首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Binding of phenothiazine neuroleptics to plasma proteins   总被引:2,自引:0,他引:2  
The binding of chlorpromazine, trifluoperazine, perphenazine, desipramine, propranolol and salicylic acid to human plasma and isolated plasma proteins was studied using equilibrium dialysis. Unlike salicylic acid, an acidic compound only bound to human serum albumin, the basic drugs were bound to all plasma protein fractions studied (albumin, alpha 1-acid glycoprotein, lipoproteins, gamma-globulins) with alpha 1-acid glycoprotein an important binding protein for each of them. The interaction of chloropromazine, perphenazine and trifluoperazine with alpha 1-acid glycoprotein was studied using Scatchard analysis. The primary class of binding sites revealed a low capacity (n = 0.5-1) and a high affinity (K = 10(5)-10(6) M-1) for the phenothiazines. The interaction of chlorpromazine, perphenazine and trifluoperazine with albumin was of the high capacity-low affinity type. In binding studies using plasma obtained from healthy volunteers, alpha 1-acid glycoprotein was found to be a very important binding protein for the basic drug studied with the exception of desipramine. This shows that results derived from binding studies using isolated protein fractions should be interpreted with caution.  相似文献   

2.
The in vitro protein binding behavior of dipyridamole in plasma and buffered protein solutions was investigated by equilibrium dialysis. The drug was highly protein bound (approximately 98%) in heparinized human plasma, and the extent of protein binding remained constant for drug concentrations over the range of therapeutic interest of 0.1-10 micrograms/mL. Comparable binding results were obtained with a mixture of 80 mg % of alpha 1-acid glycoprotein and 40 g/L of human serum albumin in pH 7.4 phosphate buffer solution. Pure alpha 1-acid glycoprotein (80-400 mg %) or pure human serum albumin (40 g/L) in phosphate buffer gave significantly (p less than 0.05) lower binding results, indicating that both proteins are responsible for the high binding of dipyridamole in plasma. Addition of alpha 1-acid glycoprotein to heparinized human plasma, to simulate an acute phase increase in the protein, had no effect on the fraction of free drug in plasma. Binding of dipyridamole to heparinized human plasma or human serum albumin in buffer was concentration independent through 40 micrograms/mL. The free fraction of dipyridamole increases with concentrations exceeding 40 micrograms/mL.  相似文献   

3.
1. Little is known about the comparative plasma protein binding of the antimalarial agents quinine (QN) and its isomer quinidine (QD). We have examined the in vitro binding of QN and QD to albumin, alpha 1-acid glycoprotein, normal human plasma, and maternal and foetal umbilical cord plasma. 2. QN was more avidly bound than QD, and binding of both drugs was substantially higher to alpha 1-acid glycoprotein than to albumin, indicating that alpha 1-acid glycoprotein is the more important binding protein. 3. Protein and drug concentration dependent binding was evident for both QN and QD. The unbound fraction of both drugs fell with increasing albumin (10 to 60 g l-1) and alpha 1-acid glycoprotein (0.5 to 2.0 g l-1) concentration, and there was a marked increase in unbound fraction of QN (6 to 19%) and QD (13 to 36%) in human plasma when drug concentrations were increased over the antimalarial therapeutic range (0.5 to 10 mg l-1). 4. In human volunteer plasma, the unbound fractions of QN and QD were 7.5 +/- 2.2% and 12.3 +/- 2.3% respectively, whilst the unbound fractions for both drugs were significantly higher in maternal plasma (QN = 13.0 +/- 5.4%, QD = 18.3 +/- 2.5%) and significantly higher still in foetal umbilical cord plasma (QN = 25.7 +/- 10%, QD = 35 +/- 5.3%).  相似文献   

4.
The binding of amsacrine to human plasma proteins   总被引:1,自引:0,他引:1  
Determination of amsacrine plasma protein binding by both equilibrium dialysis and ultracentrifugation gave similar results and indicated that amsacrine is highly bound (approximately 97%) in human plasma. This binding is independent of amsacrine concentration over the range 1-100 mumol litre-1, but is very sensitive to plasma pH and, to a lesser extent, to temperature. Approximately 20% of the drug appeared to be covalently bound to plasma proteins. Amsacrine was bound by all plasma proteins investigated including albumin, alpha 1-acid glycoprotein and various gamma-globulins. The binding to albumin appeared to occur by two processes, a saturable process at a single site with a KD of 13.9 mumol litre-1 and a non-saturable process. Despite differences in individual protein concentrations, no significant difference was observed in the unbound amsacrine fraction in plasma from patients receiving this drug for treatment of acute myelogenous leukaemia and plasma from healthy individuals.  相似文献   

