首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on jaw movements of intracerebral injections of the dopamine D1-like receptor agents SK&F 83959 (3-methyl-6-chloro-7,8-dihydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), SK&F 38393 ([R]-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) and SCH 23390 ([R]-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) and of injections of the dopamine D2-like receptor agonist quinpirole into the ventrolateral striatum, accumbens shell or prefrontal cortex were studied. SK&F 38393 and SK&F 83959 injected into the ventrolateral striatum synergised with i.v. quinpirole; in the shell of accumbens, SK&F 38393 evidenced weaker synergism with quinpirole, while SK&F 83959 did not synergise with it; neither agent synergised with quinpirole in the prefrontal cortex. Co-injection of SCH 23390 or SK&F 83959 into the prefrontal cortex antagonised jaw movements induced by injection of SK&F 83959 into the ventrolateral striatum in combination with i.v. quinpirole. Injection of SK&F 83959 + quinpirole into the ventrolateral striatum, but not into the accumbens shell, resulted in synergism. These findings indicate a primary, but not exclusive, role for ventral striatal, non-cyclase-coupled dopamine D1-like receptors in the induction of jaw movements. These processes appear to require tonic activity of prefrontal cyclase-linked dopamine D1A [and/or D1B] receptors.  相似文献   

2.
This study compared the effects of intracerebral injections of the dopamine D(1)-like receptor agents 3-methyl-6-chloro-7,8-dihydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 83959) and [R]-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390) into the ventrolateral striatum or the shell of the nucleus accumbens on the synergistic induction of jaw movements by intravenous (i.v.) co-administration of [R]-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 38393) or SK&F 83959 with the dopamine D(2)-like receptor agonist, quinpirole. In the ventrolateral striatum, SCH 23390 and SK&F 83959 each blocked jaw movements induced by i.v. SK&F 38393 with quinpirole, while only SCH 23390 blocked i.v. SK&F 83959 with quinpirole. SCH 23390 was less effective in the accumbens shell than in the ventrolateral striatum, and SK&F 83959 was ineffective to block i.v. SK&F 38393 with quinpirole, while neither SCH 23390 nor SK&F 83959 blocked i.v. SK&F 83959 with quinpirole. As SK&F 83959 inhibits the stimulation of adenylyl cyclase via dopamine D(1A) receptors but acts as an agonist at a putative dopamine D(1)-like receptor site not linked to cyclase, an important role is indicated for non-cyclase-coupled dopamine D(1)-like receptor sites as well as dopamine D(1A) receptors in the regulation of jaw movements via dopamine D(1)-like/D(2)-like receptor synergism, particularly in the ventrolateral striatum.  相似文献   

3.
A novel procedure for the assessment of orofacial movement topographies in mice was used to study, for the first time, the individual and interactive involvement of dopamine D(1)-like vs. D(2)-like receptors in their regulation. The dopamine D(1)-like receptor agonists A 68930 ([1R,3S]-1-aminomethyl-5,6-dihydroxy-3-phenyl-isochroman) and SK&F 83959 (3-methyl-6-chloro-7,8-dihydroxy-1-[3-methyl-phenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine) each induced vertical jaw movements with tongue protrusions and incisor chattering. The dopamine D(1)-like receptor antagonists SCH 23390 ([R]-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) and BW 737C ([S]-6-chloro-1-[2,5-dimethoxy-4-propylbenzyl]-7-hydroxy-2-methyl-1,2,3,4-tetrahydroisoquinoline) antagonised these responses, while the dopamine D(2)-like receptor antagonist YM 09151-2 (cis-N-[1-benzyl-2-methyl-pyrrolidin-3-yl]-5-chloro-2-methoxy-4-methylaminobenzamide) attenuated those to SK&F 83959 and released horizontal jaw movements. These findings suggest some role for a dopamine D(1)-like receptor that is coupled to a transduction system other than/additional to adenylyl cyclase, and for dopamine D(1)-like:D(2)-like receptor interactions, in the regulation of individual orofacial movement topographies in the mouse. This methodology will allow the use of knockout mice to clarify the roles of individual dopamine receptor subtypes in their regulation.  相似文献   

