首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
肝癌“双弹头”免疫导向药物的实验研究   总被引:2,自引:0,他引:2  
以肝细胞癌单克隆抗体HAb18为载体,用葡聚糖作桥的间接交联方法和氯胺T法,同时将阿霉素和^131I连接到HAb18上,制备出“双弹头”肝癌免疫导向药物^131I-HAb18-ADM。其免疫结合率为43.5%。细胞毒实验结果显示,^131I-HAb18-ADM对靶肿瘤细胞SMMC-7721的杀伤效果较单独应用ADM相同浓度的HAb18-ADM和比较放射性相同的^131I-HAb18时,有明显的增强  相似文献   

2.
利用~(131)I-HIPDM进行66例胰腺显像和184例肺显像临术研究。证实正常胰腺分3型;胰腺癌、胰腺炎和腺囊肿有独特的表现;静、动态肺显像反映肺内皮胺受体分布及功能状态;~(131)I-HIPDM从肺清除呈双相,在慢阻肺、肺气肿、哮喘等疾病时有特异性改变;并与肺功能、心功能相关良好。结论:(1)~(131)I-HIPDM是一种性能良好的胰、肺显像剂;(2)~(131)I-HIPDM在不同胰肺疾病时呈不同显像改变;(3)~(131)I-HIPDM显像提供的信息与其他临床诊断技术间有互补性;(4)~(131)I-HIPDM显像为临床提供了有效的胰、肺疾病诊断技术。  相似文献   

3.
抗肝癌单克隆抗体高效碘标法及其产物的特性评估   总被引:2,自引:0,他引:2  
为建立一种高效碘示单克隆抗体HAb18法,以溴代琥珀酰亚胺为氧化剂,传统氯胺T法为对照,对产物^125I-HAb18的标记率,比活度、免疫活性、体外稳定性及在荷人肝癌裸鼠体内的生物分布等进行评价。结果NBS标记率为83%-92%,比活度0.56-2.00MBq/μg,标记率随NBS用量增加而增高,最佳用量比为抗体(μg):^125I(MBq):NBS(μg)=5:12:1;‘^125I-HAb18  相似文献   

4.
半乳糖抗小鼠CD3单抗作为肝癌术后 免疫治疗载体的研究   总被引:1,自引:0,他引:1  
李云春  何生 《中华核医学杂志》2000,20(5):193-196,I007
目的 探讨利用放射性核素示踪技术研究半乳糖抗小鼠CD3单克隆抗体(Gal-Ant-CD3McAb)作为原发性肝癌(PLC)术后免疫治疗载体的可行性。方法 以半乳糖(Gal)伪原料,制得2-亚氨基-2-甲氧乙基-1-硫代-β-D-半乳糖苷(IME),与抗小鼠CD3单克隆抗体(Ant-CD3McAb)共价偶联制得(Gal-Ant-CD3McAb,再用^131I或^125I标记Gal-Ant-CD3Mc  相似文献   

5.
^99mTc标记的肾功能显像剂研究进展   总被引:1,自引:0,他引:1  
^131I-OHI旧一种广泛使用的肾脏放射性药物,但是由于^131I的缺陷,人们一直在寻找^99mTc标记的肾功能显剂,且发展迅速,主要有DADS,COW-DADS,PAHIDA,MAG3,EC,DACH及N-取代吡哆醛衍生物等。本文扼要介绍这些化合物的化学结构,生物学特征及临床应用情况。  相似文献   

6.
分化型甲状腺癌术后复发和转移的早期诊断及处理   总被引:7,自引:0,他引:7  
着重介绍了血清Tg、血清TgAb、^131I-WBS、血浆内源性放射性碘化甲状腺激素层析测定、^201T1显像、^99mTc-MIBI显像以及放射性标记抗Tg抗体免疫显像等在DTC术后随访中的价值和作用,并对手术、^131I治疗、外放疗、化疗和甲状腺激素治疗在DTC术后复发或转移处理中的价值和地位进行了探讨。  相似文献   

7.
 ̄(131)-OIH是一种广泛使用的肾脏放射性药物,但是由于~(131)I的缺陷,人们一直在寻找99mTc标记的肾功能显像剂,且发展迅速,主要有DADS、CO_2-DADS、PAHIDA、MAG_3、EC、DACH及N-取代哆醛衍生物等。本文扼要介绍这些化合物的化学结构、生物学特征及临床应用情况。  相似文献   

