首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Begomoviruses (family Geminiviridae) are whitefly-transmitted plant DNA viruses that have been shown to be helper viruses for a number of distinct DNA satellites, including betasatellites and alphasatellites. Replication of the satellites interferes to some degree with replication of the helper and in some cases they affect the disease symptoms. To date, betasatellites and related molecules such as the satellite associated with Tomato leaf curl virus (ToLCV-sat), have only been associated with Old World begomoviruses. Here, we report the discovery and characterization of subviral molecules associated with bipartite begomoviruses from the New World, which constitute a novel class of DNA satellites, in two malvaceous plant species. These molecules, in addition to sharing some genetic features with betasatellites and ToLCV-sat, contain nucleotide stretches of begomoviral origin, presumably the remains of recombination events involved in their origin.  相似文献   

2.
Tomato leaf curl Gujarat virus (ToLCGV) has been identified as one of the most destructive pathogens causing tomato leaf curl disease (ToLCD) in India. In the tomato growing regions of Dhanbad and Ramgarh, plants bearing severe symptoms of ToLCD such as leaf curling, leaf crinkling, yellowing and leaf rolling was observed in the farmer fields. The association of begomovirus in these samples was confirmed by PCR and the causal viruses were identified as the isolates of ToLCGV. However, association of cognate DNA B component could not be ascertained from these samples. Indeed, like other Old World begomoviruses, the present ToLCGV isolates were found to be associated with a particular betasatellite, Tomato yellow leaf curl Thailand betasatellite (TYLCTHB). Although DNA A of both ToLCGV isolates could alone infect tomato inducing systemic symptoms, the difference in virulence was observed. Co-inoculation of TYLCTHB reduced the incubation period without influencing the accumulation of helper virus DNA and hence, differential pathogenesis among ToLCGV isolates was governed by the helper component rather than betasatellite. ToLCGV infection with DNA B increases the accumulation of DNA A component of Dhanbad isolate but not of Ramgarh isolate. Results indicated that the begomovirus identified from Ramgarh sample was a mild strain of ToLCGV.  相似文献   

3.
Genomic components of a begomovirus isolated from tomato plants showing leaf curl and stunting symptoms in farmer’s fields at Hessarghatta village near Bangalore, India, were cloned by rolling-circle amplification. The virus was identified as a variant of strain C of the species Tomato leaf curl Bangalore virus and designated as Tomato leaf curl Bangalore virus-C[India:Hessarghatta:2008], ToLCBV-C[IN:Hess:08]. The betasatellite isolated from these samples belongs to the betasatellite species Tomato leaf curl Bangalore betasatellite. ToLCBV-C[IN:Hess:08] induced severe symptoms in Nicotiana benthamiana and Solanum lycopersicum plants when co-inoculated with the cognate betasatellite, Tomato leaf curl Bangalore betasatellite–[India:Hessarghatta:2008], ToLCBB-[IN:Hess:08] and with two other non-cognate betasatellites, Cotton leaf curl Multan betasatellite–[India:SriGanganagar:2002] and Luffa leaf distortion betasatellite–[India:Luffa:2004].  相似文献   

4.
The Begomovirus genus of the family Geminiviridae comprises the largest group of geminiviruses. The list of begomoviruses is continuously increasing as a result of improvement in the methods for identification. Ornamental rose plants (Rosa chinensis) with highly stunted growth and leaf curling were found in Faisalabad, Pakistan. Plants were analyzed for begomovirus infection, through rolling circle amplification and PCR methods. Based on complete genome sequence homologies with other begomoviruses, a new begomovirus species infecting the rose plants was discovered. In this paper, we propose a new species name, Rose leaf curl virus (RoLCuV), for the virus. RoLCuV showed close identity (83 %) with Tomato leaf curl Pakistan virus, while associated betasatellite showed 96 % identity with Digera arvensis yellow vein betasatellite (DiAYVB), justifying a new isolate for the betasatellite. Recombination analysis of newly identified begomovirus revealed it as a recombinant of tomato leaf curl Pakistan virus from its coat protein region. The infectious molecules for virus/satellite were prepared and inoculated through Agrobacterium tumefaciens to N. benthamiana plants. RoLCuV alone was unable to induce any level of symptoms on N. benthamiana plants, but co-inoculation with cognate betasatellite produced infection symptoms. Further investigation to understand the trans-replication ability of betasatellites revealed their flexibility to interact with Rose leaf curl virus.  相似文献   