4.
This study compared the effects of the dopamine D1-like receptor agents SK&F 83959 (3-methyl-6-chloro-7,8-dihydroxy-1-[3-methyl-phenyl]-2,3,4,5-tetrahydro- 1 H-3-benzazepine), which inhibits the stimulation of adenylyl cyclase, and A 68930 ([1R,3S]-1-aminomethyl-5,6-dihydroxy-3-phenyl-isochroman), a full efficacy agonist, in regulating jaw movements in the rat by synergism with dopamine D2-like receptor agonism. When SK&F 83959 and A 68930 were given in combination with quinpirole, there was a synergistic induction of jaw movements. Responsivity to SK&F 83959 + quinpirole was antagonised by the dopamine D1-like receptor antagonists SCH 23390 ([R]-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-ben zaz epine) and BW 737C ([S]-6-chloro-1-[2,5-dimethoxy-4-propylbenzyl]-7-hydroxy-2-methyl- 1,2,3,4-tetrahydroisoquinoline); synergism was antagonised also by the dopamine D2-like receptor antagonist YM 09151-2 (cis-N-[1-benzyl-2-methyl-pyrrolidin-3-yl]-5-chloro-2-methoxy-4-++ +methyl-aminobenzamide). Responsivity to A 68930 + quinpirole was enhanced by low doses of SCH 23390, BW 737C and YM 09151-2, and antagonised by higher doses of SCH 23390 and YM 09151-2. These results implicate a novel, dopamine D1-like receptor that is coupled to a transduction system other than/additional to adenylyl cyclase, and suggest that its functional role extends to the regulation of jaw movements by synergistic interactions with dopamine D2-like receptors.  相似文献   

5.
Effects of SK&F 83822 [3-allyl-6-chloro-7,8-dihydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine], an agonist at dopamine D1-like receptors which stimulate adenylyl cyclase but not phosphoinositide hydrolysis, were studied topographically so as to clarify differences between these receptors in the regulation of behaviour. Using cloned receptors, SK&F 83822 showed high, selective affinity for dopamine D1 and D5 over D2, D3, D4 and several non-dopamine receptors. SK&F 83822 induced little intense grooming, but readily induced sniffing, locomotion and rearing; seizures were evident at higher doses, characterised by tonic convulsions, forepaw myoclonus and explosive hyperlocomotion. The dopamine D1-like receptor antagonist SCH 23390 [R(+)-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] readily antagonised these responses to SK&F 83822, particularly seizure activity. The dopamine D2-like receptor antagonist YM 09151-2 [cis-N-(1-benzyl-2-methyl-pyrrolidin-3-yl)-5-chloro-2-methoxy-4-methylaminobenzamide] did not alleviate seizures induced by SK&F 83822; YM 09151-02 did, however, attenuate SK&F 83822-induced sniffing, locomotion and rearing, and released vacuous chewing. These findings indicate that dopamine D1-like receptors linked to adenylyl cyclase can be differentiated from those not linked to adenylyl cyclase in terms of their roles in the topographical regulation of behaviour. For example, the seizure and vacuous chewing responses appear to involve dopamine D1-like receptors that stimulate adenylyl cyclase, while intense grooming involves those which do not.  相似文献   

6.
A brain dopamine receptor that modulates phosphatidylinositol (PI) metabolism via the activation of phospholipase Cbeta (PLCbeta) has been described previously. The present study aims to define the downstream signaling cascade initiated by the PI-linked dopamine receptor. Incubation of rat brain frontal cortical slices with 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a recently identified selective agonist of the PI-linked D1-like dopamine receptor, elicited transient time- and dose-dependent stimulations of cyclin-dependent kinase 5 (cdk5) and calcium/calmodulin-dependent protein kinase II (CaMK II) activities. The stimulation of these kinases is blocked by 20 microM R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390) or the PLCbeta antagonist 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) and is attenuated by the protein kinase inhibitor calphostin C or by the intracellular calcium chelator BAPTA, indicating that SKF83959 stimulates cdk5 and CaMK II activities via a PI-linked D1-like dopamine receptor, and PLCbeta and is dependent on protein kinase C and calcium. Although cdk5 and CaMK II are physically associated in native brain tissue, no change in this association was observed in response to SKF83959 stimulation or to the inhibition of either cdk5 by roscovitine or of CaMK by 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) (KN93), suggesting that SKF83959-mediated stimulation of cdk5 or CaMK II is independent of the other kinase and that the association of the two kinases is not modulated by change of kinase activity. Moreover, we found that cdk5 phosphorylates dopamine and cAMP-regulated phosphoprotein at Thr75, whereas CaMK II is responsible for the activation of cAMP response element-binding protein in response to SKF83959 stimulation. The present data provide the first insight into the signaling mechanism for the PI-linked dopamine receptor. This information, in turn, may help in exploring the functional consequences of stimulation of this brain receptor.  相似文献   