8.
目的:制备抗人肝癌单抗( McAb) HAb18 F(ab’)2 片段。方法 :用二硫苏糖醇(DTT) 激活木瓜蛋白酶,pH5 .5 环境下消化HAb18 McAb(IgG1) ,然后用快速蛋白液相色谱(FPLC) DEAE- Sepharose - FF 柱(2cm ×18cm)纯化。对所获F(ab’)2 段的纯度、免疫活性、热原质、细菌、产率等方面进行质量检测。结果:在酶∶抗体为1∶20 ,消化HAb18 2 h ,95 % 以上IgG 裂解为F(ab’)2 段,纯化后F(ab’)2 段的纯度为> 96 .1 % ,纯化周期60 min , 一次制备量可达500 mg ,产率为53 % ,免疫活性1∶8000 ,细菌、热原检测结果为阴性。结论:该法是一种快速、大量制备高产率、高质量McAb IgG1 亚类F(ab’)2 段的有效方法。  相似文献   

9.
~(125)I和~(131)I标记H130在荷瘤裸鼠体内生物分布和定位显像研究王海青,陈璋,褚建新,刘汉芝,秦岚,应红光,杨纯正,郑妙用131I标记自制的抗人白细胞单克隆抗体(McAb)H130,对移植人T淋巴细胞白血病细胞系(CEM)裸鼠做放射免疫显...  相似文献   

10.
本研究利用重组质粒pCZS转化大肠杆菌,制备出入重组Cu-Zn超氧化物歧化酶(rhCuZn-SOD),进一步建立了3株鼠抗rhCuZnSOD的单克隆抗体(McAb)杂交瘤细胞株。经鉴定,它们分泌的McAb分别属于IgG1和IgG2a亚类,能特异性地识别人CuZnSOD,与pCzS空载菌蛋白无交叉反应。将此McAb制备了免疫亲和层析柱,从大肠杆菌的粗提液中纯化出rhCuZnSOD,SDS-pAGE显示单一条带,纯度>98%,回收率50%,酶化活达10971.3U/mg蛋白。rhCuZnSOD-McAb的制备为CuZnJiD产品的纯化和抗辐射等应用研究提供了有效的工具。  相似文献   

11.
目的 探讨经肝动脉灌注131I-HAb18F(ab')2治疗肝癌合并门脉癌栓的价值.方法 8例合并门脉癌栓的晚期肝癌患者行经肝动脉超选择灌注131I-HAb18F(ab')2临床治疗性试验,剂量:0.75 mCi/kg.分析症状、卡氏评分、肝功能、AFP及肿瘤CT等影像变化,随访近期疗效.结果 7例疼痛患者中,3例症状缓解.3例卡氏评分增加、4例稳定.6例AFP异常患者治疗后3例下降.全组病例用药后肝功能损害均无明显加重.1例无明显症状的弥漫型肝癌患者治疗后病灶减少;余7例中,瘤体增大5例、缩小2例,其中,PR 2例,临床有效率28.6%.本组1例1年随访时生存.结论 经肝动脉灌注0.75 mCi/kg 131I-HAb18F(ab')2对合并门脉癌栓的肝癌患者肝功影响小,对门脉分支癌栓患者有较好的疗效.  相似文献   

12.
Gd-DTPA标记单克隆抗体对荷人肝癌裸鼠的MR成像研究   总被引:1,自引:0,他引:1  
目的评价特异性MR对比剂Gd-DTPA-单克隆抗体HAb18对肿瘤的强化效果.材料与方法制备Gd-DTPA标记的单克隆抗体,并测定每分子抗体所结合的Gd 3数目及其免疫活性.12只荷人肝癌裸鼠分为两组,分别给予Gd-DTPA-McAb和Gd-DTPA后进行MR扫描,测量SE T1WI平扫及增强后10 min、30 min、1 h、3 h、6 h、12 h、24 h、48 h图像内肿瘤的信号强度,绘制信号强度-时间曲线,并计算肿瘤强化率及对比度噪声比.结果 Gd-DTPA-单克隆抗体组在注射MR对比剂后的早期,肿瘤表现为缓慢轻度的强化,在注射对比剂24 h后,肿瘤强化达25%,与其他各时间点有统计学差异.Gd-DTPA对照组内,肿瘤表现为快进快出的强化特点.结论使用Gd-DTPA-单克隆抗体进行靶向显像具有特异性作用,有助于肿瘤的定性诊断.  相似文献   

