首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endothelin (ET)-1 derived from endothelial cells has a much more important role in cardiovascular system regulation than the ET-2 and ET-3 isoforms. Numerous lines of evidence indicate that ET-1 possesses a number of biological activities leading to cardiovascular diseases (CVD) including hypertension and atherosclerosis. Physiological and pathophysiological responses to ET-1 in various tissues are mediated by interactions with ET(A)- and ET(B)-receptor subtypes. Both subtypes on vascular smooth muscle cells mediate vasoconstriction, whereas the ET(B)-receptor subtype on endothelial cells contributes to vasodilatation and ET-1 clearance. Although selective ET(A)- or nonselective ET(A)/ET(B)-receptor antagonisms have been assumed as potential strategies for the treatment of several CVD based on clinical and animal experiments, it remains unclear which antagonisms are suitable for individuals with CVD because upregulation of the nitric oxide system via the ET(B) receptor is responsible for vasoprotective effects such as vasodilatation and anti-cell proliferation. In this review, we have summarized the current understanding regarding the role of ET receptors, especially the ET(B) receptor, in CVD.  相似文献   

2.
Aldosterone, a steroid hormone, has traditionally been viewed as a key regulator of fluid and electrolyte homeostasis, as well as blood pressure, through the activation of mineralocorticoid receptor (MR). However, a number of studies performed in the last decade have revealed an important role of aldosterone/MR in the pathogenesis of renal injury. Aldosterone/MR-induced renal tissue injury is associated with increased renal inflammation and oxidative stress, fibrosis, mesangial cell proliferation, and podocyte injury, probably through genomic and non-genomic pathways. However, our preliminary data have indicated that acute administration of aldosterone or a selective MR antagonist, eplerenone, does not change blood pressure, heart rate, or renal blood flow. These data suggest that aldosterone/MR induces renal injury through mechanisms that are independent of acute changes in systemic and renal hemodynamics. In this review, we will briefly summarize the roles of aldosterone/MR in the pathogenesis of renal injury, focusing on the underlying mechanisms that are independent of systemic and renal hemodynamic changes.  相似文献   

3.
IL-18 is a unique cytokine with prominently wide spectrum biological actions. Among these, its IFN-gamma/TNF-alpha-inducing activity primarily contributes to the development of various inflammatory diseases including inflammatory arthritis. IL-18 levels correlate with the disease activity of rheumatoid arthritis (RA) and osteoarthritis (OA). IL-18 is spontaneously released from RA synovial cells and OA chondrocytes and seems to participate in the development of the inflammatory and destructive alterations of joints via induction of TNF-alpha, a potent effector molecule. TNF-alpha, in turn, increases IL-18 expression in RA synovial cells. Recent clinical trials have revealed the efficacy of TNF-alpha in RA with a reduction in circulatory IL-18 levels. These may implicate the positive circuit between IL-18 and TNF-alpha for development of RA. As IL-18-deficient mice evade collagen-induced arthritis in a mouse RA model, therapeutics targeting IL-18 may be beneficial against RA/OA. Here, the authors review the possible roles of IL-18 in inflammatory arthritis.  相似文献   

4.
Human chymase forms angiotenin (ANG) I to ANG II, whereas the roles of ANG II generated by chymase and the effects of chymase inhibitors have been unclear. On the other hand, rat chymase could not convert ANG I to ANG II. In isolated rat arteries, the ANG I-induced vascular contraction was completely suppressed by angiotensin-converting enzyme (ACE) inhibitor only. However, 30% of ANG I-induced vascular contraction in isolated human arteries was suppressed by an ACE inhibitor, but the remainder was blocked by chymostatin. In hamster hypertensive models, ANG II formation by ACE, but not by chymase, in vascular tissues plays an important role in maintaining hypertension. ANG II formation also induces vascular remodeling such as neointima formation. After balloon injury of vessels in dog, chymase and ACE activities were significantly increased in the injured vessels. In this model, an ANG II receptor antagonist was effective in preventing neointimal formation after balloon injury of vessels in dog, but an ACE inhibitor was ineffective. In dog grafted veins, the activities of chymase and ACEmin the grafted vein were significantly increased 15- and 2-fold, respectively, compared with those in the symmetrical veins. The intimal area of the grafted vein was reduced by a chymase inhibitor. Therefore, chymase-dependent ANG II formation plays an important role in the proliferative response, and chymase inhibitors may appear useful for preventing vascular proliferation.  相似文献   