7.
Structurally dissimilar dopamine D(1) receptor agonists were compared with dopamine in their ability to activate adenylate cyclase and to internalize hemagglutinin-tagged human D(1) receptors in a stably transfected human embryonic kidney cell line. Thirteen dopamine D(1) receptor agonists were selected rationally from three different structural classes: rigid fused ring compounds [dihydrexidine, dinapsoline, dinoxyline, apomorphine, and (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1-ena[c]-phenanthrene-9,10-diol (A86929)]; isochromans [(1R,3S)-3-(1'adamantyl)-1-aminomethyl-3,4-dihydo-5,6-dihydroxy-1H-2-benzopyran (A77636) and (1R,3S)-3-phenyl-1-aminomethyl-3,4-dihydo-5,6-dihydroxy-1H-2-benzopyran (A68930)]; and benzazepines [7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF38393), (+/-)-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF77434), 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF82958), 3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-]H-3-benzazepine (SKF83959), R(+)-6-chloro-7,8,-dihydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF82957), and R(+)-6-chloro-7,8,-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF81297)]. The working hypothesis was that some agonists have differential effects on adenylate cyclase versus receptor internalization that could be correlated to the structural class of the agonist. First, the affinity for the hemagglutinin-hD(1) receptor and the intrinsic activity and potency of adenylate cyclase activation were determined for each compound. The internalization time course and internalization efficacy were then determined for each agonist. It was surprising that internalization efficacy was found to be independent of either agonist structural class or affinity. Only agonists that had both high adenylate cyclase functional potency and high intrinsic activity caused internalization. In addition, four agonists from two structural classes were identified that were capable of fully activating adenylate cyclase without eliciting an internalization response. This study provides the first extensive characterization of D(1) receptor internalization in response to structurally diverse agonists and, at least for the D(1) receptor, shows that functional selectivity is not predictable by simple structural examination. These data are consistent with the hypothesis that functional selectivity reflects subtle ligand-induced conformational changes as opposed to simple agonist trafficking among discrete receptor active states.  相似文献   

8.
Human platelets contain alpha 2-adrenoceptors which are negatively coupled to the enzyme adenylate cyclase. In order to better understand the interaction of this subtype of alpha receptor with this key enzyme, we have initiated a program to isolate and characterize the alpha 2-adrenoceptor. This report describes the synthesis and biological characterization of a series of molecules that were prepared as affinity ligands for this purpose. The best of these is 9-(allyloxy)-6-chloro-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 101253). This compound is an alpha 2-adrenoceptor antagonist, which was obtained by synthetic modification of 6-chloro-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 86466), a novel antagonist with high affinity for the alpha 2-receptor.  相似文献   

9.
The dopamine receptor agonist apomorphine has been recently introduced in the treatment of erectile dysfunction. While it is well established that dopamine D2-like receptors play a crucial role in this effect, conflicting result are reported in the literature as for the role of dopamine D1-like receptors. The aim of this study was to determine the effect of systemic administration of dopamine D1-like receptor agonists on penile erection in rats. Male Wistar rats were treated with three different, and not structurally related, dopamine D1-like receptor agonists: the partial agonists SKF38393 ((+) 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine) and CY 208-243 ((-)-4,6,6a,7,8,12b-exahydro-7-methylindole [4,3-ab]fenantridine), and the full agonist A 77636 ((-)-(1R,3S)-3-Adamantyl-1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyran hydrochloride). All three compounds dose-dependently increased the number of penile erections, with the full agonist A77636 showing a more pronounced effect with respect to the other two. Moreover, the dopamine D1-like receptor antagonist SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) dose-dependently antagonised A77636 effect. These results show that systemic administration of dopamine D1-like receptor agonists induce penile erection in rats. This observation suggests that dopamine D1-like receptor agonists might be considered as a possible alternative to apomorphine in the treatment of erectile dysfunction, thus avoiding the typical side effects related to the stimulation of dopamine D2-like receptors such as nausea.  相似文献   

