首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Aqueous dispersions of solid lipid nanoparticles (SLN) are promising drug carrier systems for topical application. A drawback, however, is the need of incorporating the SLN dispersion in commonly used dermal carriers (creams, gels) to obtain the required semisolid consistency for dermal application. This study describes the production of SLN dispersions having the desired semisolid consistency by a one-step process. Physical characterization of these systems in terms of particle size and rheological properties revealed some interesting features. Despite the high lipid content it was possible to produce colloidal dispersions by high pressure homogenization. Continuous flow measurements revealed systems with yield point, plastic flow and thixotropy. Oscillation measurements proved the viscoelastic microstructure of the SLN dispersions. Higher concentrated SLN dispersions were found to have a prevailing elastic component in contrast to lower concentrated systems. Viscoelastic properties of a 40% SLN dispersion were found to be comparable to standard dermal preparations. Storage stability at room temperature in terms of particle size could be demonstrated over a 6-month period. The development of the gel structure of semisolid SLN dispersions is delayed comparable to commercial O/W creams with non-ionic emulsifiers. Parameters like concentration of the dispersed phase, particle size and particle shape were identified as significant factors influencing the microstructure of these complex semisolid systems.  相似文献   

2.
The development of solid lipid nanoparticles (SLN) containing all-trans retinoic acid (RA) is an interesting approach to topical treatment of acne. SLN has potential for controlled release and follicular penetration, which can reduce adverse effects in comparison with conventional formulations. However, the encapsulation efficiency (EE) of RA in SLN is usually low, unless a high surfactant/lipid ratio is used. The aim of this work was to develop SLN with high EE using a low surfactant/lipid ratio. Different formulations of RA-loaded SLN were prepared using glyceryl behenate as lipid matrix. The particle size, EE, zeta potential and differential scanning calorimetry (DSC) were investigated. High EE in SLN was obtained with addition of amines. These results indicate that the utilization of amines is an interesting approach to improve the EE of RA in SLN using a low surfactant/lipid ratio.  相似文献   

3.
Aqueous solid lipid nanoparticle (SLN) dispersions with a high lipid content up to 35% and viscous to semisolid consistency were produced by a high pressure homogenization process. Despite their high lipid content and viscosity these dispersions preserved their colloidal size range. The SLN dispersions were compared to nanoemulsions and microparticle dispersions with regard to particle size, viscoelastic properties and formation of a semisolid gel structure. Viscoelastic measurements including oscillation stress sweep tests and oscillation frequency sweep tests demonstrated that the existence of a solid particle matrix with a particle size in the nanometer range is a prerequisite to form a semisolid dispersion having the appropriate consistency for topical application. Striking differences were observed between solid lipid micro- and nanodispersions of the same composition. Particle size reduction resulted in an 80-fold increase of the elastic modulus. Particle size distribution, the physical state of the dispersed lipid phase and the emulsifier concentration have been identified as further key factors for the viscoelastic properties and gel structure of the lipid nanodispersions. By conducting oscillation measurements it was possible to relate the stability of lipid dispersions to specific rheological parameters therefore providing a sensitive tool in stability assessment. Changing the production process from a 40 ml batch to a 2 l batch turned out to have an influence on the colloidal structures of semisolid SLN dispersions. Consistency increased but particle size and ratio of elastic to viscous properties stayed in the same range.  相似文献   

4.
The aim of the present study was the evaluation of lipid nanoparticles (solid lipid nanoparticles, SLN, and nanostructured lipid carriers, NLC) as potential carriers for octyl-methoxycinnamate (OMC). The release pattern of OMC from SLN and NLC was evaluated in vitro, determining its percutaneous absorption through excised human skin. Additional in vitro studies were performed in order to evaluate, after UVA radiation treatment, the spectral stability of OMC-loaded lipid nanoparticles. From the obtained results, ultrasonication method yielded both SLN and NLC in the nanometer range with a high active loading and a particle shape close to spherical. Differential scanning calorimetry data pointed out the key role of the inner oil phase of NLC in stabilizing the particle architecture and in increasing the solubility of OMC as compared with SLN. In vitro results showed that OMC, when incorporated in viscosized NLC dispersions (OMC-NLC), exhibited a lower flux with respect to viscosized SLN dispersions (OMC-SLN) and two reference formulations: a microemulsion (OMC-ME) and a hydroalcoholic gel (OMC-GEL). Photostability studies revealed that viscosized NLC dispersions were the most efficient at preserving OMC from ultraviolet-mediated photodegradation.  相似文献   