5.
For last two decades, begomoviruses (family Geminiviridae) have been a major constraint for tomato production in Oman, particularly in the Al-Batinah region, the major agricultural area of Oman. Farms in the Al-Batinah region were surveyed during January-March and November-December in 2012 and January-February in 2013. Leaf samples of tomato plants showing typical leaf curl disease symptoms were collected and analyzed for begomoviruses. Out of fifteen begomovirus clones sequenced, seven were shown to be tomato yellow leaf curl virus strain Oman (TYLCV-OM); three, chili leaf curl virus strain Oman (ChLCV-OM); and one, tomato leaf curl Oman virus (ToLCOMV) – viruses that have previously been shown to occur in Oman. Four sequences were shown to have relatively low percent identity values to known begomoviruses, with the highest (86 %) to isolates of pepper leaf curl Lahore virus, indicating that these should be included in a new species, for which the name “Tomato leaf curl Al Batinah virus” (ToLCABV) is proposed. Although the betasatellite tomato leaf curl betasatellite (ToLCB; 7 full-length sequences isolated) was identified with some isolates of ChLCV-OM, TYLCV-OM and ToLCOMV, it was not identified in association with any of the ToLCABV isolates. Analysis of the sequences of the TYLCV-OM and ToLCOMV isolates characterized here did not show them to differ significantly from previously characterized isolates of these viruses. The three isolates of ChLCV-OM characterized were shown to have a recombination pattern distinct from earlier characterized isolates. ToLCABV was shown to have resulted from recombination between ChLCV-OM and ToLCOMV. A clone of ToLCABV was infectious by Agrobacterium-mediated inoculation to Nicotiana benthamiana and tomato, inducing symptoms typical of those seen in tomato in the field. Additionally, ToLCABV was shown to be able to interact in planta with ToLCB, resulting in a change in symptom phenotype, although the betasatellite did not appear to affect viral DNA levels.  相似文献   

6.
Tomato yellow leaf curl (TYLC) and tomato leaf curl (ToLC) diseases are serious constraints to tomato production in Mali and other countries in West Africa. In 2003 and 2004, samples of tomato showing virus-like symptoms were collected during a survey of tomato virus diseases in Mali. Three predominant symptom phenotypes were observed: (1) TYLC/ToLC (stunted upright growth and upcurled leaves with interveinal yellowing and vein purpling), (2) yellow leaf crumple and (3) broccoli or bonsai (severe stunting and distorted growth). Squash blot (SB) hybridization with a general begomovirus probe and/or SB/PCR analyses revealed begomovirus infection in plants with each of these symptom phenotypes and no evidence of phytoplasma infection. Sequence analysis of PCR-amplified begomovirus fragments revealed two putative new begomovirus species associated with the TYLC/ToLC and yellow leaf crumple symptom phenotypes, respectively. Full-length clones of these begomoviruses were obtained using PCR and overlapping primers. When introduced into N. benthamiana and tomato plants, these clones induced upward leaf curling and crumpling (the TYLC/ToLC-associated begomovirus) or downward leaf curl/yellow mottle (yellow leaf crumple-associated begomovirus) symptoms. Thus, these begomoviruses were named tomato leaf curl Mali virus (ToLCMLV) and tomato yellow leaf crumple virus (ToYLCrV). The genome organization of both viruses was similar to those of other monopartite begomoviruses. ToLCMLV and ToYLCrV were most closely related to each other and to tobacco leaf curl Zimbabwe virus (TbLCZV-[ZW]) and tomato curly stunt virus from South Africa (ToCSV-ZA). Thus, these likely represent tomato-infecting begomoviruses that evolved from indigenous begomoviruses on the African continent. Mixed infections of ToLCMLV and ToYLCrV in N. benthamiana and tomato plants resulted in more severe symptoms than in plants infected with either virus alone, suggesting a synergistic interaction. Agroinoculation experiments indicated that both viruses induced symptomatic infections in tomato and tobacco, whereas neither virus induced disease symptoms in pepper, common bean, small sugar pumpkin, African eggplant, or Arabidopsis. Virus-specific PCR primers were developed for detection of ToLCMLV and ToYLCrV and will be used to further investigate the distribution and host range of these viruses.  相似文献   

7.
The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5′-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.  相似文献   