5.
Maternal and fetal plasma differ in their concentrations of the important drug binding plasma proteins, albumin and alpha 1-acid glycoprotein, with albumin being slightly more concentrated in fetal plasma, and alpha 1-acid glycoprotein being only 37% of the maternal concentration at term. In general, these differences relate linearly to the bound to free concentration ratio of drugs associated with these proteins. Although only the free concentration is generally considered to be the pharmacologically active form, these differences can dramatically affect the total concentration and relative distribution of drugs between maternal and fetal plasma. In order to test our hypothesis that plasma protein binding is the major determinant of fetal/maternal drug distribution at steady-state, we examined whether fetal binding could be predicted from adult binding information. Data from studies of maternal plasma protein binding were used to predict fetal plasma protein binding based solely on the differences in protein concentrations. These predictions were compared with observed fetal binding data. This analysis showed a slope near unity and a high correlation (r2 = 0.900) which implies that there are no significant differences between the binding affinities of these proteins. A similar analysis performed using data on drug binding in non-pregnant adults gave an r2 or 0.971. Having established that fetal plasma proteins bind drugs similarly to their maternal counterparts, fetal/maternal plasma drug concentration ratios (F/M) were predicted for various drugs using information from literature on the drug's adult plasma protein binding, the protein to which it binds, and the fetal and maternal plasma concentrations of that binding protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of this study was to characterize the relationship between plasma protein binding and the pharmacokinetic disposition of saquinavir during a normal and elevated alpha-1-acid glycoprotein condition. The extent of plasma binding of [14C]saquinavir to human plasma, human albumin, and human alpha-1-acid glycoprotein was also assessed. Transgenic mice, which overexpress plasma alpha-1-acid glycoprotein, and control mice were given a single intravenous injection of saquinavir (10 mg/kg) and plasma samples were harvested as a function of time. The extent of [14C]saquinavir (0.5-30 microg/ml) plasma protein binding in each group of mice was determined by ultrafiltration. Plasma saquinavir concentrations from in vivo administration were determined by high performance liquid chromatography with tandem mass spectrometry. Saquinavir binding in human plasma and control mouse plasma was similar (approximately 3% unbound). In contrast, the extent of binding was significantly increased in transgenic mice (1.5% unbound). Furthermore, saquinavir was more extensively bound to alpha-1-acid glycoprotein than to albumin (2.1 versus 11.5% unbound). The systemic clearance and volume of distribution of saquinavir were significantly reduced in transgenic mice compared with control mice. The results of this study show that alpha-1-acid glycoprotein is the predominant plasma protein to which saquinavir binds. In addition, elevations in plasma alpha-1-acid glycoprotein considerably alter the pharmacokinetic disposition of saquinavir. This is consistent with the observations that systemic exposure to saquinavir in human immunodeficiency virus patients is greater than that in healthy volunteers and that alpha-1-acid glycoprotein levels increase with the degree of HIV infection.  相似文献   

7.
The volumes of distribution of many acidic drugs have been shown to be close to that of their binding protein, i.e. serum albumin. The distribution of basic drugs mainly bound to alpha 1-acid glycoprotein (AAG) can be questioned with respect to its dependency upon the distribution of this plasma protein. So, a pharmacokinetic study was performed in 7 subjects with human 125I-labelled alpha 1-acid glycoprotein. The steady-state volume of distribution was found to be 5.37 +/- 0.82L. The central volume was 3.23 +/- 0.33L, close to that of plasma volume and the peripheral volume was 2.14 +/- 0.63L. These data allowed the establishment of an equation giving access to the volume of distribution of a basic drug by relating its unbound fraction to physiological distribution of alpha 1-acid glycoprotein. The values yielded by this equation show that the actual and calculated volumes of distribution of basic drugs mainly bound to AAG are discrepant. This protein is thus not the main factor controlling the distribution of basic drugs within the body.  相似文献   

8.
The plasma protein binding of metoclopramide was measured after addition of the drug (60 ng ml-1) to plasma from 18 patients with renal disease and 18 age and sex matched healthy individuals. The mean free fraction in renal disease (0.59 range 0.41-0.71) was not significantly different from controls (mean 0.6 range 0.56-0.69). In both groups the binding ratio of metoclopramide was significantly related to plasma alpha 1-acid glycoprotein (AAG) concentration but not to albumin or plasma non-esterified fatty acids concentration. Metoclopramide bound to human serum albumin (HSA) to a limited extent and to human AAG to a greater extent indicating that AAG is the major binding protein for the drug in plasma.  相似文献   

