首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rib shortening or lengthening are surgical options that are used to address the cosmetic rib cage deformity in scoliosis, but can also alter the equilibrium of forces acting on the spine, thus possibly counteracting in a mechanical way the scoliotic process and correcting the spinal deformities. Although rib surgeries have been successful in animal models, they have not gained wide clinical acceptance for mechanical correction of scoliosis due to the lack of understanding of the complex mechanisms of action involved during and after the operation. The objective of this study was to assess the biomechanical action of different surgical approaches on the rib cage for the treatment of scoliosis using a patient-specific finite element model of the spine and rib cage. Several unilateral and bilateral rib shortening/lengthening procedures were tested at different locations on the ribs (convex/concave side of the thoracic curvature; at the costo-transverse/costo-chondral joint; 20 and 40 mm adjustments). A biomechanical analysis was performed to assess the resulting geometry and load patterns in ribs, costo-vertebral articulations and vertebrae. Only slight immediate geometric variations were obtained. However, concave side rib shortening and convex side rib lengthening induced important loads on vertebral endplates that may lead to possible scoliotic spine correction depending on the remaining growth potential. Convex side rib shortening and concave side rib lengthening produced mostly cosmetic rib cage correction, but generated inappropriate loads on the vertebral endplates that could aggravate vertebral wedging. This study supports the concept of using concave side rib shortening or convex side rib lengthening as useful means to induce correction of the spinal scoliotic deformity during growth, though the effects of growth modulation from induced loads must be addressed in more detail to prove the usefulness of rib shortening/lengthening techniques.  相似文献   

2.
目的 通过磁共振成像(MRI)观察青少年特发性脊柱侧凸(AIS)和正常同年龄组青少年胸椎的形态学差异,探讨其临床意义.方法 胸椎轻度侧凸(MS)组患者10例(Cobb角15°~39°),胸椎中度侧凸(SS)组患者10例(Cobb角40°~75°).另选健康青少年10名作为对照(非侧凸组).所有研究对象均为女性,年龄13~14岁.用1.5 T磁共振扫描仪(Sonata,Siemens,Erlanger,德国)对所有研究对象进行全脊柱矢状面扫描,在图像工作站(Easy Vision,Philips Medical Systems,Best,荷兰)上重建脊柱矢状面图像,测量每个胸椎椎体前壁高度,后壁高度,棘突间高度,在横截面测量椎体横径长度,并进行对比分析.结果 椎体前后高度、宽度从T1到T12逐渐增加,并呈线性分布,脊柱侧凸组椎体高度普遍>正常同年龄非侧凸组患者.脊柱侧凸组患者椎体高度横径比值以及脊椎前后高度比值均>无侧凸组.胸椎侧凸顶椎区T6~T9椎体前方高度、椎体高度横径比值以及脊椎前后高度比值,脊柱侧凸组明显>非侧凸组,差异均有统计学意义(P<0.05).结论 AIS胸椎侧凸女性患者胸椎顶椎区存在显著的脊柱生长模式异常,与正常胸椎相比AIS的胸椎更高、并显得更为瘦长.  相似文献   

3.
Priority of neurological decompression was regarded as necessary for scoliosis patients associated with Chiari I malformation in order to decrease the risk of spinal cord injury from scoliosis surgery. We report a retrospective series of scoliosis associated with Chiari I malformation in 13 adolescent patients and explore the effectiveness and safety of posterior scoliosis correction without suboccipital decompression. One-stage posterior approach total vertebral column resection was performed in seven patients with scoliosis or kyphosis curve >90° (average 100.1° scoliotic and 97.1° kyphotic curves) or presented with apparent neurological deficits, whereas the other six patients underwent posterior pedicle screw instrumentation for correction of spinal deformity alone (average 77.3° scoliotic and 44.0° kyphotic curves). The apex of the scoliosis curve was located at T7–T12. Mean operating time and intraoperative hemorrhage was 463 min and 5,190 ml in patients undergoing total vertebral column resection, with average correction rate of scoliosis and kyphosis being 63.3 and 71.1%, respectively. Mean operating time and intraoperative hemorrhage in patients undergoing instrumentation alone was 246 min and 1,450 ml, with the average correction rate of scoliosis and kyphosis being 60.8 and 53.4%, respectively. The mean follow-up duration was 32.2 months. No iatrogenic neurological deterioration had been encountered during the operation procedure and follow-up. After vertebral column resection, neurological dysfunctions such as relaxation of anal sphincter or hypermyotonia that occurred in three patients preoperatively improved gradually. In summary, suboccipital decompression prior to correction of spine deformity may not always be necessary for adolescent patients with scoliosis associated with Chiari I malformation. Particularly in patients with a severe and rigid curve or with significant neurological deficits, posterior approach total vertebral column resection is likely a good option, which could not only result in satisfactory correction of deformity, but also decrease the risk of neurological injury secondary to surgical intervention by shortening spine and reducing the tension of spinal cord.  相似文献   

