase to the saphenous nerves. The distribution of the ensuing labeling in the superficial dorsal horn was subsequently mapped. Combined saphenous nerve crush and sciatic nerve resection resulted in expansion of the saphenous nerve projection area in the dorsal horn when compared to the nonlesioned control side (mean = 13%, P less than 0.05). No expansion of the saphenous nerve projection was found following isolated saphenous nerve crush or sciatic nerve resection, respectively (P greater than 0.05). The findings indicate that in the adult rat, central processes of primary sensory neurons which are regenerating their peripheral processes can extend collateral sprouts into adjacent projection areas in the superficial dorsal horn subjected to previous deafferentation by peripheral nerve resection.  相似文献   

3.
Peripheral nerve section results in depletion of fluoride-resistant acid phosphatase (FRAP) from the nerve terminals in the dorsal horn of the spinal cord (Schoenen et al., '68) and this has been used in the past to map the termination field of individual nerves (Rustioni et al., '71; Devor and Claman, '80). In the present study we show that a similar central depletion occurs following sciatic nerve section or crush in neonatal rats. Unlike adults, however, the area of depletion is rapidly filled by sprouting of FRAP-containing afferent terminals from nearby intact peripheral nerves. The sprouting is extensive but never completely fills the depleted area. After nerve crush there is some recovery of FRAP from the sciatic nerve terminals themselves as well as from nearby nerve terminals. The source of recovered FRAP is demonstrated by resectioning or recrushing the nerves. The sprouting occurred when the sciatic was injured on day 1 but failed to take place when the injury was applied on or after day 10. Sciatic nerve section on day 1 also produces marked growth retardation of the ipsilateral dorsal horn gray matter that becomes more apparent as the rat matures. Nerve crush produces a less marked shrinkage that is slower in onset. If the nerve is crushed repeatedly, however, so that regeneration is prevented, the shrinkage is analogous to that following nerve section. No shrinkage occurs if the nerve is cut or crushed on day 10. The results show that separation of the spinal cord from its peripheral input at a critical stage in development results in disruption of the somatotopic organization of the C fibre afferent input to the dorsal horn and in slowing of growth of the dorsal horn gray matter.  相似文献   

4.
Blockade of axonal transport or transection of the rat sciatic nerve results in transganglionic degenerative atrophy (TDA) of nerve terminals containing fluoride-resistant acid phosphatase (FRAP) in the Rolando substance of the spinal cord. Application of vinblastine (9 micrograms) in a cuff around the sciatic nerve of adult rats blocked the retrograde transport of [125I]NGF in sensory fibers; this amount of vinblastine is identical to the threshold amount that induces TDA. Conversely, application of NGF to the proximal stump of the transected sciatic nerve prevented or delayed the occurrence of TDA as reflected by the maintenance of FRAP in the upper dorsal horn, that otherwise would inevitably disappear following the peripheral nerve lesion. These results suggest that endogenous NGF transported retrogradely in peripheral sensory fibers of the adult rat under normal conditions may be responsible for the regulation of the structural and functional integrity of the central terminals of these FRAP-containing primary sensory neurons and that TDA may be the consequence of the failure of NGF to reach the perikarya of these neurons.  相似文献   