5.
Solid lipid nanoparticles (SLN) for topical delivery were prepared by high pressure homogenization using solid lipids. The lipophilic agents DEET (N,N-diethyl-m-toluamide) and vitamin K were used as model drugs. These topical agents were incorporated into SLN which were characterized. Differential scanning calorimetry studies were performed in order to detect probable interactions in the SLN dispersions. Physical stability of SLN in aqueous dispersions and the effect of drug incorporation into SLN were investigated by photon correlation spectroscopy and zeta potential measurements. Characterization and short-term stability studies showedthat DEET and vitamin K are good candidates for topical SLN formulations.  相似文献   

6.
The development of solid lipid nanoparticles (SLN) containing all-trans retinoic acid (RA) is an interesting approach to topical treatment of acne. SLN has potential for controlled release and follicular penetration, which can reduce adverse effects in comparison with conventional formulations. However, the encapsulation efficiency (EE) of RA in SLN is usually low, unless a high surfactant/lipid ratio is used. The aim of this work was to develop SLN with high EE using a low surfactant/lipid ratio. Different formulations of RA-loaded SLN were prepared using glyceryl behenate as lipid matrix. The particle size, EE, zeta potential and differential scanning calorimetry (DSC) were investigated. High EE in SLN was obtained with addition of amines. These results indicate that the utilization of amines is an interesting approach to improve the EE of RA in SLN using a low surfactant/lipid ratio.  相似文献   

7.
Aqueous dispersions of solid lipid nanoparticles (SLN) show some interesting features in topical drug delivery. However, to get a semisolid carrier having the appropriate consistency for topical application, the liquid SLN dispersions have to be incorporated in convenient topical dosage forms like hydrogels or creams. This is a time-consuming production process with several disadvantages. A new one-step production process delivering a semisolid topical formulation including SLN is presented avoiding these disadvantages. The semisolid SLN dispersions were produced by high-pressure homogenization using an APV Lab 40 homogenizer. The resulting dispersions were characterized concerning their particle size and rheological properties. Despite the high lipid content of the SLN dispersions, they retained their colloidal particle size. Viscoelastic measurements proved the existence of a gel-like structure with a prevailing elastic component.  相似文献   

8.
莪术油固体脂质纳米粒的制备   总被引:6,自引:2,他引:4  
目的研究影响莪术油固体脂质纳米粒制备的主要因素。方法采用高压均质法制备莪术油固体脂质纳米粒混悬液,以单因素考察和正交设计法筛选出比较理想的处方和工艺,并考察其形态、粒径、载药量及包封率。结果所制得的固体脂质纳米粒为圆整的类球形实体粒子,表面光滑,平均粒径为80.3nm,载药量为11.82%,包封率为81.75%。结论高压均质法可用于莪术油类液体药物固体脂质纳米粒的制备。  相似文献   

9.
Solid lipid nanoparticles (SLN) are a colloidal carrier system for controlled drug delivery. The lipophilic model drugs tetracaine and etomidate were incorporated to study the maximum drug loading, entrapment efficacy, effect of drug incorporation on SLN size, zeta potential (charge) and long-term physical stability. Drug loads of up to 10% could be achieved whilst simultaneously maintaining a physically stable nanoparticle dispersion. Incorporation of drugs showed no or little effect on particle size and zeta potential compared to drug-free SLN. The optimized production parameters previously established for drug-free SLN dispersions can therefore be transferred to drug-loaded systems to facilitate product development.  相似文献   

10.
Solid lipid nanoparticles (SLN) are a colloidal carrier system for controlled drug delivery. The lipophilic model drugs tetracaine and etomidate were incorporated to study the maximum drug loading, entrapment efficacy, effect of drug incorporation on SLN size, zeta potential (charge) and long-term physical stability. Drug loads of up to 10% could be achieved whilst simultaneously maintaining a physically stable nanoparticle dispersion. Incorporation of drugs showed no or little effect on particle size and zeta potential compared to drug-free SLN. The optimized production parameters previously established for drug-free SLN dispersions can therefore be transferred to drug-loaded systems to facilitate product development.  相似文献   

11.
SLN and NLC for topical delivery of ketoconazole   总被引:4,自引:0,他引:4  
The clinical use of ketoconazole has been related to some adverse effects in healthy adults, specially local reactions, such as severe irritation, pruritus and stinging. The purpose of the present work is the assessment of ketoconazole stability in aqueous SLN and NLC dispersions, as well as the physicochemical stability of these lipid nanoparticles, which might be useful for targeting this drug into topical route, minimizing the adverse side effects and providing a controlled release. Lipid particles were prepared using Compritol 888 ATO as solid lipid. The natural antioxidant alpha-tocopherol was selected as liquid lipid compound for the preparation of NLC. Ketoconazole loading capacity was identical for both SLN and NLC systems (5% of particle mass). SLN were physically stable as suspensions during 3 months of storage, but the SLN matrix was not able to protect the chemically labile ketoconazole against degradation under light exposure. In contrast, the NLC were able to stabilize the drug, but the aqueous NLC dispersion showed size increase during storage. Potential topical formulations are light-protected packaged SLN or NLC physically stabilized in a gel formulation.  相似文献   