13.
小鼠单克隆抗体HAb25可变区的人源化计算机辅助设计   总被引:2,自引:0,他引:2  
目的:对一株肝癌特异性小鼠单克隆抗体HAb25可变区进行人源化设计,通过人源化降低其免疫原性。方法:进行抗体结构同源模建,以计算机分析为主要手段,结合多重序列比较,进行人源化设计,结果;预测了HAb25可变区的立体结构,分析了决定抗体互补决定区初始构象的可能残基,提出了HAb25可变区的人源化替代方案。结论:立体结构信息结合计算机辅助分析为人源化设计提供了极大的影响。  相似文献   

14.
二步法预定位技术对荷人肝癌裸鼠模型的MR免疫成像研究   总被引:1,自引:1,他引:1  
目的利用生物素亲和素系统(biotin avidinsystem,BAS)的靶向定位效应和生物放大作用,提高MR分子免疫成像的敏感性。方法制备生物素化抗人肝癌细胞单克隆抗体HAb18并测定其生物素化程度及抗原结合活性。20只荷人肝细胞癌裸鼠分为3组,二步法预定位组8只,先静脉注射生物素化单克隆抗体600μg,24h后再给予钆喷替酸葡甲胺链霉亲和素(Gd DTPA streptavidin,Gd DTPA SA);HAb18单克隆抗体Gd DTPA组6只,经尾静脉注射Gd DTPA HAb18;Gd DTPA对照组6只,静脉注射Gd DTPA。对实验动物行MR扫描,测量SET1WI平扫及增强后10、30、60min及3、6、12、24、48h图像内肿瘤的信号强度,绘制信号强度时间曲线,并计算肿瘤强化率及对比度噪声比(contrast to noiseratio,CNR)。结果HAb18单克隆抗体经生物素化后,每个抗体分子平均可结合20个分子生物素,其抗原结合活性约为91%。二步法预定位组内,肿瘤信号强度缓慢升高,增强后第6小时,肿瘤的强化率、CNR达到最大值,与其他两组相比较差异有统计学意义。48h后,肿瘤的强化仍肉眼可辨。单克隆抗体组内,肿瘤表现为缓慢轻度强化,增强后24h的强化率达13.5%,肿瘤信号强度、CNR与平扫比较差异均有统计学意义(P值均<0.05)。Gd DTPA对照组内,肿瘤表现为快进快出特点的强化特点。结论二步法预定位技  相似文献   

15.
目的探讨联合^18F-脱氧葡萄糖(FDG)符合线路SPECT(DHCI)与^131I全身扫描(whole body scans,WBS)显像检测甲状腺癌转移灶的价值。方法对45例手术+131I治疗后DTC患者,行^131I WBS和^18FDG DHCI,并观察和记录病灶的数目和位置。结果45例甲状腺癌患者临床证实的148个病灶中,^18FDG符合线路共检出129个肿瘤转移灶,^131I WBS检出105个肿瘤转移灶,^18FDG DHCI和^131I WBS共同阳性的病灶为91个,两者联合检测出病灶143个。结论^18FDG DHCI和^131I WBS两种显像方法具有一定的互补性,并且两者联合检测较两者任一种方法具有更高的阳性率,两者联合检测具有扩大检测阳性病灶的作用。  相似文献   