5.
The growth-associated protein B-50/GAP-43 is thought to play a crucial role in axonal growth. We investigated, by quantitative immunoelectron microscopy, whether there are differences in the subcellular distribution of B-50 in unmyelinated and myelinated axons of intact and regenerating sciatic nerves. Adult rats received an unilateral sciatic nerve crush and were euthanized 8 days later. Nerve pieces proximal from the crush site were embedded, and B-50 was visualized by specific B-50 antibodies and immunogold detection in ultrathin sections. The density of B-50 at the plasma membrane of unmyelinated axon shafts was significantly increased in the ipsilateral regenerating nerve in comparison to that of the contralateral intact nerve. In contrast, there was no significant difference in the B-50 density at the axolemma of myelinated regenerating and intact axon shafts. In the contralateral intact nerve, more B-50 was associated with the axolemma of unmyelinated axons than with the plasma membrane of myelinated axons. The density of axoplasmic B-50 was similar in intact unmyelinated and myelinated axon shafts, but was higher in regenerating nerve than in intact nerve. This suggests that enhanced axonal transport of B-50 occurs during axon outgrowth. Our study demonstrates a differential subcellular distribution of B-50 in unmyelinated and myelinated axon shafts in both the intact and regenerating sciatic nerve, indicating a differential inducible capacity for remodeling of the axon shafts. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Regeneration of crushed axons in rat dorsal spinal roots was measured to investigate the transganglionic influence of an additional peripheral axonal injury. The right sciatic nerve was cut at the hip and the left sciatic nerve was left intact. One week later, both fifth lumbar dorsal roots were crushed and subsequently, regeneration in the two roots was assessed with one of two anatomical techniques. By anterograde tracing with horseradish peroxidase, the maximal rate of axonal regrowth towards the spinal cord was estimated to be 1.0 mm/day on the left and 3.1 mm/day on the right. Eighteen days after crush injury, new, thinly myelinated fibers in the root between crush site and spinal cord were 5-10 times more abundant ipsilateral to the sciatic nerve transection. The central axons of primary sensory neurons regenerate more quickly if the corresponding peripheral axons are also injured.  相似文献   

7.
Peripheral nerve injury-induced structural and chemical modifications of the sensory circuits in the dorsal horn of the spinal cord contribute to the mechanism of neuropathic pain. In contrast to the topographic projection of primary afferents in laminae I-IV in the rat spinal cord, the primary afferents of Macaca mulatta monkeys almost exclusively project into laminae I-II of the spinal cord. After peripheral nerve injury, up-regulation of galanin has been found in sensory neurons in both monkey and rat dorsal root ganglia. However, the nerve injury-induced ultrastructural modification of galanin-containing afferents in the monkey spinal cord remains unknown. Using immunoelectron microscopy, we found that 3 weeks after unilateral sciatic nerve transection, the number of galanin-containing afferents was increased in ipsilateral lamina II of monkey spinal cord. Branching of these galanin-positive afferents was often observed. The afferent terminals contained a large number of synaptic vesicles, peptidergic vesicles and mitochondria, whereas the number of synapses was markedly reduced. Some of the afferents-enriched microtubules were often packed into bundles. Moreover, galanin-labeling could be associated with endosomal structures in many dendrites and axonal terminals of dorsal horn neurons. These results suggest that peripheral nerve injury induces an expansion of the central projection of galanin-containing afferents in lamina II of the monkey spinal cord, not only by increasing galanin levels in primary afferents but also by triggering afferent branching.  相似文献   

8.
We recently found that the number of synapses in the spinal dorsal horn, as estimated by stereological techniques, increased by 86% after chronic constriction injury of sciatic nerve in rats. In this study, we aimed to reveal whether transection of sciatic nerve was also associated with a plasticity change in the number of synapses. 18 adult SD rats were randomly divided into 3 groups undergoing (i) unilateral sham operation, (ii) unilateral sciatic nerve transection, and (iii) unilateral sciatic nerve transection with postoperative medication (parecoxib) for 3 days, respectively. 28 days postoperation, the L4-6 segment of the spinal cord was removed; paraffin-embedded sections were prepared and stained with Nissl's method and synaptophysin immunohistochemistry. The optical disector (a contemporary stereological technique) was used to estimate the numbers of neurons and synapses in the spinal dorsal horn. Compared to the non-operated side, the axotomy induced a 74.3% increase in the number of synapses per unit length of spinal cord or a 67.4% increase in the ratio between the numbers of synapses and neurons in the middle tissue block from the L4-6 segment on the operated side but not in either the rostral or caudal tissue block. Parecoxib had no effect on the parameters. In conclusion, peripheral nerve injury, model for neuropathic pain, is associated with a synaptic plasticity (numerical increase) in the spinal dorsal horn.  相似文献   

