首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
背景:钩突增生常导致颈椎病发生,无需内固定的钩椎关节切除术具有重要意义,但尚存诸多问题。目的:建立全颈椎(C0-T1)三维有限元模型,切除钩突不同范围后,探究颈椎关节突的应力变化特点和规律,为临床颈椎病的手术治疗提供理论依据。方法:对40岁男性正常成人志愿者进行全颈椎螺旋CT轴位薄层扫描来获得原始数据,应用Mimics、Geomagic Studio、Hypermesh、Abaqus等软件技术建立C0-T1全颈椎三维有限元模型,在C5椎体上构建单侧钩突切除50%、100%和双侧钩突切除100%的3种模型组,然后加载相同力矩赋予前屈、后伸、左右侧屈和左右旋转6种工况,以观测切除不同范围钩突后颈椎关节突关节在不同状态下的应力与位移变化。结果与结论:(1)通过构建全颈椎正常与切除钩突不同范围后的有限元模型,加载相同力矩后发现颈椎关节突的受力集中区由正常组的C6处上移至切除不同范围钩突组的C5处,得出关节突的受力随椎序增加呈现递增趋势;(2)...  相似文献   

2.
背景临床上颈椎钩突关节增生经常是多节段存在,由于多间隙病变复杂,手术方案的制定需要考虑多种因素。临床医生发现,即使是采用微创前路椎间孔减压术治疗两节段的神经根型颈椎病,减压充分后也不一定都需要行椎间融合术。目的本文对两个节段的钩突进行部分切除后,研究对颈椎稳定性的影响。方法依据健康志愿者的影像学资料,采用Mimics13.1、Solid Works2012软件建立三维几何模型,ANSYS15.0软件进行网格划分和网格优化,赋值各类组织的材料属性,建立颈椎(C2-C7)三维有限元模型,通过有限元分析技术研究部分切除单侧两个钩突后对颈椎稳定性和邻近节段椎体应力的影响。结果采用文中所述切除方法进行左侧钩突部分切除后,当切除双节段(60+60模型)时,各个工况下的最大位移相对于前3种切除方式均有明显的增大,而且各个工况下的最大应力相对于前3种切除方式均有显著增大。结论随着切除节段的增多和切除范围的增大,节段之间的活动度增大,局部应力增大,给颈椎带来一定的影响,导致颈椎不稳,加速颈椎的退变。因此在制定手术方案时,要严格掌握手术适应证,除非有明确的神经根、脊髓受压的指征,否则不可盲目扩大切除范围。  相似文献   

3.
基于CT图像数据结合图像处理软件建立人体下颈椎C3-C7活动节段的三维有限元模型,并验证模型的有效性。选取一名健康志愿者颈椎CT数据,建立包括椎体、后部结构、终板、椎间盘、韧带和关节突等部分的下颈椎C3-C7三维有限元模型,赋予颈椎组织不同成分的材料属性,模拟人体颈椎在正常生理状态下承受扭矩载荷时,前屈、后伸、侧弯和旋转等运动情况下颈椎椎体、椎间盘和小关节的生物力学特性。颈椎C3-C7活动节段在四种工况下的活动范围与前人离体实验和有限元分析的研究结果基本吻合,颈椎椎体、椎间盘和小关节的应力分布符合其生物力学特性。下颈椎C3-C7活动节段的模拟结果符合人体的真实运动规律,为临床颈椎的生理、病理研究以及植入器械的力学性能分析奠定理论基础。  相似文献   

4.
研究保留椎旁肌肉情况下,下颈椎单侧关节突关节分级切除对颈椎稳定性的影响,为临床手术提供理论依据.取5具新鲜山羊颈椎标本,先后分5组进行操作,即完整标本组,左侧C4-5关节突关节25%、50%、75%、100%切除组.先后测量每组每个颈椎标本在三维空间六个方位(前屈、后伸、左右侧屈、左右轴向旋转)随载荷增加而变化的活动度.最后将所得数据进行统计分析.结果表明:随关节突关节切除范围的增大,在相同载荷条件下的位移也增大,其中增长幅度最大发生在50%~75%切除组之间,增长幅度平均在46.7%(前驱、后伸、左右侧弯四个方向)和71.5%(左右轴向旋转).在保留椎旁肌肉情况下,单侧关节突关节切除范围大于50%时,颈脊柱稳定性丧失.  相似文献   