10.
Herein, we examined the direct coupling of human dopamine D1 receptors to G(s) proteins using an antibody capture assay together with a detection technique employing scintillation proximity assay beads. Using a specific antibody, dopamine (DA) and the selective dopamine D1 receptor agonists, 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF81297) and 3-allyl-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF82958), behaved as high-efficacy agonists ( approximately 100%) in stimulating guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding to G(s) in L-cells, whereas 2,3,4,5,-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine (SKF38393) displayed partial agonist properties (70%). The action of dopamine was specifically mediated by human dopamine D1 receptors inasmuch as the selective human dopamine D1 receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol (SCH23390), blocked dopamine-induced [35S]GTP gamma S binding to G(s) with a pK(B) (9.29) close to its pK(i) (9.33). The antipsychotic agents, clozapine and haloperidol, displayed no intrinsic activity when tested alone and inhibited dopamine-stimulated G(s) activation with pK(B)'s of 6.7 and 7.3, respectively, values close to their pK(i) values at these sites. In conclusion, the use of an anti-G(s) protein immunoprecipitation assay coupled to scintillation proximity assays allows direct evaluation of the functional activity of dopamine D1 receptors ligands at the G protein level. Employing this novel technique, the typical and atypical antipsychotics, clozapine and haloperidol, respectively, both exhibited antagonist properties at dopamine D1 receptors.  相似文献   

11.
Three novel metabolites of the benzazepine SK&F 86466 (6-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine) have been isolated from dog urine and characterized by tandem mass spectrometry, using fast atom bombardment and thermospray ionization, and 1H and 13C NMR spectroscopy. The parent drug undergoes oxidation to yield an N-oxide or N-demethylation to yield the primary metabolite SK&F 101055 (6-chloro-2,3,4,5-tetrahydro-1H-3-benzazepine). This desmethyl metabolite then undergoes N-sulfoconjugation to yield 6-chloro-2,3,4,5-tetrahydro-1H-3-benzazepine-3-N-sulfonate. Two glucuronide conjugates derived from the desmethyl metabolite were also isolated and characterized. One glucuronide is formed from an intermediate carbamic acid, formally derived from the addition of CO2 to the desmethyl benzazepine. A second glucuronide is derived from an intermediate hydroxylamine metabolite. Methodology for characterizing the carbamyl glucuronide was developed, using an ethanolysis reaction to give a stable ethyl carbamate derivative that can then be characterized by GC-MS. This methodology should prove useful in establishing whether such carbamylation reactions occur with other amines.  相似文献   

12.
Observational procedures were used to compare the behavioral effects of dopamine D1 receptor antagonists and partial dopamine D1 receptor agonists in squirrel monkeys. The dopamine D1 receptor antagonists SCH 39166 ((−)-tran-6- 7,7a,8,9,13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo(d)naphtho-(2,1-b)azepine) and BW 737C89 ([S]-6-chloro-1[2,5-dimethoxy-4-propylbenzyl]- hydroxy-2-methyl-1,2,3,4-tetrahydroisoquinoline) produced dose-related increases in the duration of static and unusual postures, indicative of catalepsy. R-SKF 38393 (R(+)-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-[1H]-3-benzazepine) and SKF 75670 (7,8-dihydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-[1H]-3-benzazepine), which are considered partial dopamine D1 receptor agonists, also consistently produced dose-related increases in catalepsy-associated behavior and had effects comparable in magnitude to those of dopamine D1 receptor antagonists. In contrast, the higher efficacy D1 agonists SKF 81297 (6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-[1H]-3-benzazepine) and SKF 82958 (6-chloro-7,8-dihydroxy-1-phenyl-2,3,4, 5-tetrahydro-3-allylp-[1H]-3-benzazepine) did not produce catalepsy-associated behavior at any dose tested. The results indicate that dopamine D1 agonists differ with respect to cataleptogenic activity, possibly reflecting differences in intrinsic activity.  相似文献   