12.
The purpose of present study is to examine effect of binary lipid matrix (combination of lipids) on the entrapment and storage stability of repaglinide (RG) loaded solid lipid nanoparticles (SLN). Solid lipid nanoparticles were prepared by modified solvent injection method for oral delivery to improve the bioavailability of RG, an antidiabetic drug. The stearic acid and tristearin were used to form lipid core materials, and Pluronic-F68 was used as a stabilizer. Nanoparticles were characterized by evaluating their particle size, zeta potential, entrapment efficiency, drug loading, solid-state studies (differential scanning calorimetry, X-ray diffraction), in vitro drug release, particle surface (transmission electron microscopy analysis with electron diffraction pattern), stability study in gastrointestinal fluids (GIFs) and storage stability at 30 °C/65% RH for 3 months. The characterization of SLN suggested that binary lipid matrix based nanoparticles had better drug entrapment and loading, desired release characteristics, stable in GIFs and significantly higher storage stability compared with single lipid formulations. Pharmacodynamic (blood glucose, blood cholesterol, blood triglyceride levels) and pharmacokinetic (AUC, T(max), peak plasma concentrations, K, t(1/2), mean residence time and relative bioavailabilities) studies were performed for the selected formulations. These studies indicate that the formulation based on binary lipid matrix significantly improves the oral bioavailability of RG.  相似文献   

13.
Aqueous dispersions of lipid nanoparticles are being investigated as drug delivery systems for different therapeutic purposes. One of their interesting features is the possibility of topical use, for which these systems have to be incorporated into commonly used dermal carriers, such as creams or hydrogels, in order to have a proper semisolid consistency. For the present investigation four different gel-forming agents (xanthan gum, hydroxyethylcellulose 4000, Carbopol943 and chitosan) were selected for hydrogel preparation. Aqueous dispersions of lipid nanoparticles--solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)--made from tripalmitin were prepared by hot high pressure homogenization and then incorporated into the freshly prepared hydrogels. NLC differ from SLN due to the presence of a liquid lipid (Miglyol812) in the lipid matrix. Lipid nanoparticles were physically characterized before and after their incorporation into hydrogels. By means of rheological investigations it could be demonstrated that physical properties of the dispersed lipid phase have a great impact on the rheological properties of the prepared semisolid formulations. By employing an oscillation frequency sweep test, significant differences in elastic response of SLN and NLC aqueous dispersions could be observed.  相似文献   

14.
The clinical use of ketoconazole has been related to some adverse effects in healthy adults, specially local reactions, such as severe irritation, pruritus and stinging. The purpose of the present work is the assessment of ketoconazole stability in aqueous SLN and NLC dispersions, as well as the physicochemical stability of these lipid nanoparticles, which might be useful for targeting this drug into topical route, minimizing the adverse side effects and providing a controlled release. Lipid particles were prepared using Compritol®888 ATO as solid lipid. The natural antioxidant α-tocopherol was selected as liquid lipid compound for the preparation of NLC. Ketoconazole loading capacity was identical for both SLN and NLC systems (5% of particle mass). SLN were physically stable as suspensions during 3 months of storage, but the SLN matrix was not able to protect the chemically labile ketoconazole against degradation under light exposure. In contrast, the NLC were able to stabilize the drug, but the aqueous NLC dispersion showed size increase during storage. Potential topical formulations are light-protected packaged SLN or NLC physically stabilized in a gel formulation.  相似文献   

15.
In this work, we report the development and optimization of solid lipid nanoparticles (SLN) production by a simple, fast, and cost-effective high shear homogenization process. A screening of several solid lipids (Compritol 888 ATO, Precirol ATO 5, Cetyl Palmitate, Dynasan 118, Imwitor 900K, Stearic acid) has been carried out in combination with Poloxamer 188 as the selected surfactant, based on the mean particle size and polydispersity index. The improvement of the physical stability of the SLN dispersions was achieved by the use of a cationic lipid (cetyl trimethylammonium bromide) reaching zeta potential values above +60 mV. Combining the optimized speed and time of shear, monodispersed SLN (PdI < 0.25) under the nanometer range could be produced.  相似文献   