4.
The Hueter–Volkmann law explains the physiological response of the growth plate under mechanical loading. This law mainly explains the pathological mechanism for growing long-bone deformities. Vertebral endplates also show a similar response under mechanical loading. Experimental studies have provided information about spinal growth modulation and, now, it is possible to explain the mechanism of the curvature progression. Convex growth arrest is shown to successfully treat deformities of the growing spine and unnecessary growth arrest of the whole spine is prevented. Both anterior and posterior parts of the convexity should be addressed to achieve a satisfactory improvement in the deformity, albeit epiphysiodesis effect cannot be stipulated at all times. Anterior vertebral body stapling without fusion yielded better results with new shape memory alloys and techniques. This method can be used with minimally invasive techniques and has the potential advantage of producing reversible physeal arrest. Instrumented posterior hemiepiphysiodesis seems to be as effective as classical combined anterior and posterior arthrodesis, where it is less invasive and morbid. Convex hemiepiphysiodesis with concave-side distraction through growing rod techniques provide a better control of the curve immediately after surgery. This method has the advantages of posterior instrumented hemiepiphysiodesis, but necessitates additional surgeries. Concave-side rib shortening and/or convex-side lengthening is an experimental method with an indirect effect on spinal growth. To conclude, whatever the cause of the spinal deformity, growth modulation can be used to manage the growing spine deformities with no or shorter segment fusions.  相似文献   

5.
A computer-implemented biomechanical model of a thoracolumbar spine and deformable rib cage was used to investigate the influence of spine morphology and rib cage stiffness properties on the rib cage deformities that arise from scoliosis and to study the relationship of actual rib distortions with those seen on computed tomography (CT) scans. For the purposes of this study, it was assumed that rib cage deformities result from forces imposed on the ribs by the deforming spine. When a structurally normal rib cage was allowed to follow freely the imposition of scoliotic curves on the spine, different configurations of scoliosis led to substantial differences in the resulting rib cage deformities. Rib cage lateral offset correlated well with the Cobb angle of the scoliosis but not with the apical vertebral axial rotation, whereas rib cage axial rotation correlated well with apical vertebral axial rotation but not with the Cobb angle. These model-obtained findings mirror clinical findings that correction of the Cobb angle leads to correction of the lateral offset of the rib cage but does not correlate well with correction of the rib cage axial rotation. The stiffnesses of the ligamentous tissue connecting the sternum to the pelvis, of the costovertebral joints, and of the ribs themselves also influenced the rib deformities substantially. The influence of the sternopelvic ligamentous ties has not been recognized previously. The total rib cage volume remained essentially constant regardless of the severity of the resulting deformity, but the distribution of this volume between convex and concave sides varied somewhat. Simulated CT scans of model rib cages suggested that distortions of individual ribs are substantially exaggerated in such images.  相似文献   