13.
The molecular electrostatic potentials for a selective dopamine D-1 receptor antagonist, 7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-methylbenzazepine (SCH 23390 (1], and a selective dopamine D-1 receptor agonist, 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 38393 (2], have been calculated in order to obtain an understanding of the nature of the interactions between the phenyl ring and the receptor. Analogues of 1 with conformationally constrained phenyl rings have also been studied. Based on this study, the conclusion is drawn that an important part of the interaction between the phenyl ring in the benzazepines and the receptor is due to electrostatic forces, and that the phenyl ring interacts with the same receptor site as the oxygen atom of the 8-hydroxy group.  相似文献   

14.
Using a novel procedure, the regulation of individual topographies of orofacial movement in the mouse by oppositional versus cooperative/synergistic D1-like: D2-like dopamine receptor interactions was studied. The D1-like agonists SK&F 38393 and SK&F 83959 each induced vertical, but not horizontal, jaw movements, together with tongue protrusions and incisor chattering; however, SK&F 82958 induced a different profile which, consistent with other neurochemical and neurophysiological studies, suggests that this agent shows anomalous properties relative to other D1-like agonists. When given alone, the D2-like agonist quinpirole reduced horizontal jaw movements and incisor chattering. On coadministration, both SK&F 38393- and SK&F 83959-induced vertical jaw movements and tongue protrusions were inhibited by quinpirole, while SK&F 82958 again showed an anomalous profile. These findings indicate that, in the mouse, vertical jaw movements and tongue protrusions are regulated by oppositional D1-like: D2-like interactions, and appear to involve a D1-like receptor that is not coupled to adenylyl cyclase, whereas horizontal jaw movements are inhibited by D2-like receptors. Additionally, results obtained using SK&F 82958 as a probe for D1-like mechanisms should be treated with considerable caution until they are confirmed using other D1-like agonists.  相似文献   

15.
Comprehensive conformational analysis using molecular mechanics calculations (MM2(85)) has been carried out for the potent and selective dopamine D-1 receptor agonist 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (1; SK&F 38393), the antagonist 7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (8; SCH 23390), and several analogues, including conformationally constrained ones. Calculated conformational energies have been related to pharmacological and biochemical data in an attempt to identify the biologically active conformations of 1 and 8. It is concluded that the most probable receptor-bound conformation in both cases is a chair conformation with an equatorial phenyl ring and for 8 an equatorial N-methyl group. It is suggested that the orientation of the phenyl ring in the receptor-bound molecule does not deviate in terms of dihedral angles by more than about 30 degrees from the preferred phenyl group rotamer in which the planes of two aromatic rings are essentially orthogonal.  相似文献   

16.
1. The isolated perfused lung of the ferret was used to study the effects of dopamine receptor agonists and antagonists. Under constant flow, a fall in pulmonary artery pressure reflects a vasodilator response. Since tone is normally low, agonists were given during hypoxic pulmonary vasoconstriction to enable detection of dilator responses. 2. Vasodilator responses were produced by bolus doses of dopamine over the range 0.1 to 5.0 micrograms kg-1, and by the selective DA1 agonist SK&F 38393 (1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride). 3. The dopamine response was blocked by low doses of the selective DA1-antagonist SCH23390 (R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol maleate), and by sulpiride. 4. The vasodilator response to the relatively selective DA2-agonist N,N-di-n-propyl dopamine occurred only at high dose and was incompletely blocked by the selective DA2 antagonist domperidone at a cumulative dose of 10 mg kg-1. 5. Thus dopamine receptors of the DA1 type may mediate vasodilatation in the ferret pulmonary circulation, but no evidence was obtained for the existence of DA2-receptors.  相似文献   