8.
Tomato leaf curl is a serious malady in the state of Maharashtra, India, causing nearly 100 % yield loss. An extensive survey was done in the affected fields of tomato in the year 2008, and members of three species of begomoviruses were identified as causing the disease. More than 60 % of the samples from diseased plants were infected with tomato leaf curl Gujarat virus (ToLCGuV). Isolates collected from these fields differed from the Varanasi isolate of ToLCGuV in not having a DNA B component. Instead, they were like typical Old World monopartite begomoviruses in that they were associated with only one betasatellite, tomato yellow leaf curl Thailand betasatellite (TYLCTHB). ToLCGuV alone is readily infectious, expressing systemic symptoms in Nicotiana benthamiana and tomato. Co-inoculation of ToLCGuV with TYLCTHB, increased symptom severity and reduced the incubation time required for symptom expression. ToLCGuV successfully interacted with heterologous DNA B component of ToLCNDV [IN:Pun:JID:08], and co-inoculation of these two resulted in yellow mottling symptoms that were typical of DNA B.  相似文献   

9.
Tomato leaf curl disease (ToLCD) has emerged as a major constraint on tomato production in some parts of West Africa. In this study, begomoviruses associated with ToLCD in Togo and Nigeria were characterized, as well as a betasatellite associated with the disease in Togo. The genome organization of both viruses is typical of Old World monopartite begomoviruses. Sequence analysis revealed that the begomovirus from Togo is a variant of tomato leaf curl Kumasi virus (ToLCKuV) from Ghana, and it is designated ToLCKuV-[Togo:Pagouda:2006] (ToLCKuV-[TG:Pag:06]). The begomovirus from Nigeria has a recombinant genome, composed of sequences of ToLCKuV (major parent) and a cotton leaf curl Gezira virus (CLCuGV)-like virus, and possesses an unusual non-reiterated replication-associated protein (Rep) binding site. Moreover, because the sequence has <89% identity with those of previously characterized begomoviruses, it is a new species and is designated tomato leaf curl Nigeria virus-[Nigeria:Odogbo:2006] (ToLCNGV-[NG:Odo:06]). The cloned DNAs of ToLCKuV-TG and ToLCNGV were infectious and induced leaf curl symptoms in tomato plants, but ToLCNGV was comparatively more virulent. Both viruses also induced stunted growth and leaf curl symptoms in other solanaceous species (various Nicotiana spp. and Datura stramonium), whereas ToLCNGV but not ToLCKuV-TG induced symptoms in common bean plants. The betasatellite associated with ToLCD in Togo is genetically distinct (i.e., <78% nucleotide sequence identity with previously identified betasatellites) and is designated tomato leaf curl Togo betasatellite-[Togo:Pagouda:2006] (ToLCTGB-[TG:Pag:06]). Replication and systemic spread of ToLCTGB in tomato was mediated by ToLCKuV-TG and ToLCNGV; however, the betasatellite had no effect on disease symptoms induced by either begomovirus. In contrast, ToLCTGB increased symptom severity induced by both viruses in Nicotiana spp. and D. stramonium. Thus, although ToLCTGB increased symptom severity in a host-dependent manner, it does not appear to play a role in ToLCD and may have been present with ToLCKuV-TG as a reassortant.  相似文献   

10.
Kumar Y  Hallan V  Zaidi AA 《Virus genes》2008,37(3):425-431
A distinct bipartite begomovirus was found associated with tomato plants showing yellowing, curling, and crumpling of the leaves, in a sub-temperate region in India. The complete DNA-A and DNA-B components were amplified through rolling circle amplification (RCA) using Φ-29 DNA polymerase and characterized. The DNA-A of the isolate was comprised of 2,756 nucleotides, encoding six open reading frames (ORFs) and DNA-B that of 2,725 nucleotides, encoding two ORFs. Genome organization of the isolate was typical of an old world bipartite begomovirus. Comparisons showed that DNA-A and its intergenic region (IR) have the highest sequence identity (86% and 84%, respectively) with the Tomato leaf curl New Delhi virus (ToLCNDV; DQ116885) and some other begomoviruses (>84%) reported from cucurbits and tomato. This data suggested that the isolate is a distinct begomovirus species for which a name Tomato leaf curl Palampur virus (ToLCPMV) is proposed. DNA-B showed the maximum sequence identity (73%) with Tomato leaf curl New Delhi virus-India-[Pakistan:Dargai:T5/6:2001] (AY150305). The common region (CR) of DNA-A and DNA-B showed 94% sequence similarity with each other. In the present study, phylogenetic relationship of this new species was also established with different begomoviruses reported from tomato and other begomoviruses showing highest homologies with complete DNA-A and DNA-B sequences. ToLCPMV is being reported from a sub-temperate region in India which was previously unaffected by begomoviruses and its whitefly vector. An erratum to this article can be found at  相似文献   