6.
7.
Thoracoscopically-assisted anterior spinal instrumentation is being used widely to treat adolescent idiopathic scoliosis (AIS). Recent studies have showed that screws placed thoracoscopically could counter the aorta or entrance into the spinal canal. There are a few studies defining the anatomic landmarks to identify the relationship between the aorta and the thoracic vertebral body using quantitative measurement for the sake of safe placement of thoracoscopic vertebral screw in anterior correction for AIS. The CT scanning from T4 to T12 in 64 control subjects and 30 AIS patients from mainland China were analyzed manually. Parameters to be measured included the angle for safety screw placement (α), the angle of the aorta relative to the vertebral body (β), the distance from the line between the left and the right rib heads to the anterior wall of the vertebral canal (a), the distance from the left rib head to posterior wall of the aorta (b), the vertebral body transverse diameter (c) and vertebral rotation (γ). No significant differences were found between the groups with respect to age or sex. Compared with the control group, α angle from T7 to T10, β angle from T5 to T10 and b value at T9, T10 were significantly lower in the scoliotic group. The a value was significantly lower in the scoliotic group. The c value showed no significant difference between the two groups. In conclusion, to place the thoracoscopic vertebral screw safely, at the cephalad thoracic spine (T4–T6), the maximum ventral excursion angle should decrease gradually from 20° to 5°, the entry-point of the screw should be close to the rib head. For apical vertebrae (T7–T9), the maximum ventral excursion angle increased gradually from 5° to 12°. At the caudal thoracic spine (T10–T12), the maximum ventral excursion angle increased, the entry-point should shift 3∼5 mm ventrally.  相似文献   

8.
9.
INTRODUCTION: The lateral bending test is used for the preoperative evaluation of scoliotic patients in order to determine the type of spinal curvatures as well as to assess spine flexibility and possible corrections. However, very few biomechanical studies have been dedicated to the analysis of lateral bending. In this article, a biomechanical model of the human trunk has been used in order to evaluate the possibility of simulating lateral bending tests. METHODS: This model includes elements representing the osseo-ligamentous structures of the spine, rib cage and pelvis, as well as 160 muscle fascicles represented by bilinear cable elements. For 4 scoliotic patients (right thoracic and left lumbar curvatures), 3D upright standing and bending reconstructions were generated from calibrated x-rays and used to calculate the displacements of the vertebrae T1 and L5. These displacements were applied to the model in standing position in order to simulate lateral bending. The resulting geometry of the deformed model was compared to the reconstructed geometry in lateral bending for the other vertebral levels (T2 to L4). RESULTS: The model allows the reproduction of the thoracic Cobb angle modifications with an accuracy superior to 2 degrees, as well as the vertebral rotations in the frontal plane (agreement greater than 85%). The positions of the vertebral body centroids following the simulations showed an agreement of over 77% with reconstructed positions. The direction of the axial angulation for the thoracic and lumbar apical vertebrae is correctly reproduced by the model. The axial rotation for these vertebrae does not result in a common pattern for the 4 patients, which is consistent with the diversity of published data concerning the direction of this coupling. CONCLUSIONS: This study shows the feasibility of simulating lateral bending tests using a 3D biomechanical model integrating muscles. The effect of muscle forces on trunk stiffness and intersegmental mobility can also be assessed using this approach. Future developments should enable the evaluation of the biomechanical properties of scoliotic deformities, thus providing a useful tool for preoperative surgical planning.  相似文献   

10.
Li XF  Liu ZD  Wang ZY  Nie WZ 《中华外科杂志》2010,48(21):1646-1649
目的 研究青少年特发性脊柱侧凸(AIS)在轴向负载条件下胸廓结构对椎体旋转的影响.方法 基于AIS患者CT扫描数据,构建包括胸廓和不包括胸廓两种三维有限元模型,进入ANSYS前处理器,设置边界条件和载荷,进入求解模块,进行不同载荷下轴向负载模拟计算,最后进入ANSYS后处理器,读取并分析脊柱侧凸不同椎体旋转角度大小和方向变化.结果 胸廓对胸椎结构性侧凸以上椎体的旋转角度大小和旋转方向有明确影响,对腰椎椎体和骶椎的旋转没有作用.胸廓对顶椎的轴向旋转角度仅有轻度影响,两种模型在不同载荷条件下,顶椎的旋转方向一致,角度大小比较差异无统计学意义.结论 AIS脊柱畸形造成椎体和胸廓结构的解剖学改变,会带来生物力学的相应改变.畸形的胸廓不能有效保护胸椎轴向旋转的稳定性.  相似文献   