9.
The binding protein of erythromycin in human serum   总被引:1,自引:0,他引:1  
Erythromycin binding to human serum albumin and to alpha 1-acid glycoprotein was measured under conditions of binding equilibrium. At therapeutical concentrations of erythromycin the binding to albumin is not saturable. The fraction of total erythromycin bound to alpha 1-acid glycoprotein is proportionally related to the protein concentration and is bound to a single class of binding sites with an apparent association constant Ka = 0.16 X 10(6) M-1 (38 degrees). About one mole of erythromycin is bound per mole of alpha 1-acid glycoprotein. The binding affinity can be enhanced and vice versa lowered by increasing the concentrations of NaCl and urea, respectively. The semilogarithmic plot of bound/free ratios vs log concentration of NaCl or urea exhibits linear relationships. Erythromycin binding can be competitively inhibited by mersalyl (Ki = 11-16 microM) but not by other SH-reagents or by neuraminidase treatment. A marked reduction of erythromycin binding to alpha 1-acid glycoprotein is seen with dithiothreitol. alpha 1-acid glycoprotein is the main erythromycin binding protein in human serum.  相似文献   

10.
In 63 healthy ambulant subjects 18 to 88 years of age, the plasma protein binding of diazepam (principally bound to albumin) decreased with age. Diazepam binding in plasma correlated positively with plasma albumin concentration which also decreased with age. In contrast, the plasma protein binding of the basic drug, lignocaine (predominantly bound to alpha 1-acid glycoprotein [AAG]), tended to increase slightly with age. Lignocaine binding in plasma correlated positively with plasma AAG concentration which also increased slightly with age. Smoking did not affect the plasma protein binding of diazepam or lignocaine or the plasma concentrations of albumin, AAG or nonesterified fatty acids. These results suggest that age-related changes in plasma protein binding of lignocaine and diazepam are determined in part by age-related changes in the concentrations of the binding proteins in plasma. The ageing process alone causes only small changes in the plasma protein binding of these drugs compared with the effect of disease states, however.  相似文献   

11.
Serum binding of ketoconazole in health and disease   总被引:2,自引:0,他引:2  
The plasma protein binding of ketoconazole, an oral antifungal agent of a weak basic nature, was measured after the addition of the drug (10 micrograms.ml-1) to serum from 35 healthy individuals, ten patients with chronic renal disease and seven patients with hepatic cirrhosis. The percentage of free ketoconazole was markedly increased in patients with chronic renal disease and in patients with hepatic cirrhosis, when it was compared with the group of healthy volunteers (7.33 +/- 0.11 in renal patients; 6.12 +/- 1.43 in hepatic patients compared with 2.93 +/- 0.12 in healthy individuals). The binding ratio of ketoconazole in health and disease was significantly related to plasma albumin concentration, but not to plasma alpha 1-acid glycoprotein (AAG) concentration. Moreover, ketoconazole binds to isolated human serum albumin in a greater proportion but does not bind to isolated AAG indicating that human serum albumin is the major binding protein for this drug in plasma.  相似文献   

12.
Human alpha-1-glycoprotein and its interactions with drugs   总被引:8,自引:0,他引:8  
For about half a century, the binding of drugs to plasma albumin, the "silent receptor," has been recognized as one of the major determinants of drug action, distribution, and disposition. In the last decade, the binding of drugs, especially but not exclusively basic entities, to another plasma protein, alpha 1-acid glycoprotein (AAG), has increasingly become important in this regard. The present review points out that hundreds of drugs with diverse structures bind to this glycoprotein. Although plasma concentration of AAG is much lower than that of albumin, AAG can become the major drug binding macromolecule in plasma with significant clinical implications. Also, briefly reviewed are the physiological, pathological, and genetic factors that influence binding, the role of AAG in drug-drug interactions, especially the displacement of drugs and endogenous substances from AAG binding sites, and pharmacokinetic and clinical consequences of such interactions. It can be predicted that in the future, rapid automatic methods to measure binding to albumin and/or AAG will routinely be used in drug development and in clinical practice to predict and/or guide therapy.  相似文献   

13.
The protein binding of racemic chloroquine, its enantiomers and desethylchloroquine to plasma, purified human albumin, and alpha 1-acid glycoprotein (alpha 1-AGP) was determined by equilibrium dialysis. The binding was not concentration dependent. (+)-Chloroquine bound more to plasma (66.6 +/- 1.9%) and albumin (45.9 +/- 0.8%) than (-)-chloroquine (48.5 +/- 2.4% and 35.3 +/- 0.6%, respectively). These differences were statistically significant. (-)-Chloroquine bound more to alpha 1-AGP (47.5 +/- 0.7%) than (+)-chloroquine (34.5 +/- 0.5%). The binding of desethylchloroquine to alpha 1-AGP is higher than to albumin (38.9 +/- 0.9% and 21.1 +/- 0.4%, respectively.  相似文献   