11.
A begomovirus was isolated from tomato plants showing leaf curl and stunting symptoms in farmers’ fields near the district of Kalyani, West Bengal, India. Viral genomic components amplified by rolling-circle amplification were cloned and sequenced. The genome organization of this virus was found to be similar to those of Old World monopartite begomovirus, with DNA A and a betasatellite component. Neither alphasatellite nor DNA B component was detected. The begomovirus showed highest sequence identity of 93.6% to tomato leaf curl Joydebpur virus (ToLCJoV-[IN:Kal:Chi:06]) and was thus identified to be an isolate of ToLCJoV. The betasatellite isolated from these samples was identified as tomato leaf curl Joydebpur betasatellite. ToLCJoV-[IN:Kal:Tom:08] alone induced severe symptoms in Solanum lycopersicum, N. benthamiana and N. glutinosa plants, and its severity was enhanced when co-inoculated with the cognate betasatellite. ToLCJoV-[IN:Kal:Tom:08] trans-replicated four more non-cognate betasatellites and induced severe symptoms in N. benthamiana and tomato. Since DNA A replicated efficiently and caused systemic symptom expression, it is hypothesized that ToLCJoV is essentially a monopartite virus, which could have acquired a betasatellite from an unknown source.  相似文献   

12.
Summary. Cotton leaf curl disease (CLCuD) causing viruses belong to the Begomovirus genus of the family Geminiviridae. Most begomoviruses are bipartite with two molecules of circular single stranded DNA (A and B) encapsidated in icosahedral geminate particles. However, the begomoviruses associated with CLCuD have DNA- instead of DNA-B. In this communication we report the complete genomic sequence of DNA-A component of two CLCuD-causing begomoviruses, cotton leaf curl Kokhran virus-Dabawali (CLCuKV-Dab), tomato leaf curl Bangalore virus-Cotton [Fatehabad] (ToLCBV-Cotton [Fat]) and partial sequences of two other isolates cotton leaf curl Rajasthan virus-Bangalore (CLCuRV-Ban) and cotton leaf curl Kokhran virus-Ganganagar (CLCuKV-Gang). A phylogenetic analysis of these isolates along with other related begomoviruses showed that ToLCBV-Cotton [Fat] isolate was closest to the tomato leaf curl Bangalore virus-5 (ToLCBV-Ban5) where as CLCuKV-Dab isolate was close to the cotton leaf curl Kokhran virus-Faisalabad1 (CLCuKV-Fai1), cotton leaf curl Kokhran virus-72b (CLCuKV-72b) and cotton leaf curl Kokhran virus-806b (CLCuKV-806b) isolates from Pakistan. The phylogenetic analysis further showed that the ToLCBV-Cotton [Fat] and CLCuKV-Dab isolates along with CLCuKV-Fai1, CLCuKV-72b and CLCuKV-806b are closer to the ToLCBV, tomato leaf curl Gujarat virus (ToLCGV), tomato leaf curl Gujarat virus-Varanasi (ToLCGV-Var) and tomato leaf curl Sri Lanka virus (ToLCSLV) isolates, where as cotton leaf curl Alabad virus-804a (CLCuAV-804a), cotton leaf curl Multhan virus (CLCuMV) cluster with the isolates from cotton leaf curl Rajasthan virus (CLCuRV) and okra yellow vein mosaic virus (OYVMV). These results demonstrate the extensive variability observed in this group of viruses. The AC4 ORF is the least conserved among these viruses. In order to further asses the variability in the CLCuD-causing begomoviruses, the region showing minimum similarity in the DNA-A sequence was first determined by a comparison of segments of different lengths of the aligned sequences. The results indicated that region 2411–424 (771nt) was the least conserved. A phylogenetic tree constructed using the sequences of all the CLCuD causing begomoviruses, corresponding to the least conserved region showed that they form two distinct clusters.  相似文献   