11.
Scoliotic deformity in young children is a challenge for the spinal surgeon. Though traditional spinal correction and fusion techniques can improve these deformities, they inhibit growth of the spine. Nonfusion technologies are an effective approach to this problem. They not only correct the spinal deformity, but also allow the spine to keep growing and developing. These techniques include the growing rod, stapling, pedicle screw tethering, the vertical expandable prosthetic titanium rib (VEPTR), and multi‐vertebrae wedge osteotomy. This is a review of advances in nonfusion techniques for the treatment of scoliosis in children.  相似文献   

12.
Scoliosis is a complex three-dimensional deformity of the spine and rib cage frequently treated by brace. Although bracing produces significant correction in the frontal plane, it generally reduces the normal sagittal plane curvatures and has limited effect in the transverse plane. The goal of this study is to develop a new optimization approach using a finite element model of the spine and rib cage in order to find optimal correction patterns. The objective function to be minimized took account of coronal and sagittal offsets from a normal spine at the thoracic and lumbar apices as well as the rib hump. Two different optimization studies were performed using the finite element model, which was personalized to the geometry of 20 different scoliotic patients. The first study took into account only the thoracic deformity, while the second considered both the thoracic and lumbar deformities. The optimization produced an average of 56% and 51% reduction of the objective function respectively in the two studies. Optimal forces were mostly located on the convex side of the curve. This study demonstrates the feasibility of using an optimization approach with a finite element model of the trunk to analyze the biomechanics of bracing, and may be useful in the design of new and more effective braces. Received: 8 May 1999 Revised: 15 December 1999 Accepted: 11 January 2000  相似文献   

13.
Axial rotation component of thoracic scoliosis   总被引:3,自引:0,他引:3  
The axial rotation (rotation about a vertical axis) of the vertebrae, of the ribs, and of the back surface are components of the deformity recognized clinically as the "rib hump" in thoracic scoliosis. Relationships of these rotations to the lateral deviation and lateral curvature of the spine were studied in 40 patients with idiopathic scoliosis. Stereoradiographs of the spine and rib cage were used to measure three components of axial rotation: rotation of the vertebrae, of the rib cage, and of the plane of maximum curvature of the spine. Stereotopographs of the back surface were digitized to measure the axial rotation of the back surface. In individual patients, there were high correlations of all components of axial rotation at each spinal level with the corresponding vertebral lateral deviation from the spinal axis. By regression analyses of the maximum values of each rotation in each curve, the rotation of the apex vertebra was found to be generally of lesser magnitude than the rotation of the plane of maximum curvature of the spine and in an opposite sense in kyphotic curves. The rib cage rotation was generally of lesser magnitude than the vertebra rotation, and the back surface rotation was less than both of these skeletal rotations. Vertebra rotation correlated most closely with lateral deviation of the spine. Simple segmental coupling of axial rotation and lateral bending could not be responsible for this axial rotation.  相似文献   

14.
Porter RW 《Spine》2000,25(11):1360-1366
STUDY DESIGN: The axial length of the vertebral canal and the anterior aspect of the vertebrae were measured in 36 skeletons, 15 with probable idiopathic scoliosis. OBJECTIVES: To compare the discrepancy in length of the vertebral canal and the anterior spinal column in skeletons having probable idiopathic scoliosis with the degree of deformity. SUMMARY AND BACKGROUND DATA: In idiopathic scoliosis, the vertebral bodies rotate toward the convexity of the curve, whereas the vertebral canal tends to retain a midline position. The vertebral canal therefore will be relatively short. The degree of shortening has not been described previously, nor its relation with the degree of deformity. METHODS: The axial length of the vertebral canal and the anterior aspect of the vertebral bodies were measured in 36 skeletons: 8 with normal spines, 13 with kyphosis, and 15 with probable idiopathic scoliosis. The relative shortening in the scoliotic spines was correlated with the Cobb angle and the degree of rotation. RESULTS: No significant difference in length was found between the vertebral canal and the vertebral column in the normal spines. The kyphotic spines had canals significantly longer than the vertebral length (P<0.025). All but one of the scoliotic spines had short vertebral canals (P<0.01). The degree of discrepancy was related to the Cobb angle (r = -0.50; P< 0.05), and particularly to the degree of rotation (r = -0.88; P< 0.001). CONCLUSIONS: The findings have surgical and etiologic implications. The results are consistent with a conceivable hypothesis that in some patients with idiopathic scoliosis, there may be impaired growth in the length of the spinal cord, the posterior elements are tethered, and as the vertebral bodies continue to grow, they become lordotic and then rotate.  相似文献   