16.
The aims of this study were to establish the percentage of metastatic renal cell carcinoma (RCC) lesions detected by radioimmunoscintigraphy (RIS) with the chimeric monoclonal antibody 131I-cG250 versus positron emission tomography (PET) with 18F-labelled deoxyglucose ([18F]FDG), and to evaluate the use of these radionuclide imaging modalities compared with routinely used imaging techniques. Twenty patients with metastatic RCC disease were examined with [18F]FDG-PET and 131I-cG250 RIS within 1 week. Total body gamma camera images were obtained up to 120h after injection of 232MBq 131I-cG250. Total body PET scanning was performed 45-60 min after intravenous injection of 370MBq [18F]FDG. Nuclear medicine techniques were compared to routine imaging procedures. Routine imaging modalities revealed a total of 79 metastases. [18F]FDG-PET and 131I-cG250 RIS detected 33 previously unknown metastases, of which 32 were [18F]FDG positive and seven were 131I-cG250 positive. Of the 112 tumour lesions that were documented, [18F]FDG-PET detected 69% (77 out of 112), whereas 131I-cG250 RIS detected only 30% (34 out of 112). In conclusion, [18F]FDG-PET is superior to 131I-cG250 RIS in detecting metastases in patients with metastatic RCC, and therefore seems a promising tool for (re)staging patients with RCC. The usefulness of RIS with a diagnostic dose of 131I-cG250 seems to be restricted to selecting patients for radioimmunotherapy with 131I-cG250.  相似文献   

17.
PURPOSE: The usefulness of fluorine 18 fluorodeoxyglucose ((18)F-FDG) imaging in differentiated thyroid cancer (DTC) has been demonstrated by investigators. The aim of this study is to compare the ability of fluorodeoxyglucose (FDG)-single photon emission computed tomography (SPECT) to detect metastatic DTC with posttherapeutic iodine131 ((131)I) scintigraphy. METHODS: 239 patients (78 men, 161 women; age range, 23-76 years, mean 45 years); All patients underwent FDG-SPECT and (131)I whole-body scan. RESULTS: The sensitivity of (18)F-FDG and (131)I imaging in the patients with high hTg levels is 48.7% (114/234) and 50.4% (118/234) respectively. However, the combined sensitivity of both protocols is 89.7% (210/234). In the patients with (131)I Imaging negative, the sensitivity of (18)F-FDG is 79.3%,but in the patients with (131)I imaging positive, the sensitivity of (18)F-FDG is only 18.6%. CONCLUSION: This study with (131)I and (18)F-FDG in FDG-SPECT further demonstrates the single study of (131)I whole body scan or (18)F-FDG imaging can not provide a high enough sensitivity for the detection of metastatic thyroid cancer. But, the combined protocols can get better results for the staging of thyroid carcinoma with the alternating uptake of (131)I and (18)F-FDG.  相似文献   

18.
目的对^131I-美妥昔单克隆抗体(简称单抗)联合动脉内化疗栓塞(TACE)治疗原发性肝癌患者器官的内照射吸收剂量进行估算。方法21例患者肝动脉内按体质量注入^131I-美妥昔单抗(27.75MBq/kg)和混合化疗药物的碘化油乳剂。用1计数仪测量5min和0.5,2,4,24,48,72,120,168h血样和尿样的放射性。用SPECT仪行4或5次全身扫描。用感兴趣区图像处理法计算主要器官和全身放射性活度占给予放射性活度的百分数(%ID),SPSS12.0软件拟合时间-%ID曲线,计算累积活度,依据医学内照射辐射剂量学(MIRD)方法和血液间接法计算器官和红骨髓的内照射吸收剂量,计算肿瘤/非肿瘤放射性比值。结果^131I-美妥昔单抗的平均剂量为1.89(1.47~223)GBq/次。显像示放射性主要浓聚于肝区肿瘤组织,随时间延长,甲状腺后期有放射性浓聚,体内其他组织未见明显放射性分布。器官吸收剂量(12例):肝(3.19±1.01)Gy,脾(3.65±2.41)Gy,甲状腺(3.61±2.40)Gy,肺(0.97±0.23)Gy,肾(0.96±0.35)Gy,全身(0.57±1.55)Gy,红骨髓(0.55±0.09)Gy(7例)。肿瘤/肝放射陛比值(7例):3h为2.88±1.11,64h为2.15±0.53,120h为1.81±0.39,168h为1.64±0.39。结论依据MIRD方法计算获得了主要器官、红骨髓和全身内照射吸收剂量,这对更好评价疗效、不良反应和制订个体化方案有重要意义。  相似文献   