9.
10.
Vinblastine, a transport blocker, was applied locally to the sciatic nerve in rats. It was found to be a powerful neurotoxin with a dose-dependent action, destroying all afferents at doses of 5 X 10(-4)M, primarily C fibers at intermediate doses of 2.5 X 10(-4)M, and only at a critically low dose of 10(-4)M was a degeneration-free axon transport blockade, lasting for 4 to 5 days, produced. Such transport block failed to alter thermal responsiveness of the rats as measured behaviorally, by the flexor reflex, or by dorsal horn cell responses. It did, however, significantly reduce both the chemical sensitivity of the C afferents and their ability to produce neurogenic edema. This began 24 hr after treatment and lasted 4 to 5 days. Therefore, it is likely that these functions are dependent on the continuous transport of some compound to the axon terminals from the cell body. This low concentration of local vinblastine treatment also resulted in depletion of fluoride-resistant acid phosphatase from C fiber terminals in the dorsal horn of the spinal cord. Transmission from C fibers to second-order neurons in the spinal cord, however, was totally unaffected. Substance P levels in the spinal terminals was largely unaffected, although in 1 of 5 cases there was depletion. It appears, therefore, that some, but not all, retrograde changes in sensory neurons following peripheral nerve damage can be mimicked by blockade of axon transport. The effects following vinblastine treatment are compared to other peripheral nerve manipulations, such as cut, crush, and application of local capsaicin.  相似文献   

11.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widely expressed neuropeptide that has been involved in nerve regeneration, neurone survival and nociception. In this study, the distribution of PACAP and PACAP-receptors were investigated in rat dorsal root ganglia (DRG), spinal cord and medulla oblongata at 3, 7 or 14 days following unilateral sciatic nerve transection using immunohistochemistry, 125I-PACAP-binding and in situ hybridisation. In control (contralateral side) DRG, about 30% of the nerve cell bodies (92% being small) were PACAP-immunoreactive (PACAP-IR). In the spinal cord, PACAP-IR fibres were seen in laminae I-II but not in the gracile nuclei. Following sciatic nerve transection, PACAP-IR fibres appeared in the gracile nuclei and occasionally in the deeper laminae of the dorsal horn consistent with the relative increase in larger PACAP-IR DRG neurones. However, the relative number of small PACAR-IR neurones was significantly lower on the transected side as compared to the control side suggesting a dual reaction for PACAP in the DRG following nerve injury. 125I-PACAP-binding was found in laminae I-II, around the central canal and in the gracile nuclei but not in the DRG. At 14 days after transection, 125I-PACAP-binding density was significantly reduced in the ipsilateral dorsal horn. PACAP-receptor (PAC(1)) mRNA was detected in neurones of the dorsal and ventral horn and in the gracile nuclei with no overt changes observed after transection. Very few DRG nerve cell bodies contained PAC(1) mRNA. The findings are consistent with a role for PACAP both in nociception and regeneration.  相似文献   

12.
Using the antibody microprobe method, the sites of spinal release of immunoreactive brain-derived neurotrophic factor (BDNF) was studied in normal rats, and rats with prior sciatic nerve transection. In normal rats, a significant basal release of immunoreactive BDNF was found in the superficial dorsal horn. Following sciatic nerve transection (performed 14 days previously), release of BDNF was found throughout the whole of the dorsal horn, extending into deeper laminae. Electrical stimulation of the ipsilateral sciatic nerve at a strength adequate to excite either A fibres (20 Hz at 2x threshold voltage) or A and C fibres (2 Hz at 20x threshold voltage) did not alter the basal release of immunoreactive BDNF in normal or in nerve-injured rats. The results suggest that BDNF is released from the central terminals of primary afferent fibres, but such release is not solely dependent upon action potential invasion of these terminals. The increased extent of release following nerve transection is consistent with the hypothesis that BDNF plays a role in the central response to peripheral nerve injury.  相似文献   