15.
Vertebral deformities and scoliosis   总被引:1,自引:0,他引:1  
Scoliosis, especially idiopathic scoliosis, is a complex three-dimensional deformity of the spine in which the vertebral deformities are known, cuneal deformation being the most commonly known deformity but not the only one. We report here data concerning these specific vertebral deformities in chickens. A pinealectomy was performed in a controlled series of animal experiments. This technique induces progressive scoliosis in more than 80% of chickens, with the advantage of being non-aggressive to the spine. Vertebrae included in major thoracolumbar curves were observed in 17 chickens (11 male, 6 female) and classified into three types of vertebral deformities. Vertebral deformity type 1 is characterized by three-dimensional corporeal torsion, which defines the horizontal disorientation of the curve. Vertebral deformities type 2 and 3 define lateral imbalance in the election plane of the curve. Radiological and anatomical data collected throughout the progression of the scoliosis indicate that there is a correlation between structural vertebral deformities and growth/ maturation patterns. We compare our results with those reported in literature concerning human idiopathic scoliosis and experimental animal scoliosis.  相似文献   

16.
Summary In order to investigate the development of the vertebral axial rotation in patients with early scoliosis, the vertebral rotation angle (VRA) was quantified on the basis of 132 anteroposterior radiographs obtained from patients with diagnosed or suspected scoliosis. The rotation was measured in the apical vertebra and in the two suprajacent and two subjacent vertebrae. The radiographic material was divided into a control reference group and three scoliotic groups with varying Cobb angle from 4° up to 30°. In the reference group a slight vertebral rotation was significantly more often seen to the right. In the scoliotic groups, the rotation was most pronounced in the apical segments. The mean VRA toward the convex side was significantly increased in the vertebrae just suprajacent to the apex in curves with a Cobb angle of 8°–15° and in the cranial four vetebrae in curves with a Cobb angle of 16°–30°. Atypical vertebral rotation to the opposite side of the major curve was observed in 12.8% of the cases. There was a significant positive correlation between the VRA and the Cobb angle. These results show that a slight VRA to the right is a common feature in the normal spine, and that the VRA increases with progressive lateral deviation of the spine. It is concluded that the coronal plane deformity in early idiopathic scoliosis is accompanied and probably coupled to vertebral rotation in the horizontal plane.  相似文献   

17.
Rotations of a helix as a model for correction of the scoliotic spine.   总被引:4,自引:0,他引:4  
S J Tredwell  B J Sawatzky  B L Hughes 《Spine》1999,24(12):1223-1227
STUDY DESIGN: A prospective study using intraoperative stereophotogrammetry to analyze helical motion of the spine during the correction of scoliosis. OBJECTIVE: To determine whether derotation systems rotate the scoliotic helix. SUMMARY OF BACKGROUND DATA: Scoliosis is a complex three-dimensional deformity that is difficult to visualize on standard radiographs. The use of stereophotogrammetry has allowed study of the deformity in three dimensions during surgical correction. METHODS: Thirty-five patients with right thoracic adolescent idiopathic scoliosis were studied using a stereophotogrammetry technique during surgical correction. Changes in vertebral unique rotations and spinal plane of maximum deformity were measured during three sequential stages of the surgery. RESULTS: The mean preoperative and postoperative Cobb angles were 58 degrees and 19 degrees, respectively. Most rotation occurred at the top and bottom vertebrae in the curve, averaging 10 degrees each but in opposite directions. The apical vertebra rotated the least in the structural curve, with an average rotation of 5 degrees. Much of the rotation occurred during the derotation maneuver with additional rotation occurring during the final distraction. The plane of maximum deformity changed from a mean of 50 degrees before instrumentation to 19 degrees at the end of the procedure. CONCLUSIONS: Multiple rotations of the scoliotic curve occur, and it can be shown when maximum rotations occur during surgery. Posterior derotational systems unwind or rotate the scoliotic helix and reposition the resultant sine wave toward the sagittal plane as described by the change in the plane of maximum deformity.  相似文献   