13.
Whitefly-transmitted Begomoviruses having circular single stranded DNA genome cause severe leaf curl diseases in the tropical and subtropical region. The majority of Old World monopartite begomoviruses with DNA A component is associated with a satellite DNA of 1.3 kb length referred to as betasatellites. The presence of betasatellite is required to express typical symptoms in the primary hosts. Increased symptom expression in betasatellite's presence is attributed to a 13–15 kDa βC1 protein encoded by the βC1 gene on complementary sense strand. The exact mechanism by which the βC1 protein contributes to the symptoms' severity and helper viral DNA's accumulation is not yet understood. Here, we studied the βC1 protein of Cotton leaf curl Multan betasatellite, associated with mono and bipartite begomoviruses. The βC1 protein was expressed in prokaryotic system as 6XHis-βC1 fusion protein and recombinant protein showed size- and sequence-specific DNA binding activity. The host proteins which may interact with βC1 were identified by binding βC1 recombinant protein with heptapeptide in phage display library. The βC1-interacting host proteins predicted belong to metabolic and defense pathways, indicating that βC1 protein has a pivotal role in viral pathogenicity.  相似文献   

14.
Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010–2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0–91.1%) to isolates of the “Pakistan” strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed.  相似文献   

15.
The genome of a tomato-infecting begomovirus from Ranchi, India, was cloned, sequenced and analysed. The viral genome shared 88.3% sequence identity with an isolate belonging to the species Tobacco curly shoot virus (TbCSV), and this virus should therefore be considered a member of a new species, tentatively named Tomato leaf curl Ranchi virus (ToLCRnV). The DNA-?? molecule, which had 74.5% sequence identity with tomato leaf curl Bangladesh betasatellite (ToLCBDB), is named tomato leaf curl Ranchi betasatellite (ToLCRnB). Phylogenetic analysis revealed that ToLCRnV is related to tomato leaf curl Bangladesh virus (ToLCBDV), tobacco curly shoot virus (TbCSV) and tomato leaf curl Gujarat virus (ToLCGV). An infectivity study with ToLCRnV established the monopartite nature of the viral genome, whereas inoculation with ToLCRnB resulted in increased symptom severity. ToLCRnV could transreplicate DNA-B of tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl New Delhi virus (ToLCNDV), both in N. benthamiana and tomato, although DNA-B accumulation of was less than with the wild-type combinations. ToLCRnB could be efficiently replicated by DNA-A of both ToLCNDV and ToLCGV. A leaf disk assay suggests that DNA-A could transreplicate the homologous DNA-B and DNA-?? more efficiently than the heterologous one.  相似文献   

16.
Ueda S  Onuki M  Yamashita M  Yamato Y 《Virus genes》2012,44(2):338-344
Tomato yellow leaf curl virus (TYLCV) and Ageratum yellow vein betasatellite (AYVB) are members of the genus Begomovirus (family Geminiviridae). TYLCV and AYVB have been found in Japan over the last 15 years, and are associated with tomato leaf curl and the tomato yellow leaf curl diseases (TYLCD). AYVB is also associated with some monopartite begomoviruses. We have cloned both TYLCV and AYVB and demonstrated that TYLCV can trans-replicate with AYVB in Nicotiana benthamiana and tomato plants. A mixed infection of TYLCV and AYVB induced more severe symptoms of upward leaf curl, stunting, vein thickening, and swelling compared with TYLCV infection alone. The symptoms induced by infection of AYVB included a rise in abnormal cell proliferation, and pigmentation around leaf vein tissues. This is the first study to show that a complex of TYLCV and AYVB can be transmitted by vector insects among tomato plants. These results indicate that TYLCV possesses the potential to induce severe TYLCD by associating with AYVB.  相似文献   

17.
Tomato cultivation in Brazil is threatened by a number of tomato-infecting viruses belonging to the genus Begomovirus of the family Geminiviridae. Here, we report the full DNA-A sequences of three Brazilian begomoviruses: a potentially new tomato-infecting viruses, tomato interveinal chlorosis virus (ToICV), and two previously proposed begomoviruses for which only partial DNA-A sequences are available in the databases: tomato mottle leaf curl virus (TMoLCV) and tomato golden vein virus (TGVV). The complete sequences of the DNA-B components of TMoLCV and TGVV and the DNA-A components of a number of tomato severe rugose virus variants are also presented. Collectively, all of the analyzed sequences were phylogenetically clustered within the two major groups of Brazilian tomato-infecting begomoviruses.  相似文献   