17.
A four-step synthesis of 2-chlorodopamine (2b) is presented as well as methods for the syntheses of the N-methyl, ethyl, and n-propyl analogues (2c-e). Compounds 2b and 2c were essentially equipotent to dopamine for increasing renal blood flow in anesthetized dogs that had been treated with the alpha-adrenergic antagonist phenoxybenzamine. The increases in renal blood flow were blocked by the DA1 antagonist (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine. Compounds 2d and 2e were significantly less potent than dopamine in the same model; the increases in renal blood flow were attenuated by propranolol and blocked by a combination of propranolol and (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine. The significance of an o-chloro substituent on dopamine analogues for the activation of the DA1 receptor is briefly discussed.  相似文献   

18.
Three different pharmacological treatments, previously shown to cause dopamine D1 receptor supersensitivity in rats, were studied for changes in the binding of R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390) labeled with carbon-11. Rats treated subchronically with the full dopamine D1 receptor agonist R/S-(+/-)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 81297) showed no significant difference in dopamine D1 receptor binding. Similarly, unilateral 6-hydroxydopamine lesioning, followed by apomorphine screening for contralateral rotation, failed to cause significant differences in the rat brain distribution of [11C]SCH 23390 in the lesioned versus the nonlesioned striatal sides. In contrast, repeated exposure with the dopamine D1 receptor antagonist SCH 23390 significantly enhanced the uptake of [11C]SCH 23390 in the dopamine D1 receptor-rich striatum and olfactory tubercles. These results demonstrate that [11C]SCH 23390 can significantly detect enhanced binding in rat brain regions expected to have up-regulated dopamine D1 receptors. The failure of [11C]SCH 23390 to reveal any differences after subchronic agonist or 6-hydroxydopamine treatments suggests that the behavioural supersensitization induced by these treatments is possibly due to changes to the high-affinity state or to components downstream of dopamine D1 receptors in the signal transduction pathway. The present study has implications for studies imaging dopamine D1 receptors in neuropsychiatric disorders with abnormal dopamine stimulation using positron emission tomography.  相似文献   

19.
We prepared a series of 18 novel substituted phenylbenzazepine congeners of the dopamine D1/D5 receptor partial-agonist SKF-83959 (R,S-3-methyl-6-chloro-7,8-dihydroxy-1-[3'-methylphenyl]-2,3,4,5-tetrahydro-1H-benzazepine) and characterized their potency and selectivity in assays of dopamine, 5-HT and adrenoceptors in rat brain tissue or membranes of genetically transfected cells. The R-enantiomer of SKF-83959 (MCL-202) and three other novel racemic 1-phenyl-7,8-dihydroxybenzazepines (MCL-204, -203, and -207) showed very high dopamine D5 receptor affinity; MCL-209 displayed the greatest dopamine D5 receptor affinity. These five potent novel ligands also had >100-fold selectivity for dopamine D1 over dopamine D2, D3, serotonin 5-HT-2A receptors and alpha2-adrenoceptors. They require further functional testing to characterize their intrinsic activity, and for potential stimulant-antagonist actions, as observed with SKF-83959 and MCL-202.  相似文献   

20.
The involvement of dopamine receptors in the amnesic effects of the endogenous micro-opioid receptor agonists endomorphins 1 and 2 was investigated by observing step-down type passive avoidance learning in mice. Although the dopamine D1 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (R(+)-SKF38393) (0.05 and 0.1 mg/kg), the dopamine D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (R(+)-SCH23390) (2.5 and 5 microg/kg) or the dopamine D2 receptor agonist N-n-phenethyl-N-propylethyl-p-(3-hydroxyphenyl)-ethylamine (RU24213) (0.3 and 1 mg/kg) had no significant effects on the endomorphin-1 (10 microg)- or endomorphin-2 (10 microg)-induced decrease in step-down latency of passive avoidance learning, (-)-sulpiride (10 mg/kg), a dopamine D2 receptor antagonist, significantly reversed the decrease in step-down latency evoked by endomorphin-2 (10 microg), but not by endomorphin-1 (10 microg). Taken together, it is likely that stimulation of dopamine D2 receptors results in the endomorphin-2-but not endomorphin-1-induced impairment of passive avoidance learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号