14.
Recent advances in techniques to determine free drug concentrations have lead to a substantial increase in the monitoring of this parameter in clinical practice. The majority of drug binding to macromolecules in serum can be accounted for by association with albumin and alpha 1-acid glycoprotein. Albumin is the primary binding protein for acidic drugs, while binding to alpha 1-acid glycoprotein is more commonly observed with basic lipophilic agents. Alterations in the concentrations of either of these macromolecules can result in significant changes in free fraction. Diseases such as cirrhosis, nephrotic syndrome and malnourishment can result in hypoalbuminaemia. Burn injury, cancer, chronic pain syndrome, myocardial infarction, inflammatory diseases and trauma are all associated with elevations in the concentration of alpha 1-acid glycoprotein. Treatment with a number of drugs has also been shown to increase alpha 1-acid glycoprotein serum concentrations. A wide variety of biological fluids have been examined for their ability to provide an estimation of free drug concentration at receptor sites. The most useful fluid for estimating free drug concentrations appears to be plasma or serum, with subsequent treatment of the sample to separate free and bound drug by an appropriate technique. The two most widely used methods are equilibrium dialysis and ultrafiltration. Of these two, ultrafiltration has the greatest utility clinically because it is rapid and relatively simple. The major difficulty associated with this method involves the binding of drug to the ultrafilters, but significant progress has been made in solving this problem. Several authors have endorsed the routine use of free drug concentration monitoring. Data examining the clinical usefulness of free drug concentration monitoring for phenytoin, carbamazepine, valproic acid, disopyramide and lignocaine (lidocaine) are reviewed. While available evidence suggests that free concentrations may correlate with clinical effects better than total drug concentrations, there are insufficient data to justify the recommendation of the routine use of free drug concentration monitoring for any of these agents at present.  相似文献   

15.
The plasma protein binding of the alpha 1-adrenergic blocking agent prazosin was investigated by means of circular dichroism (CD) and equilibrium dialysis (ED) measurements. The interaction of prazosin with human alpha 1-acid glycoprotein (alpha 1-AGP) results in pronounced negative extrinsic Cotton effects at 255 nm and a smaller negative band at 285 nm which are associated with the binding of prazosin to only one site of the protein. Various basic drugs, and warfarin also, at 50 microM displace prazosin 10 microM from its binding site on alpha 1-AGP and reduce the CD-spectra at 255 nm by 26% (disopyramide), 52% (mepivacaine), about 70% (verapamil, biperiden), and 90-100% (trihexyphenidyl, warfarin). (+/-)-Propranolol reduces the CD-spectra by 76%, its (-)-isomer by 89%, and the (+)-isomer by 65%. ED experiments indicated that the binding of prazosin to alpha 1-AGP is saturable with an association constant of 48 000 M-1 and 0.85 binding sites per protein molecule. Displacement of prazosin from alpha 1-AGP by the same drug as used for the CD experiments at displacer/prazosin ratios of 5 resulted in comparable reductions of the fraction bound as obtained by the CD experiments. Prazosin was also highly bound to human serum albumin (600 microM) with about 80-85% bound at prazosin concentrations from 1-100 microM. Since prazosin binding to human serum is only slightly higher (80-90%) it is concluded that prazosin binding in serum is largely mediated by the albumin fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Amiodarone is an effective antiarrhythmic drug whose therapeutic usefulness is limited by variable pharmacokinetics and considerable toxicity. Total plasma concentrations are not reliably related to therapeutic effect, but if plasma protein binding varies between patients, then free drug concentrations may provide a better measure of drug effectiveness. 2. The plasma protein binding of amiodarone was measured by erythrocyte partitioning, and found to be the same in six healthy subjects and eight patients being treated for cardiac arrhythmias (mean = 99.98%; range 99.97-99.99%). The free fraction of amiodarone was independent of the total drug concentration (r = -0.41, P greater than 0.50) and albumin level (r = -0.31, P greater than 0.50). 3. These data show no advantage in monitoring free concentrations of amiodarone. On the other hand, the patients in this study did not receive very high doses of amiodarone, and were free from drug side effects and biochemical abnormalities. Possibly a more heterogeneous group of patients would show variability in amiodarone binding. This should be examined, especially for patients with variations in alpha 1-acid glycoprotein, a major ligand for basic drugs and a likely major binding protein for amiodarone.  相似文献   

