共查询到7条相似文献,搜索用时 15 毫秒
1.
Denecke J Brune T Feldhaus T Robenek H Kranz C Auchus RJ Agarwal AK Marquardt T 《Human mutation》2006,27(6):524-531
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder normally caused by a spontaneous heterozygous mutation in the LMNA gene that codes for the nuclear lamina protein lamin A. Several enzymes are involved in the processing of its precursor, prelamin A, to the mature lamin A. A functional knockout of one of the enzymes involved in prelamin A processing, the zinc metalloprotease ZMPSTE24, causes an even more severe disorder with early neonatal death described as restrictive dermatopathy (RD). This work describes a HGPS patient with a combined defect of a homozygous loss-of-function mutation in the ZMPSTE24 gene and a heterozygous mutation in the LMNA gene that results in a C-terminal elongation of the final lamin A. Whereas the loss of function mutation of ZMPSTE24 normally results in lethal RD, the truncation of LMNA seems to be a salvage alteration alleviating the clinical picture to the HGPS phenotype. The mutations of our patient indicate that farnesylated prelamin A is the deleterious agent leading to the HGPS phenotype, which gives further insights into the pathophysiology of the disorder. 相似文献
2.
Claire Laure Navarro Vera Esteves-Vieira Sébastien Courrier Amandine Boyer Thuy Duong Nguyen Le Thi Thanh Huong Peter Meinke Winnie Schr?der Valérie Cormier-Daire Yves Sznajer David J Amor Kristina Lagerstedt Martine Biervliet Peter C van den Akker Pierre Cau Patrice Roll Nicolas Lévy Catherine Badens Manfred Wehnert Annachiara De Sandre-Giovannoli 《European journal of human genetics : EJHG》2014,22(8):1002-1011
Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele. 相似文献
3.
4.
Juergen Scharner Charlotte A. Brown Matthew Bower Susan T. Iannaccone Ismail A. Khatri Diana Escolar Erynn Gordon Kevin Felice Carol A. Crowe Carla Grosmann Matthew N. Meriggioli Alexander Asamoah Ora Gordon Viola F. Gnocchi Juliet A. Ellis Jerry R. Mendell Peter S. Zammit 《Human mutation》2011,32(2):152-167
Mutations in LMNA cause a variety of diseases affecting striated muscle including autosomal Emery‐Dreifuss muscular dystrophy (EDMD), LMNA‐associated congenital muscular dystrophy (L‐CMD), and limb‐girdle muscular dystrophy type 1B (LGMD1B). Here, we describe novel and recurrent LMNA mutations identified in 50 patients from the United States and Canada, which is the first report of the distribution of LMNA mutations from a large cohort outside Europe. This augments the number of LMNA mutations known to cause EDMD by 16.5%, equating to an increase of 5.9% in the total known LMNA mutations. Eight patients presented with either p.R249W/Q or p.E358K mutations and an early onset EDMD phenotype: two mutations recently associated with L‐CMD. Importantly, 15 mutations are novel and include eight missense mutations (p.R189P, p.F206L, p.S268P, p.S295P, p.E361K, p.G449D, p.L454P, and p.W467R), three splice site mutations (c.IVS4 + 1G>A, c.IVS6 ? 2A>G, and c.IVS8 + 1G>A), one duplication/in frame insertion (p.R190dup), one deletion (p.Q355del), and two silent mutations (p.R119R and p.K270K). Analysis of 4 of our lamin A mutations showed that some caused nuclear deformations and lamin B redistribution in a mutation specific manner. Together, this study significantly augments the number of EDMD patients on the database and describes 15 novel mutations that underlie EDMD, which will contribute to establishing genotype–phenotype correlations. Hum Mutat 31:–16, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
5.
Megan S. Kane Mark E. Lindsay Daniel P. Judge Jemima Barrowman Colette Ap Rhys Lisa Simonson Harry C. Dietz Susan Michaelis 《American journal of medical genetics. Part A》2013,161(7):1599-1611
Hutchinson–Gilford Progeria Syndrome (HGPS) is a premature aging disorder caused by mutations in LMNA, which encodes the nuclear scaffold proteins lamin A and C. In HGPS and related progerias, processing of prelamin A is blocked at a critical step mediated by the zinc metalloprotease ZMPSTE24. LMNA‐linked progerias can be grouped into two classes: (1) the processing‐deficient, early onset “typical” progerias (e.g., HGPS), and (2) the processing‐proficient “atypical” progeria syndromes (APS) that are later in onset. Here we describe a previously unrecognized progeria syndrome with prominent cutaneous and cardiovascular manifestations belonging to the second class. We suggest the name LMNA‐associated cardiocutaneous progeria syndrome (LCPS) for this disorder. Affected patients are normal at birth but undergo progressive cutaneous changes in childhood and die in middle age of cardiovascular complications, including accelerated atherosclerosis, calcific valve disease, and cardiomyopathy. In addition, the proband demonstrated cancer susceptibility, a phenotype rarely described for LMNA‐based progeria disorders. The LMNA mutation that caused LCPS in this family is a heterozygous c.899A>G (p.D300G) mutation predicted to alter the coiled–coil domain of lamin A/C. In skin fibroblasts isolated from the proband, the processing and levels of lamin A and C are normal. However, nuclear morphology is aberrant and rescued by treatment with farnesyltransferase inhibitors, as is also the case for HGPS and other laminopathies. Our findings advance knowledge of human LMNA progeria syndromes, and raise the possibility that typical and atypical progerias may converge upon a common mechanism to cause premature aging disease. © 2013 Wiley Periodicals, Inc. 相似文献
6.
7.
Charniot JC Pascal C Bouchier C Sébillon P Salama J Duboscq-Bidot L Peuchmaurd M Desnos M Artigou JY Komajda M 《Human mutation》2003,21(5):473-481
Heritable dilated cardiomyopathy is a genetically highly heterogeneous disease. To date 17 different chromosomal loci have been described for autosomal dominant forms of dilated cardiomyopathy with or without additional clinical manifestations. Among the 10 mutated genes associated with dilated cardiomyopathy, the lamin A/C (LMNA) gene has been reported in forms associated with conduction-system disease with or without skeletal muscle myopathy. For the first time, we report here a French family affected with a new phenotype composed of an autosomal dominant severe dilated cardiomyopathy with conduction defects or atrial/ventricular arrhythmias, and a specific quadriceps muscle myopathy. In all previously reported cases with both cardiac and neuromuscular involvement, neuromuscular disorders preceded cardiac abnormalities. The screening of the coding sequence of the LMNA gene on all family members was performed and we identified a missense mutation (R377H) in the lamin A/C gene that cosegregated with the disease in the family. Cell transfection experiments showed that the R377H mutation leads to mislocalization of both lamin and emerin. These results were obtained in both muscular (C2C12) and non-muscular cells (COS-7). This new phenotype points out the wide spectrum of neuromuscular and cardiac manifestations associated with lamin A/C mutations, with the functional consequence of this mutation seemingly associated with a disorganization of the lamina. 相似文献