18.
The complete nucleotide sequences of begomoviruses from pepper with leaf curl and yellowing symptoms, tomato with leaf curl symptoms, and ageratum with yellow vein in Indonesia were determined. On the basis of genome organization and sequence homology, they were proposed to belong to a new species, Pepper yellow leaf curl Indonesia virus (PepYLCIV), which includes the new strains PepYLCIV-Tomato and PepYLCIV-Ageratum. These viruses had bipartite genomes. Pepper virus DNAs from Indonesia (PepYLCIV, PepYLCIV-Tomato and PepYLCIV-Ageratum DNA-As) were noticeably distinct, forming a separate branch from the viruses infecting pepper. Considerable divergence was observed in the common region (CR) of the genomic components of PepYLCIV (77%), PepYLCIV-Tomato (82%) and PeYLCIV-Ageratum (75%). A stem-loop-forming region and a Rep-binding motif were identical in the CR of the three viruses. The CRs of PepYLCIV-Ageratum DNA-A was approximately 10 nucleotides longer than that of PepYLCIV DNA-A and PepYLCIV-Tomato DNA-A. A similar insertion was also found in the CR of PepYLCIV-Ageratum DNA-B. PepYLCIV DNA-A alone was infectious in pepper and Nicotiana benthamiana plants, and association with DNA-B increased symptom severity.  相似文献   

19.
The complete nucleotide sequence was determined for a begomovirus isolated from tomato exhibiting leaf curling and yellowing symptoms in Tochigi Prefecture in Japan. The genome organization of this virus was similar to those of other Old World monopartite begomoviruses. Neither a DNA betasatellite nor a DNA-B component was detected. It had the highest total nucleotide sequence identity (99%) with tomato yellow leaf curl virus-Israel[Japan:Tosa:2005] (TYLCV-IL[JR:Tos:05]) and TYLCV-Israel[Japan:Haruno:2005] (TYLCV-IL[JR:Han:05]). Its coat protein V1 also showed an identical amino acid sequence with those of TYLCV-IL[JR:Tos:05] and TYLCV-IL[JR:Han:05]. Thus, the begomovirus was determined to be an isolate of TYLCV-IL designated as TYLCV-Israel[Japan:Tochigi:2007] (TYLCV-IL[JR:Toc:07]). We investigated the interaction of TYLCV-IL[JR:Toc:07] with two known satellites associated with tomato yellow dwarf disease in Japan, tobacco leaf curl Japan betasatellite [Japan:Ibaraki:2006] and honeysuckle yellow vein mosaic betasatellite [Japan:Nara:2006], as well as with tomato leaf curl Philippines betasatellite [Philippines:Laguna1:2008], in tomato and Nicotiana benthamiana plants. TYLCV-IL[JR:Toc:07] trans-replicated these betasatellites, inducing more severe tomato yellow leaf curl disease-related symptoms than TYLCV-IL[JR:Toc:07] alone.  相似文献   

20.
Ageratum conyzoides (goat weed) is a widespread uncultivated species in Cameroon that exhibits leaf curl disease (LCD) symptoms suggestive of begomovirus infection. In Asia, different begomovirus-satellite complexes have been identified in A. conyzoides. The objective of this study was to determine the identity of the suspect begomoviruses and their associated satellites in A. conyzoides in Cameroon. The results indicated that all three symptomatic A. conyzoides plants examined were infected with a new begomovirus species, herein named Ageratum leaf curl Cameroon virus (ALCCMV). The ALCCMV genome sequences shared their highest identity, at 84.3-88.5%, with a group of tomato-infecting begomoviruses from West Africa. In addition, a betasatellite and an alphasatellite were cloned from the same symptomatic A. conyzoides plants. The betasatellite sequences shared limited sequence identity at 37% or less with the betasatellite Cotton leaf curl Gezira betasatellite, and the new betasatellite species is herein named Ageratum leaf curl Cameroon betasatellite (ALCCMB). The alphasatellite shared 80% nt identity with Tomato leaf curl Cameroon alphasatellite (ToLCCMA), and the new alphasatellite species is herein named Ageratum leaf curl Cameroon alphasatellite (ALCCMA). In addition, two fragments containing begomovirus-alphasatellite sequences were cloned from sample AGLI4, and they were related to the defecting interfering molecule (Y14167) associated with Ageratum yellow vein virus from Asia. These results suggest that the begomoviral-satellite complexes infecting A. conyzoides in Cameroon may be as complex or more so, to species and strains reported thus far from Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号