5.
6.
"Tissue" or type 2 Transglutaminase (TG2) is a peculiar multifunctional enzyme able to catalyse Ca(2+)-dependent post-translational modification of proteins, by establishing covalent bonds between peptide-bound glutamine residues and either lysine residues or mono- and poly-amines. In addition, it may act also as a G protein in transmembrane signalling, as a kinase, as a protein disulphide isomerase and as a cell surface adhesion mediator. The vast array of biochemical functions exerted by TG2 characterises and distinguishes it from all the other members of the transglutaminase family. Multiple lines of evidence suggest an involvement of the enzyme in neurodegenerative diseases, such as Huntington's (HD) and Parkinson (PD), and that its inhibition, either via drug treatments or genetic approaches, might be beneficial for the treatment of these syndromes. This review will exploit the recent developments in the comprehension of the role played by type 2 transglutaminase in eukaryotic cells, focusing on the role exerted by TG2 on mitochondrial physiology and on the regulation of cell death pathways at the basis of neurodegenerative diseases.  相似文献   

7.
Polymer–drug and polymer–protein conjugates are promising candidates for the delivery of therapeutic agents. PEGylation, using poly(ethylene glycol) for the conjugation, is now the gold standard in this field, and some PEGylated proteins have successfully reached the market. Hydroxyethyl starch (HES) is a water-soluble, biodegradable derivative of starch that is currently being investigated as a substitute for PEG. So far, only chemical methods have been suggested for HES conjugation; however, these may have detrimental effects on proteins. Here, we report an enzymatic method for HES conjugation using a recombinant microbial transglutaminase (rMTG). The latter catalyzes the acyl transfer between the γ-carboxamide group of a glutaminyl residue (acyl donors) and a variety of primary amines (acyl acceptors), including the amino group of lysine. HES was modified with N-carbobenzyloxy glutaminyl glycine (Z-QG) and hexamethylene diamine (HMDA) to act as acyl donor and acyl acceptor, respectively. Using 1H NMR, the degree of modification with Z-QG and HMDA was found to be 4.6 and 3.9 mol%, respectively. Using SDS–PAGE, it was possible to show that the modified HES successfully coupled to test compounds, proving that it is accepted as a substrate by rMTG. Finally, the process described in this study is a simple, mild approach to produce fully biodegradable polymer–drug and polymer–protein conjugates. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4420–4428, 2009  相似文献   

8.
Prostanoids, consisting of the prostaglandins (PGs) and thromboxanes (TXs), exert various actions through activation of their specific receptors. They include the DP, EP, FP, IP, and TP receptors for PGD2, PGE2, PGF2alpha, PGI2, and TXA2, respectively. Moreover, EP receptors are classified into four subtypes, the EP1, EP2, EP3 and EP4 receptors. Using mice lacking prostanoid receptors, we intended to clarify in vivo roles of prostanoids under pathophysiological conditions of the cardiovascular system, which include ischemia-induced cardiac injury, pressure overload-induced cardiac hypertrophy, renovascular hypertension, tachycardia during systemic inflammation and thromboembolism. The results demonstrated that 1) PGI2 plays an important role in attenuating the ischemic injury and the pressure overload-induced hypertrophy of the hearts, and also contributes to the development of renovascular hypertension; 2) PGE2 plays a cardioprotective role against the ischemic injury via both the EP3 and EP4, and also participates in acute thromboembolism via the EP3; and 3) both PGF2alpha and TXA2, which have been produced during systemic inflammation, are responsible for tachycardia.  相似文献   

9.
Transglutaminases - possible drug targets in human diseases   总被引:1,自引:0,他引:1  
Transglutaminases (TGases) belong to a family of closely related proteins that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate with the formation of an Nepsilon-(gamma-L-glutamyl)-L-lysine [GGEL] cross link and the concomitant release of ammonia. Such cross-linked proteins are often highly insoluble. Neurodegenerative diseases, such as Alzheimer disease (AD), Parkinson disease (PD), supranuclear palsy and Huntington disease (HD), are characterized in part by aberrant cerebral TGase activity and by increased cross-linked proteins in affected brain. In support of the hypothesis that TGases contribute to neurodegenerative disease, a recent study shows that knocking out TGase 2 in HD-transgenic mice results in increased lifespan. Moreover, recent studies show that cystamine, an in vitro TGase inhibitor, prolongs the lives of HD-transgenic mice. However, these findings are not definitive proof of TGase involvement in HD neuropathology. In neurodegenerative diseases, the brain is under oxidative stress and cystamine can theoretically be converted to the potent antioxidant cysteamine in vivo. Cystamine is also a caspase 3 inhibitor. In addition to neurodegenerative diseases, aberrant TGase activity is associated with celiac disease. Interestingly, a subset of celiac patients develops neurological disorders. This review focuses on the strategies that have been recently employed in the design of TGase inhibitors, and on the possible therapeutic benefits of selective TGase inhibitors to patients with neurodegenerative disorders or to patients with celiac disease.  相似文献   