5.
比较正常颈椎标本和切除颈椎C5-6小关节标本的前屈、后伸、左侧弯、右侧弯、扭转等生物力学指标。确定小关节切除是否对颈椎稳定性造成影响。在日本岛津电子万能试验机上对正常和切除小关节的标本进行前屈、后伸、左侧弯、右侧弯实验,在扭转试验机上进行扭转实验。以2 mm/min的实验速度分别对标本施加载荷,测量位移数据。以50 mm/min的实验速度对标本施加扭矩,测得标本的扭转角。得出正常对照组和小关C5-6节切除标本的各项力学性能指标。小关节切除25%对各项运动范围无显著变化,小关节切除50%、75%、100%对各项运动范围显著增大。双侧小关节全切除后运动范围显著增大,较其它各组间差异显著(P<0.05)。小关节切除50%以上,尤其双侧小关节切除,打乱了颈椎的平衡关系,对颈椎的稳定性造成影响。  相似文献   

6.
目的建立人体下颈椎C3~7节段前路椎体次全切除钛网植骨融合术的三维有限元模型,分析术后椎体稳定性及内固定器械的应力分布。方法建立前路椎体C5节段次全切除钛网植骨钢板螺钉内固定颈椎C3~7节段有限元模型,同时建立C3~7节段下颈椎原始模型。对术后模型分别施加0.5、1.0、1.5、2.0 N·m扭矩,分析前屈、后伸、侧弯及轴向旋转时关节活动度(range of motion,ROM)、关节突关节最大应力与内固定器械整体应力分布情况。结果前路椎体次全切除减压融合术(cervical corpectomy and fusion,ACCF)后,C5重建节段ROM随扭矩的增大而增加,与无损模型在1.0 N·m、预载荷50 N工况下相比,C5重建节段、C3~4,C6~7和C3~7节段ROM分别下降81%、62%、58%和80%;C5重建节段后方关节突关节最大应力减小,临近节段关节突关节应力显著升高;钛网应力主要分布于运动受压侧,螺钉根部承受较大载荷。结论 ACCF术式会较大提升颈椎稳定性,降低手术节段后方关节突关节应力,对于减缓因脊髓型颈椎病引起的脊髓压迫有较好疗效。研究结果可为ACCF手术的临床应用研究提供理论依据。  相似文献   

7.
生理曲度变直与正常的颈椎有限元建模与分析   总被引:1,自引:0,他引:1  
建立生理曲度变直和曲度正常的颈椎全节段有限元模型,进行对比与分析.选取颈椎曲度变直患者采集CT数据,采用专用生物力学有限元软件构建高质量颈椎全节段模型,然后采用基于离散微分属性的体网格变形技术,将变直模型映射生成曲度正常模型,在进行有限元模型的验证后,用相同边界条件进行对比分析.结果表明,曲度变直模型活动度范围比正常范围减少16%~28%,应力增加4%~90%,C3-C4和C4-C5小关节、钩突关节、椎间盘容易出现应力集中,表明容易出现损伤和退化.通过使用新型建模软件和体网格变形技术,能方便构建生理曲度变直和正常模型,分析结果对临床诊断有指导意义.  相似文献   

8.
目的建立C1~7全颈椎三维有限元模型,研究其在颈部肌肉作用下颈椎牵引的生物力学特性,为临床颈椎牵引的治疗提供参考。方法建立正常颈椎的三维非线性有限元模型,在此基础上结合临床颈椎牵引的方法,利用生物力学分析软件进行建模仿真,在牵引重量一定的情况下,用后伸0°、10°、20°、30°、40°进行牵引,获得关节力和肌肉力,筛选合适的关节力和肌肉力对颈椎模型进行有限元分析。结果颈椎后伸牵引过程中,在肌肉力的作用下,颈椎椎体、椎间盘、钩椎关节的平均最大等效应力分别增加4.86、1.79、0.69 MPa,颈椎椎体的平均最大相对位移在矢状轴、垂直轴方向上分别增加5.53、0.63 mm。颈椎后伸牵引的生物力学特性与文献中的有限元分析结果相近。结论颈部肌肉对颈椎各椎体、椎间盘以及钩椎关节应力及位移的增加具有较大的促进作用。临床上行颈椎后伸牵引时,应考虑到颈部肌肉的作用,牵引角度不宜过大,推荐0°~20°是颈椎牵引初期相对安全的角度范围。  相似文献   