13.
Injury of a peripheral nerve gives rise to adaptive functional and structural alterations in spinal neurons. We report that the rearrangement of the spinal circuitry in response to sciatic nerve transection in adult rats involves a delayed mode of degeneration of lumbar spinal cord neurons. Nuclear fragmentation was detected by the TUNEL technique 7 days after sciatic neurectomy but not after 3 or 14 days. Dying cells were preferentially located in the ipsilateral superficial dorsal horn and expressed the neuronal cytoskeletal marker SMI-31. Degeneration was prevented by continous systemic treatment with the NMDA receptor-antagonist MK-801. These data are supportive that apoptosis is induced in spinal neurons in a transsynaptic manner by an early signal from injured afferent fibres via activation of spinal NMDA receptors.  相似文献   

14.
Using immunohistochemistry and in situ hybridization, we studied changes in expression of some neuropeptides in large and medium-sized neurons in lumbar 4 and 5 rat dorsal root ganglia projecting to the gracile nucleus, in response to peripheral axotomy. Fourteen days after unilateral sciatic nerve transection, many large neurons and some medium-sized neurons in ipsilateral dorsal root ganglia were strongly neuropeptide Y-positive. Galanin-, vasoactive intestinal polypeptide (VIP)- and peptide histidine-isoleucine (PHI)-like immunoreactivities coexisted with neuropeptide Y-like immunoreactivity in some of these neurons. After axotomy numerous large and medium-sized cells contained neuropeptide Y mRNA in the ipsilateral ganglia, whereas no hybridization was seen in the contralateral or control ganglia. Cross-sectioned, large neuropeptide Y-positive fibres were observed in a somatotopically appropriate zone within the ipsilateral gracile fasciculus. A dense network of neuropeptide Y-immunoreactive, large nerve fibres and terminals was seen in the ipsilateral gracile nucleus. A small number of galanin- and VIP/PHI-like immunoreactive nerve fibres and terminals were also observed in adjacent sections. Neuropeptide Y-like immunoreactivity colocalized with galanin- or VIP/PHI-like immunoreactivity in some nerve fibres. None of these neuropeptide immunoreactivities could be detected in nerve fibres and terminals in the control or contralateral gracile nucleus. These findings suggest that neuropeptides, in addition to their role in small dorsal root ganglion neurons, may have a function in large and medium-sized dorsal root ganglion neurons projecting to laminae III and IV in the dorsal horn as well as to the gracile nuclei, as a part of their response to peripheral axotomy.  相似文献   