10.
11.
Transglutaminases (TGases) are enzymes which catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate with the formation of an N-gamma-(epsilon-L-glutamyl)-L-lysine [GGEL] cross link (isopeptidic bond) and the concomitant release of ammonia. Such cross-linked proteins are often highly insoluble. The TGases are closely related enzymes and can also catalyze other important reactions for cell life. Recently, several findings concerning the relationships between the biochemical activities of the TGases and the basic molecular mechanisms responsible for some human diseases, have been reported. For example, some neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), supranuclear palsy, etc., are characterized in part by aberrant cerebral TGase activity and by increased cross-linked proteins in affected brains. Our article describes the biochemistry and the physio-pathological roles of the TGase enzymes, with particular reference to human pathologies in which the molecular mechanism of disease can be due to biochemical activities of the tissue TGase enzyme (tTGase, type 2), such as in a very common human disease, Celiac Disease (CD), and also in certain neuropsychiatric disorders.  相似文献   

12.
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and irreversible airflow obstruction, with an abnormal lung function. The etiology of COPD correlates with complex interactions between environmental and genetic determinants. However, the exact pathogenesis of COPD is obscure although it involves multiple aspects including oxidative stress, imbalance between proteolytic and anti-proteolytic activity, immunity and inflammation, apoptosis, and repair and destruction in both airways and lungs. Many genes have been demonstrated to be involved in those pathogenic processes of this disease in patients exposed to harmful environmental factors. Previous reports have investigated promising microRNAs (miRNAs) to disclose the molecular mechanisms for COPD development induced by different environmental exposure and genetic predisposition encounter, and find some potential miRNA biomarkers for early diagnosis and treatment targets of COPD. In this review, we summarized the expression profiles of the reported miRNAs from studies of COPD associated with environmental risk factors including cigarette smoking and air pollution exposures, and provided an overview of roles of those miRNAs in the pathogenesis of the disease. We also highlighted the potential utility and limitations of miRNAs serving as diagnostic biomarkers and therapeutic targets for COPD.  相似文献   

13.
Asthma and Chronic Obstructive Pulmonary Disease (COPD) are two important lung and airways diseases which affect the lives of ~500 million people worldwide. Asthma is a heterogeneous disease that is broadly defined as a clinical syndrome characterized by altered lung function, mucus hypersecretion, peribronchial inflammation and hyperresponsiveness In contrast, the effect of inhalation of toxic particles and gases on the innate and adaptive inflammatory immune systems underlie the pathogenesis of COPD. In the last decade, knowledge concerning the pathophysiologic mechanisms underlying asthma and COPD has risen tremendously and current dogma suggests that the pathogenesis of both diseases is driven by the chronic inflammation present in the airways of these patients. Thus, understanding the mechanisms for the persistence of inflammation may lead to new therapeutic approaches. In this review, we provide an overview of the main signal transduction pathways implicated in asthma and COPD pathophysiology focusing on inflammasome signaling in various cells types which result in altered inflammatory mediator expression.  相似文献   

14.
The autoimmune diseases result from inappropriate responses of the immune system to self antigens. The etiology of autoimmune diseases remains largely unknown but candidate etiologic factors include genetic abnormalities and infections. Although there are considerable data supporting the role of infections in a variety of autoimmune diseases, this role has been unequivocally established in only a few autoimmune diseases. The difficulty in establishing the infectious etiology of autoimmune diseases stems from several factors such as the heterogeneity of clinical manifestations in individual autoimmune diseases and the time interval between infection and autoimmune disease. The data on this association derive from clinical observations, epidemiological studies and research using laboratory techniques, protein sequence database screening and animal models. Infectious agents can cause autoimmune diseases by different mechanisms, which fall into two categories: antigen specific in which pathogen products or elements have a central role e.g. superantigens or epitope (molecular) mimicry, and antigen non-specific in which the pathogen provides the appropriate inflammatory setting for "bystander activation". The most important mechanisms are molecular mimicry and superantigens. As far as molecular mimicry is concerned the recent data on the degeneracy of T cell recognition shifted the focus from searching for linear sequence homology to looking for similarity of antigenic surfaces. Special mention has to be made to retroviruses as they have some unique means of inducing autoimmunity.  相似文献   