16.
Solid lipid nanoparticles (SLNs) loaded with Cyclosporine A using glyceryl monostearate (GMS) and glyceryl palmitostearate (GPS) as lipid matrices were prepared by melt-homogenization using high-pressure homogenizer. Various process parameters such as homogenization pressure, homogenization cycles and formulation parameters such as ratio of drug: lipid, emulsifier: lipid and emulsifier: co-emulsifier were optimized using particle size and entrapment efficiencies as the dependent variables. The mean particle size of optimized batches of the GMS SLN and GPS SLN were found to be 131 nm and 158 nm and their entrapment efficiencies were 83 +/- 3.08% and 97 +/- 2.59% respectively. To improve the handling processing and stability of the prepared SLNs, the SLN dispersions were spray dried and its effect on size and reconstitution parameters were evaluated. The spray drying of SLNs did not significantly alter the size of SLNs and they exhibited good redispersibility. Solid state studies such as Infra Red Spectroscopy and Differential Scanning Calorimetry indicated absence of any chemical interaction between Cyclosporine A and the lipids. Scanning Electron Microscopy of optimized formulations showed spherical shape with smooth and non porous surface. In vitro release studies revealed that GMS based SLNs released the drug faster (41.12% in 20 hours) than GPS SLNs (7.958% in 20 hours). Release of Cyclosporine A from GMS SLN followed Higuchi equation better than first order while release from GPS SLN followed first order better than Higuchi model.  相似文献   

17.
The paper is devoted to the investigation of chemical stability of lipids used as excipients in the production of Solid Lipid Nanoparticles (SLN). Different lipids and amounts of surfactants were considered. Most of the formulations were produced using identical binary surfactant mixtures and concentrations to analyze the effect of the chemical nature of the lipids on their stability in SLN. In some formulations, surfactants were exchanged or their concentration was increased to assess the contribution of surfactants on stability of lipids particles. Solid Lipid Nanoparticles were characterized by photon correlation spectroscopy, laser diffractometry, zeta potential determination and differential scanning calorimetry. Potential effects of lipid crystallinity and modifications were assessed. A gas chromatography (GC) analysis in combination with a method for lipid extraction from aqueous SLN dispersions was used to investigate the chemical stability of the lipid excipients forming the particle matrix. All formulations were produced by the hot homogenization technique. The production process of SLN itself did not affect the chemical stability of lipid excipient forming the particle matrix. The formulations where lipids consisted of trigylicerides showed a negligible decomposition of the structure during incubation at 25 degrees C. Dynasan 118 showed the highest chemical stability (loss<4%) within two years.  相似文献   

18.
目的:建立一种干燥的固体脂质纳米粒的制备方法。方法:采用超声分散法制备黄豆苷元固体脂质纳米粒的混悬液,然后采用喷雾干燥法将其制成干燥的、可再分散的固体脂质纳米粒。结果:在混悬液中黄豆苷元固体脂质纳米粒为球形粒子,平均粒径约为280 nm,喷雾干燥后得到的纳米粒仍为球型,分散后的粒径与喷干前相比有所增大,平均粒径约为720 nm,稳定性较好。结论:喷雾干燥法制备黄豆苷元固体脂质纳米粒是可行的。  相似文献   

19.
以单硬脂酸甘油酯和胆固醇为脂质材料,采用乳化溶剂扩散法制备利拉萘酯固体脂质纳米粒,并采用正交设计优化处方.结果表明,所得优化制品平均粒径为(145.3±6.1)nm,包封率为(75.8±0.7)%,载药量为(4.82±0.03)%,DSC分析提示药物可能以无定形状态存在于载体中.稳定性初步研究显示制品在4℃条件放置30 d可维持稳定.体外透皮试验表明,利拉萘酯固体脂质纳米粒凝胶的皮肤滞留比约为市售乳膏(Zefnart)的100倍.  相似文献   

20.
Solid lipid nanoparticles (SLN) were developed at the beginning of the 1990 s as an alternative carrier system to emulsions, liposomes and polymeric nanoparticles. The paper reviews advantages-also potential limitations-of SLN for the use in topical cosmetic and pharmaceutical formulations. Features discussed include stabilisation of incorporated compounds, controlled release, occlusivity, film formation on skin including in vivo effects on the skin. As a novel type of lipid nanoparticles with solid matrix, the nanostructured lipid carriers (NLC) are presented, the structural specialties described and improvements discussed, for example, increase in loading capacity, physical and chemical long-term stability, triggered release and potentially supersaturated topical formulations. For both SLN and NLC, the technologies to produce the final topical formulation are described, especially the production of highly concentrated lipid nanoparticle dispersions >30-80% lipid content. Production issues also include clinical batch production, large scale production and regulatory aspects (e. g. status of excipients or proof of physical stability).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号