17.
Using equilibrium dialysis and incubation experiments, we determined the binding of moricizine to human plasma, isolated plasma proteins, and erythrocytes. The mean (% +/- SD) plasma protein binding at various moricizine concentrations ranged from 81.2 +/- 2.1 to 89.9 +/- 2.1%. There was no apparent relationship between drug concentration and extent of binding in pooled plasma over the concentration range tested. However, protein concentration-dependent binding was observed with albumin and alpha 1-acid glycoprotein (alpha 1-AGP). The unbound fraction of moricizine fell from 61 to 19% and from 70 to 17% with increasing albumin (5 and 50 g/L, respectively) and alpha 1-AGP (0.2 and 1.2 g/L) concentrations. The binding of moricizine to beta-lipoprotein (5 g/L) was 70.6 +/- 3.1% and to gamma-globulin (12 g/L) was 13.6 +/- 3.3%. Moricizine partitioned into erythrocytes, showing an erythrocyte/plasma drug concentration ratio of 1.325 +/- 0.070 and erythrocyte/buffer ratio of 8.561 +/- 0.620. An estimation could be made that 57% of total drug in whole blood was associated with erythrocytes, 39% bound to plasma proteins, and 4% was free. The results of this study demonstrated that erythrocytes, albumin, and alpha 1-AGP were the major binding components in blood.  相似文献   

18.
Mixed micelles (MM) formed from glycocholic acid and lecithin are suited to solubilize lipophilic drugs for intravenous use. To test for possible drug-drug interactions, the protein binding of a series of agents known to bind to different sites on albumin (diazepam, warfarin, ketoprofen, frusemide, probenecid) and additionally (prazosin, quinidine, propranolol) or exclusively (disopyramide) to alpha 1-acid glycoprotein or to transcortin (prednisolone) was determined in the presence and absence of MM. Concentrations of MM, corresponding to the maximum possible plasma concentration achieved by injecting the highest clinical doses of MM into the systemic circulation, had little or no effect on the unbound fractions of drugs known to bind exclusively to albumin. Only at five times higher MM concentrations were the free fractions substantially increased (by up to 45%). Unbound fractions of drugs bound with high affinity but low capacity to alpha 1-acid glycoprotein were increased between 50-85% even at 'therapeutic' doses of MM. The present study suggests that drugs solubilized by MM should be given by slow injection or infusion to patients already receiving drugs which are highly bound to alpha 1-acid glycoprotein.  相似文献   

19.
Protein binding of propisomide   总被引:1,自引:0,他引:1  
This paper describes the protein binding of propisomide to human serum and isolated proteins using equilibrium dialysis. The drug is exclusively bound to alpha1-acid glycoprotein with high affinity. The binding is saturable even at low concentrations of the drug. Thus, the fraction unbound varied from 0.05 to 0.60 with decreasing serum concentration. The major metabolite of the drug or other drugs with affinity for alpha1-acid glycoprotein can displace propisomide from its binding site only when present in serum at high levels. Two ultrafiltration techniques are compared to equilibrium dialysis for the determination of serum protein binding of propisomide. Ultrafiltration does not give reliable results. Equilibrium dialysis is retained as an accurate method for the determination of the fraction unbound of propisomide.  相似文献   

20.
Plasma protein binding of drugs in pregnancy and in neonates   总被引:1,自引:0,他引:1  
Plasma protein binding of drugs has important implications for drug disposition and action since it is the first, and controlling, step in drug distribution. Physiological changes in pregnancy include significant changes in plasma composition which affect drug binding and subsequent drug response; the extent of these changes depends on the stage of gestation. Both albumin and alpha 1-acid glycoprotein fractions are reduced, and consequently the binding of both acidic and basic drugs may be affected. This may lead to difficulties in maintaining adequate plasma concentrations of highly protein-bound drugs, since the measurement of total drug concentration in plasma may no longer be a valid indicator for dose adjustment. The newborn infant displays a continually changing plasma profile. The presence of fetal proteins and endogenous substrates known to interfere with drug binding can lead to unexpected complications due to a higher than expected 'free' drug fraction. Furthermore, a decrease in the affinity of albumin for bilirubin during this period may lead to bilirubin displacement by drugs such as diazepam, sulphonamides and salicylate, resulting in clinical jaundice which would not occur beyond the neonatal period. Plasma composition and its effect on drug binding should be taken into account when prescribing highly protein bound drugs with narrow therapeutic: toxic ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号