9.
目的:分析PrestigeTM-LP颈椎人工椎间盘对椎体的应力和关节间压力作用,了解节段间运动载荷传递方式及作用机制。方法:通过实体CT扫描方式建立颈4~5节段PrestigeTM-LP人工椎间盘置换有限元模型。生理载荷下前屈、后伸、左侧弯、左轴向旋转时测量颈5椎体应力和颈4-5关节突间压力变化。结果:运动加载后C5椎体应力均有不同程度增大,表现出与运动加载方向一致的应力偏移改变。相比于前屈,后伸时双侧关节突间压力明显增大。左侧弯时左侧关节突间压力增大,左轴向旋转时右侧关节突间压力明显增大。结论:采用有限元模型进行骨性结构的应力及压力分析具有形象及精确的优点。PrestigeTM-LP颈椎人工椎间盘置换有效地起到椎体间应力传递和保留关节突关节间压力作用,具有接近正常颈椎的生物力学特性。  相似文献   

10.
目的 探究颈椎内镜下不同范围小关节切除对颈椎节段稳定性的影响,为临床手术提供生物力学理论基础。方法 基于CT数据建立颈椎C5~6正常有限元模型,并模拟颈椎内镜手术操作获得不同范围(0、25%、50%、75%、100%)单侧小关节切除椎板开窗模型(模型1~5),分析比较各组模型节段活动度(range of motion, ROM)及椎间盘von Mises应力情况。结果 除前屈工况外,模型1、2较正常模型各方向下ROM及椎间盘von Mises应力改变不明显,模型3较正常模型各方向下ROM及椎间盘von Mises应力出现较为明显增加,前屈、后伸、左侧弯、右侧弯、左旋转及右旋转时ROM分别增加27%、4%、3%、13%、5%、16%,von Mises应力分别增加32%、4%、2%、5%、9%、5%。模型4、5较正常模型各方向下ROM及椎间盘von Mises应力增加显著,模型4的ROM分别增加27%、14%、6%、24%、7%、167%,von Mises应力分别增加33%、13%、3%、32%、10%、130%;模型5的ROM分别增加27%、17%、6%、25%、7%、167%,von Mises应力分别增加33%、29%、8%、33%、12%、138%。结论 随着单侧小关节切除范围的增加,颈椎节段ROM和椎间盘von Mises应力极值逐渐增加。当单侧小关节切除超过1/2时,颈椎出现较大的ROM增加及应力改变。临床手术中应尽量保留1/2以上颈椎小关节,避免医源性失稳。  相似文献   

11.
目的 建立颈椎(C2~ C7)三维有限元模型。方法 根据1名既往无颈椎病史健康成年男性志愿者的颈椎断层CT扫描序列图像,采用Mimics1 3.1、SolidWorks2012软件进行三维重建和造型,利用ANSYS14.0软件,采用四面体网格划分方法,对颈椎及周围组织赋予不同的材料属性,建立颈椎(C2 ~C7)三维有限元模型。结果 本研究成功建立了6个椎体运动节段的三维有限元模型,模型高度模拟颈椎结构与材料特性,单元划分精细。在建立的模型上加载模拟脊柱的前屈、后伸、左右侧曲、左右旋转6种工况下的生理活动,所获得的理论分析结果与参考文献的报道一致。结论 建立的颈椎三维有限元模型可进行颈椎生物力学研究。  相似文献   

12.
背景:随着颈椎后路手术技术的日益完善,侧块螺钉内固定技术已被广泛应用于颈椎的重建稳定性手术之中。然而,当前对于侧块螺钉内固定系统重建颈椎稳定性的有限元研究却很少。 目的:建立精细下颈椎(C3-C7)及三节段全椎板切除后应用侧块螺钉内固定重建的三维有限元模型,对重建后的下颈椎及内固定进行生物力学分析。 方法:采集1例30岁正常女性志愿者行全颈椎CT,得到Dicom数据集。应用Mimics 10.01、Geomagic Studio12.0、Solidworks2012、HyperMesh10.1、Abaqus 6.12软件建立下颈椎(C3-C7)完整模型、全椎板切除模型以及侧块螺钉内固定系统重建模型。分析重建模型在前屈、后伸、侧弯和旋转运动状态下的应力变化情况。 结果与结论:所建下颈椎有限元模型结构精细,外形逼真,共包含503 911个四面体单元,93 390个节点,并通过有效性验证。在软件中完成模拟手术过程,最终得到侧块螺钉内固定重建模型。侧块螺钉内固定系统对全椎板切除模型具有良好的稳定性,重建后颈椎的活动度远低于完整模型,且后伸时侧块螺钉内固定系统的应力最为集中。中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程全文链接:  相似文献   