18.
BACKGROUND: There is little information documenting the relationship of the aorta to the thoracic scoliotic spine. Recent studies have suggested that the ends of screws placed during an anterior spinal arthrodesis, and pedicle screws used for the treatment of right thoracic scoliosis, may be in proximity to the aorta. The purpose of this study was to analyze the anatomical relationship between the aorta and the spine in a comparison of patients with idiopathic right thoracic scoliosis and patients with a normal spine. METHODS: Thirty-six patients with adolescent idiopathic scoliosis with a right thoracic curve and forty-three with a normal straight spine were studied. Radiographs were analyzed to determine the Cobb angle, the apex of the curve, and the apical vertebral rotation for the patients with scoliosis. Axial magnetic resonance images from the fourth thoracic vertebra to the third lumbar vertebra at the midvertebral body level were used to measure the distance from the aorta to the closest point of the vertebral body cortex, the distance from the posterior edge of the aorta to the spinal canal, and the aorta-vertebral angle. RESULTS: No differences were found between the groups with respect to age or sex distribution. For the scoliosis and normal groups, boys had greater average vertebral body width and depth for all levels than did girls (p < 0.05). For the scoliosis group, the most common apical vertebra was the eighth thoracic vertebra, the average coronal curve measurement was 55.2 degrees, and the average apical rotation was 17.3 degrees. The average distance from the aortic wall to the vertebral body cortex at the apex of the curve was greater in the patients with scoliosis (4.0 mm) than at similar levels in the normal group (2.5 mm) (p < 0.05). The distance from the posterior aspect of the aorta to the anterior aspect of the spinal canal was less in the scoliosis group (11.1 mm) than in the normal group (19.2 mm) for the fifth to the twelfth thoracic level (p < 0.05). The aorta was positioned more laterally and posteriorly adjacent to the vertebral body at the fifth to the twelfth thoracic level in patients with scoliosis compared with that in normal patients as reflected in a smaller aorta-vertebral angle (p < 0.05). With an increasing coronal Cobb angle in the thoracic curve and apical vertebral rotation, the aorta was positioned more laterally and posteriorly (p < 0.05). CONCLUSION: In patients with right thoracic idiopathic scoliosis, the aorta is positioned more laterally and posteriorly relative to the vertebral body compared with that in patients without spinal deformity.  相似文献   

19.
Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three‐column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68‐year‐old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting, and internal fixation can be completed with only one incision and surgical position, and the deformity correction efficiency is higher than anterior surgery.  相似文献   

20.
Idiopathic scoliosis: foundation for physiological treatment   总被引:1,自引:0,他引:1  
The three-dimensional nature of the idiopathic spinal deformity has been investigated in cadaveric specimens and patients with both idiopathic scoliosis and idiopathic kyphosis (Scheuermann's disease). In both scoliotic and kyphotic deformities the essential lesion lies in the sagittal plane with apical vertebral wedging. In idiopathic scoliosis there is an apical lordosis which being biomechanically unstable rotates to the side to produce a scoliotic deformity as a secondary component. In contradistinction the kyphotic wedging process of Scheuermann's disease is mechanically stable and any associated idiopathic type scoliosis occurs above and below the region of kyphosis. When an asymmetric lordosis is created in the growing New Zealand white rabbit, a progressive lordoscoliosis is readily produced and when the thoracic kyphosis is restored the scoliotic deformity shows evidence of regression and this forms the basis of physiological treatment. In 25 patients with idiopathic thoracic scoliosis the thoracic kyphosis has been restored and this leads to enhanced correction of the deformity in all three planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号