19.
Targeting extracellular structures that are involved in angiogenic processes, such as the extra domain B of fibronectin, is a promising approach for the diagnosis of solid tumors. The aim of this study was to determine uptake of the (18)F-labeled PET tracers (18)F-fluorocholine (N,N-dimethyl-N-(18)F-fluoromethyl-2-hydroxyethylammonium), (18)F-fluoro-ethyl-l-tyrosine (FET), and (18)F-FDG in C6 gliomas of the rat and to correlate it with uptake of the anti-extra domain B antibody (131)I-SIP(L19) as a marker of neoangiogenesis. METHODS: C6 gliomas were orthotopically induced in 17 rats. Uptake of all tracers was measured using quantitative autoradiography, and uptake of (18)F-fluorocholine, (18)F-FET, and (18)F-FDG was correlated with uptake of (131)I-SIP(L19) on a pixelwise basis. RESULTS: The mean (131)I-SIP(L19), (18)F-fluorocholine, (18)F-FET, and (18)F-FDG standardized uptake values in the tumor and the contralateral normal cortex (in parentheses) were 0.31 +/- 0.22 (not detectable), 2.00 +/- 0.53 (0.49 +/- 0.07), 3.67 +/- 0.36 (1.42 +/- 0.22), and 7.23 +/- 1.22 (3.64 +/- 0.51), respectively. The (131)I-SIP(L19) uptake pattern correlated best with (18)F-fluorocholine uptake (z = 0.80, averaged z-transformed Pearson correlation coefficient) and (18)F-FET uptake (z = 0.79) and least with (18)F-FDG (z = 0.37). CONCLUSION: One day after intravenous injection, (131)I-SIP(L19) displayed a very high tumor-to-cortex ratio, which may be used in the diagnostic work-up of brain tumor patients. Of the 3 investigated (18)F tracers, (18)F-fluorocholine and (18)F-FET correlated better with the pattern of (131)I-SIP(L19) uptake than did (18)F-FDG. Whether this means that (18)F-fluorocholine and (18)F-FET are better suited than (18)F-FDG to monitor antiangiogenic therapy should be investigated in future studies.  相似文献   

20.
A novel, facile procedure for efficient coupling of high doses of (131)I to monoclonal antibodies (MAbs) was developed with minimal chemical and radiation damage. METHODS: To diminish the radiation and chemical burden during labeling, iodination was performed in a large reaction volume and by temporarily coating the MAb with a minimal amount of IODO-GEN. The MAb was coated by injection of IODO-GEN (dissolved in acetonitrile [MeCN]) into the aqueous MAb solution, and the coating was subsequently removed by addition of ascorbic acid. For chemoprotection before, during, and after PD-10 purification of the (131)I-MAbs, ascorbic acid and human serum albumin were used. The effects of autoradiolysis in the starting (131)I solution were countered by treatment with NaOH and ascorbic acid. For this so-called IODO-GEN-coated MAb method, the sensitive chimeric MAb MOv18 (c-MOv18) and the more robust murine MAbs K928 and E48 were used. The high-dose (131)I-labeled MAbs were characterized for radiochemical purity and MAb integrity by thin-layer chromatography, high-performance liquid chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by phosphor imager quantification. The high-dose (131)I-labeled MAbs were also characterized for immunoreactivity. The radiopharmacokinetics and biodistribution of (131)I-c-MOv18 were analyzed in human tumor-bearing nude mice. For comparison, (131)I-c-MOv18 batches were made using the conventional chloramine-T or IODO-GEN-coated vial method. RESULTS: Conventional high-dose labeling of 5 mg c-MOv18 with 4.4 GBq (131)I resulted in a labeling yield of 60%, a radiochemical purity of 90%, an immunoreactive fraction of 25% (72% being the maximum in the assay used), and the presence of aggregation and degradation products. Using similar amounts of (131)I and MAb in the IODO-GEN-coated MAb method, 85%-89% overall radiochemical yield, at least 99.7% radiochemical purity, and full preservation of MAb integrity and immunoreactivity were achieved. For this labeling, 5 mg MAb were coated with 35 microg IODO-GEN during 3 min in a reaction volume of 6 mL. Also, biodistribution was optimal, and tumor accumulation was superior to that of coinjected (125)I-c-MOv18 labeled according to the conventional IODO-GEN-coated vial method. CONCLUSION: A new, facile, high-dose (131)I-labeling method was developed for production of (131)I-labeled MAbs with optimal quality for use in clinical radioimmunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号