13.
目的 利用Simpleware软件构建全颈椎三维有限元模型,并对模型进行验证和分析,为探讨颈椎损伤机制提供可靠模型。方法 基于CT断层扫描图像,利用医学图像处理软件Simpleware、逆向工程软件Geomagic建立C1~7全颈椎三维实体模型,导入Hypermesh进行颈椎网格划分、添加韧带并引入小关节突接触关系等,建立C1~7全颈椎有限元模型,在ANSYS中模拟前屈、后伸、侧弯和轴向旋转工况下颈椎的生物力学性能。结果 建立的模型准确可靠,在前屈、后伸、侧弯和轴向旋转时,活动范围与文献中离体实验和有限元分析结果相近。椎间盘应力集中在椎体受压侧,C4/5最易产生应力集中。结论 建立的C1~7全颈椎有限元模型能够有效模拟颈椎的生物力学特性,为后续颈椎挥鞭样损伤的生物力学研究奠定良好的基础。  相似文献   

14.
目的 建立椎动脉(vertebral artery, VA)流体有限元模型,进行流固耦合计算,以深入了解颈椎活动与VA血流流体力学之间生物力学关系。方法 基于正常人颈椎(C0~T1)及双侧椎动脉三维有限元模型,模拟颈椎前屈、后伸、左右侧弯、左右旋转,观察颈椎活动对VA血管壁应力的影响,并通过流固耦合计算血管壁与流体相互作用,获取血流动力学参数。结果颈椎活动过程中,VA血管壁的最大应力通常集中在两侧C2横突孔处(入颅方向的第2个弯曲),后伸和侧弯较旋转活动时血管壁最大应变最为明显,应变比值分别为23.04%和35.5%。侧弯活动时,血管最大应力位于对侧横突孔;旋转活动时,血管应变位于同侧横突孔。颈椎活动度方面,最低流速值几乎均出现在生理活动范围的30%~40%。颈椎前屈、后伸活动时,双侧VA流速-时间变化曲线相似,且在0.5 s内,都完成了2次流速增减的循环。侧弯时,同侧VA的波峰和波谷早于对侧VA出现;而旋转时,同侧VA的波峰和波谷晚于对侧VA出现。结论 双侧VA血管壁所受应力特点、血流速-时间变化曲线等结果能与其他实验结果相互验证,并能合理解释相关临床现象。建立的VA模型将为VA相关疾病研究提供较理想的平台。  相似文献   

15.
目的 采用三维有限元法分析人体侧卧位状态下枕高与颈椎间盘应力的关系,为合理用枕提供依据.方法 对1名正常男性志愿者进行颈椎薄层CT扫描,联用医学图像处理软件Mimics、逆向工程软件Geomagic Studio、有限元软件MSC.Patran建立人体侧卧位枕高分别为10 cm(冠状面颈椎左侧屈)、17 cm(冠状面颈椎中立)、25 cm(冠状面颈椎右侧屈)3种条件下的全颈椎三维有限元模型,并进行分析运算.结果 冠状面颈椎近似中立位模型(枕高17 cm)的等效应力、最大主应力、最大剪应力均明显低于左侧屈或右侧区模型.结论 颈椎冠状面处于中立位可使颈椎间盘获得最佳应力分布状态.人体侧卧睡眠时,合理的枕高应是颈椎在冠状面处于中立位.  相似文献   