15.
With the immunofluorescence technique, nitric oxide synthase (NOS)-like immunoreactivity (LI) was found in a few medium-sized and small sensory neurons in lumbar (L) 4 and L5 dorsal root ganglia (DRG) of normal rat, and in most of these neurons, NOS-LI coexisted with calcitonin gene-related peptide and sometimes with substance P and galanin. NOS-immunoreactive nerve fibers, terminals and small neurons were also located in the dorsal horn of the segments 4 and 5 of the rat lumbar spinal cord with the highest density in inner lamina II. Many NOS-positive neurons and fibers were seen in the area around the central canal. A sparse network of NOS-immunoreactive nerve fibers was found in the ventral horn. After unilateral sciatic nerve cut in the rat, the number of NOS-positive neurons increased in the ipsilateral L4 and L5 DRGs, mainly in medium and small neurons, but also in some large neurons and very small neurons. NOS-LI could now also be seen in the ipsilateral dorsal roots, and in an increased number of fibers and terminals in both outer and inner lamina II of the ipsilateral dorsal horn. The number of NOS-immunoreactive neurons in lamina II of the ipsilateral dorsal horn was reduced. In the monkey L4 and L5 DRGs, many small neurons were NOS-immunoreactive, but only a few weakly stained nerve fibers and terminals were found in laminae I-IV of the dorsal horn at L4 and L5 lumbar levels. A few NOS-positive neurons were present in lamina X. The number of NOS-immunoreactive neurons was somewhat reduced in DRGs 14 days after peripheral axotomy, but no certain effect was seen in the dorsal horn. These results, together with earlier in situ hybridization studies, demonstrate that axotomy in rat induces a marked upregulation of NOS synthesis in primary sensory neurons, thus suggesting a role for NO in lesioned sensory neurons. In contrast, no such effect was recorded in monkey, perhaps indicating distinct species differences. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Crush or transection of peripheral nerves of the adult rat is accompanied by changes in protein expression, including the growth associated protein (GAP-43) B-50. Following peripheral nerve crush in rat enhanced B-50 immunoreactivity was observed in regenerating nerve fibres and in newly formed axon terminals. However, before reinnervation was apparent, an unexpected transient increase in B-50 immunoreactivity was observed at denervated motor endplates [J. Neurosci. 8 (1988) 1759]. This study was performed to clarify this observation. Four days following facial nerve crush B-50 immunoreactivity was detected by double immunofluorescence microscopy in Sl00-positive Schwann cells covering the denervated endplates. Using diluted polyclonal and monoclonal B-50 antibodies we found that B-50 immunoreactivity at the denervated motor endplates was strongly increased in comparison to innervated motor endplates in which B-50 immunoreactivity was hardly detectable. However, when a high concentration of B-50 antibodies was applied the normal innervated motor endplates were also B-50 immunoreactive. Muscle fibres did not display B-50 immunoreactivity. Northern blot analysis revealed elevated B-50 mRNA in denervated muscle and in degenerating nerve with respect to the controls. The B-50 mRNA levels in these non-neuronal tissues were very low compared to the intact and injured facial nucleus containing the neuronal cell bodies. Electron microscopy demonstrated that the B-50 protein was localized in the processes of Schwann cells covering axon terminals of intact and vacant motor endplates and in axon varicosities of sympathetic nerves. This study has confirmed that prior to reinnervation B-50 immunoreactivity is increased at denervated motor endplates and shows that B-50 is co-localized with S100 in Schwann cells. Therefore, upregulation of B-50 expression in Schwann cells may explain the early occurrence of B-50 immunoreactivity at the motor endplate.  相似文献   

17.
Midkine (MK), a heparin-binding growth factor, is produced in the developing and damaged nervous system. However, the role of MK in peripheral nerve injury has not been clarified. Here, we investigated MK expression in lumbar spinal motor neurons after rat sciatic nerve injury by immunohistochemical, in situ hybridization, and Western blot analyses. The rat sciatic nerve showed complete degeneration after local freezing. Numerous regenerated myelinated and thin nerve fibers were observed 3 weeks after injury. Intense MK immunoreactivity was detected in the ipsilateral spinal motor neurons of the anterior horn of the lumbar spinal cord after 1 day and in ipsilateral and contralateral spinal motor neurons from 4 days to 1 week after injury. It decreased after 2 weeks and again transiently increased in spinal motor neurons after 3 weeks. MK was found in the motor neurons and axon of the sciatic nerve. However, it was not detected in normal neurons and axon. In situ hybridization showed the expression of MK mRNA in lumbar spinal motor neurons of the anterior horn, but it was not present in Schwann cells or non-neuronal cells. Low-density lipoprotein receptor-related protein (LRP) immunoreactivity, a cell membrane receptor of MK, was observed in anterior horn motor neurons, but receptor-type protein tyrosine phosphatase zeta (PTPzeta) immunoreactivity as a signaling receptor complex of MK was not observed. LRP and PTPzeta immunoreactivities were observed in Schwann cells of the injured and uninjured sciatic nerve. Our findings suggest that MK is synthesized, released, and taken up in anterior horn motor neurons in an autocrine fashion with LRP. MK may have a role in degeneration and regeneration after peripheral nerve injury.  相似文献   