15.
16.
17.
A wide variety of viruses cause significant morbidity and mortality in humans. However, targeted antiviral therapies have been developed for only a subset of these viruses, with the majority of currently licensed antiviral drugs targeting viral entry, replication or exit steps during the viral life cycle. Due to increasing emergence of antiviral drug resistant viruses, the isolation of multiple viral subtypes, and toxicities of existing therapies, there remains an urgent need for the timely development of novel antiviral agents, including those targeting host factors essential for viral replication. This review summarizes viral products that target mitochondria and their effects on common mitochondria regulated pathways. These viral products and the mitochondrial pathways affected by them provide potential novel targets for the rational design of antiviral drugs. Viral products alter oxidative balance, mitochondrial permeability transition pore, mitochondrial membrane potential, electron transport and energy production. Moreover, viruses may cause the Warburg Effect, in which metabolism is reprogrammed to aerobic glycolysis as the main source of energy. Finally, viral products affect proapoptotic and antiapoptotic signaling, as well as mitochondrial innate immune signaling. Because of their importance for the generation of metabolic intermediates and energy as well as cell survival, mitochondrial pathways are targeted by multiple independent viral products. Structural modifications of existing drugs targeted to mitochondrial pathways may lead to the development of novel antiviral drugs with improved efficacy and reduced toxicity.  相似文献   

18.
Numerous experimental and epidemiological studies have demonstrated that polycyclic aromatic hydrocarbons (PAHs), which are major constituents of cigarette tobacco tar, are strongly involved in the pathogenesis of the cardiovascular diseases (CVDs). Knowing that PAH-induced toxicities are mediated by the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR), which regulates the expression of a group of xenobiotic metabolizing enzymes (XMEs) such as CYP1A1, CYP1A2, CYP1B1, NQO1, and GSTA1, suggests a direct link between AhR-regulated XMEs and CVDs. Therefore, identifying the localization and expression of the AhR and its regulated XMEs in the cardiovascular system (CVS) is of major importance in understanding their physiological and pathological roles. Generally, it was believed that the levels of AhR-regulated XMEs are lower in the CVS than in the liver; however, it has been shown that similar or even higher levels of expression are demonstrated in the CVS in a tissue- and species-specific manner. Moreover, most, if not all, AhR-regulated XMEs are differentially expressed in most of the CVS, particularly in the endothelium cells, aorta, coronary arteries, and ventricles. Although the exact mechanisms of PAH-mediated cardiotoxicity are not fully understood, several mechanisms are proposed. Generally, induction of CYP1A1, CYP1A2, and CYP1B1 is considered cardiotoxic through generating reactive oxygen species (ROS), DNA adducts, and endogenous arachidonic acid metabolites. However the cardioprotective properties of NQO1 and GSTA1 are mainly attributed to the antioxidant effect by decreasing ROS and increasing the levels of endogenous antioxidants. This review provides a clear understanding of the role of AhR and its regulated XMEs in the pathogenesis of CVDs, in which imbalance in the expression of cardioprotective and cardiotoxic XMEs is the main determinant of PAH-mediated cardiotoxicity.  相似文献   

19.
《Immunopharmacology》1993,25(2):179-188
The immunosuppressive, anti-inflammatory and anti-thrombotic properties of SV-IV, a major protein secreted from the epithelium of rat seminal vesicles, were investigated after transglutaminase-catalyzed covalent incorporation of two molecules of spermidine (Spd) into the protein at the level of Gln-9 and Gln-86. The modified molecular form of the protein (Spd2-SV-IV) showed a more marked inhibitory activity on Con A-induced lymphocyte blastogenesis in comparison with the native protein, whereas no differences in the ability to inhibit the mixed lymphocyte reaction and to decrease the rat epididymal sperm immunogenicity were found between modified and native SV-IV. Spd2-SV-IV was also less effective than native SV-IV to inhibit platelet aggregation induced in vivo by different thrombogenic agents. In contrast, superimposable inhibitory tracings were observed in the in vitro platelet aggregation experiments performed with the two different molecular forms on the protein. Finally, Spd2-SV-IV was shown to retain unchanged the anti-inflammatory activity of native SV-IV.  相似文献   

20.
类风湿关节炎(rheumatoid arthritis,RA)是临床常见炎症性自身免疫疾病,以早期进行性关节滑膜炎症为主要临床特征,晚期则多以关节软骨破坏及骨侵蚀为主要病理特征。RA病因复杂,病理机制至今未明,发病率高,5年期致残率高。Th17细胞作为CD4+T细胞的亚群之一,其分泌的IL-17、IL-21等促炎性细胞因子,在RA关节滑膜炎症和关节软骨破坏及骨侵蚀等多个病理环节均发挥重要作用。基于此,本文对近年来Th17细胞参与RA关节滑膜炎症和关节软骨破坏及骨侵蚀病程的相关研究文献进行综述和讨论,以期为RA发病机制研究提供新思路,为以Th17细胞为作用靶点的创新药物开发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号