16.
BACKGROUND: Posterior lamina resection often causes loss of spinal stability, so screw rod internal fixation technology is needed to maintain the stability of lumbar spine. Finite element analysis can be used to simulate the stress distribution of the spine and internal fixation system after spinal surgery. OBJECTIVE: To build three-dimensional finite element model of spinal L1 to L3, analyze the spinal stability and stress distribution after the total laminectomy and insertion of bilateral pedicle screw using finite element method. METHODS: L1-L3 CT data could be collected from an adult healthy male volunteer. Mimics14.01, 3-matic(V6.0) and Ansys 15.0 could be used to set up the intact lumbar spine finite element model of L1-L3 (group A), the L1-L3 finite element model after L2 total laminectomy (group B), and the finite element model of L2 total laminectomy and insertion of bilateral pedicle screw (group C). We used software to simulate flexion, extension, lateral bending and axial rotation, and three kinds of models received finite element analysis. RESULTS AND CONCLUSION: (1) Based on the maximum of Von Mises under different motion states, the maximum stress was significantly lower in group A than in group B (P < 0.05). The maximum stress was significantly lower in group B than in group C (P < 0.05). (2) Based on the total deformation under different motion states, the total deformation was significantly lower in group A than in group B (P < 0.05). The total deformation was significantly lower in group C than in groups A and B (P < 0.05). (3) After the total laminectomy, vertebral body stress increased, especially in the lamina, pedicle and joints. The range of motion of the vertebral body increased, which influenced the stability of the vertebral body. Internal fixation could decrease range of motion. Stress concentrated on the screw. Stress on the vertebral plate and pedicle decreased. The stability of vertebral body increased. Excessive stress concentrated on screw system will increase the risk of screw breakage.   相似文献   

17.
背景:人体组织属性主要表现为非线性,颈枕部的生物力学特点更易受软组织材料属性变化的影响,因此建立非线性有限元模型与人体真实属性更接近。 目的:构建正常成人颈枕部三维非线性有限元模型并验证其有效性。 方法:利用MarConi MX8000多层螺旋CT对健康成人进行颅底-C3段扫描,获取二维图像。直接读入Dicom格式原始图像,图像分割,数据光顺,三维重建后生成颅底-C3节段脊柱三维实体模型;将此模型导入ScanFE模块,进行体网格划分;在ANSYS 10.0软件中直接导入以上三维模型,构建颅底-C3段内韧带单元,模拟韧带力-位移曲线,建立完成颅底-C3段的三维非线性有限元模型。垂直向下方向施加40 N预载荷,1.5 N•m力矩模拟前屈、后伸、侧屈及旋转运动,对比分析实验结果,判断模型应力分布与临床相符度。 结果与结论:构建的三维非线性有限元模型包括663 551个单元,178 247个节点。施加预载荷及1.5 N•m力矩后,寰枕关节运动范围为前屈13.3°、后伸11.9°、侧屈4.3°、旋转8.7°;寰枢关节运动范围为前屈15.5°、后伸12.6°,侧屈6.4°、旋转30.8°,与尸体标本实验结果相符。从整个模型的纵向应力分布看,在任何相对位置状态下,枢椎齿状突后方的应力均较高,后伸位时应力增高区域加大。上颈椎的应力主要集中于椎管周围,寰椎侧块两端及枢椎横突的应力则较小。对比研究发现,在不同相对工况下前屈、后伸、侧屈、旋转时C2-C3小关节应力均大于钩椎关节,颈枕部三维非线性有限元模型的应力分布特点符合临床实际情况。结果提示应用多层螺旋CT扫描得到的二维图像及simple ware、Ansys10.0软件,建立的颈枕部三维非线性有限元模型符合人体真实的运动规律,可以很好地模拟颈枕部的生物力学特性。  相似文献   

18.
该文基于人体 DICOM 图像建立了更符合人体解剖结构的 L4/5 节段腰椎三维有限元模型,模拟腰椎前屈、后伸、 侧弯及扭转 4 种运动状态下的生物力学响应。前纵韧带(ALL)受损后腰椎的关节活动度(ROM)增大,后伸时增大最显著。ALL 受损后应力减小且分布发生改变,后伸时应力最大位置由韧带上部转移至韧带下部,侧弯时应力作用范围明显缩小。ALL 受损后应变分布发生不同程度的改变,产生明显的纵向形变。除扭转外,其他运动状态下 ALL 应变增大,后伸和侧弯应变增加量最大。ALL 主要限制后伸运动,ALL 受损后腰椎稳定性下降。ALL 受损后进行后伸和侧弯运动时可能会加重已有的损伤,因此 ALL 受损患者应尽量减少过度后伸和侧弯运动。该文的仿真实验可对韧带损伤疾病的诊断治疗提供支持和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号