18.
The spinal cord distribution of axonal terminals of peripheral nerves that innervate the skin of the upper medial thigh was examined in rats using transganglionic transport of horseradish peroxidase (HRP) and wheat-germ agglutinin-conjugated HRP (WGA-HRP). Chronic transection of the sciatic nerve or both the sciatic and saphenous nerves did not alter this distribution. Therefore, long-distance sprouting of intact 'thigh nerve' afferents in the dorsal horn is apparently not the mechanism whereby spinal dorsal horn neurons deafferented by sciatic and saphenous neurectomy, gain novel receptive fields in the cutaneous distribution of neighbouring intact nerves of the thigh.  相似文献   

19.
Using nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and nitric oxide synthase (NOS) immunocytochemistry combined with radioassay of calcium-dependent NOS activity, we examined the occurrence of NADPHd staining and NOS immunoreactivity (NOS-IR) in the dorsal root ganglia (DRG) neurons, dorsal root afferents, and axons projecting via gracile fascicle to gracile nucleus 14 days after unilateral sciatic nerve transection in the rabbit. Mild to moderate NADPHd staining and NOS-IR appeared in a large number of small and medium-sized to large neurons in the ipsilateral L4-L6 DRG, accompanied by enhanced NOS-IR of thick myelinated fibers in the ipsilateral L4-L6 dorsal roots. A noticeable increase in the density of punctate NADPHd staining occurred throughout laminae I-IV in the ipsilateral medial part of the dorsal horn in L4-L6 segments. Concurrently, a statistically significant decrease in the number of small NADPHd-exhibiting neurons in laminae I-II and, in contrast to this, a statistically significant increase of medium-sized to large NADPHd-stained somata in the ipsilateral laminae III-VI of L4-L6 segments were found. A detailed compartmentalization of L4-L6 segments into gray and white matter regions disclosed substantially increased catalytic NOS activity and inducible NOS mRNA levels in the dorsal horn and dorsal column ipsilaterally to the peripheral injury. A noticeable increase in the number of thick myelinated NADPHd-exhibiting and NOS-IR axons was noted in the ipsilateral gracile fascicle, terminating in dense, punctate NADPHd staining in the neuropil of the gracile nucleus. These observations indicate that the de novo-synthesized NOS in the lesioned primary afferent neurons resulting after sciatic nerve transection may be involved in an increase in NADPHd staining and NOS-IR in the ipsilateral dorsal roots and dorsal horn of L4-L6 segments, whence NOS could be supplied to ascending axons of the gracile fascicle.  相似文献   

20.
The discrete distribution and possible changes in specific [125I]galanin binding sites were evaluated in the rat spinal cord following neonatal capsaicin treatment, dorsal rhizotomy and sciatic nerve section. The highest density of [125I]galanin binding sites in the normal rat spinal cord was particularly evident in the superficial layers of the dorsal horn whereas moderate to low amounts of labelling were associated with the deeper dorsal horn, areas around the central canal and the ventral horn. Capsaicin-treated rats, compared to littermate controls, showed a significant bilateral increase in [125I]galanin binding in the superficial laminae of the dorsal horn. Similarly, unilateral dorsal rhizotomy evoked a significant increase in the density of [125I]galanin binding sites in the superficial dorsal horn ipsilateral to surgery. Section of the sciatic nerve, on the other hand, induced a significant depletion in [125I]galanin binding in laminae I and II of the ipsilateral dorsal horn. These results, in parallel to those reported for galanin immunoreactivity under similar conditions, suggest that [125I]galanin binding sites are preferentially located postsynaptically to the primary afferent fibre terminals in the dorsal horn of the spinal cord. Thus it seems that galanin, at the level of the dorsal spinal cord, regulates the processing of nociceptive information by acting on its own class of specific receptors located postsynaptically to primary sensory terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号