首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White matter (WM) abnormalities in schizophrenia may offer important clues to a better understanding of the disconnectivity associated with the disorder. The aim of this study was to elucidate a WM basis of auditory hallucinations in schizophrenia through the simultaneous investigation of WM tract integrity and WM density. Diffusion tensor images (DTIs) and structural T1 magnetic resonance images (MRIs) were taken from 15 hallucinating schizophrenic patients, 15 non-hallucinating schizophrenic patients and 22 normal controls. Voxel-based analyses and post-hoc region of interest analyses were obtained to compare the three groups on fractional anisotropy (FA) derived from DTI as well as WM density derived from structural MRIs. In both the hallucinating and non-hallucinating groups, FA of the WM regions was significantly decreased in the left superior longitudinal fasciculus (SLF), whereas WM density was significantly increased in the left inferior longitudinal fasciculus (ILF). The mean FA value of the left frontal part of the SLF was positively correlated with the severity score of auditory hallucinations in the hallucinating patient group. Our findings show that WM changes were mainly observed in the frontal and temporal areas, suggesting that disconnectivity in the left fronto-temporal area may contribute to the pathophysiology of schizophrenia. In addition, pathologic WM changes in this region may be an important step in the development of auditory hallucinations in schizophrenia.  相似文献   

2.
Auditory verbal hallucinations (AVH) is a common and stressful symptom of schizophrenia. Disrupted connectivity between frontal and temporo-parietal language areas, giving rise to the misattribution of inner speech, is speculated to underlie this phenomenon. Disrupted connectivity should be reflected in the microstructure of the arcuate fasciculi (AF); the main connection between frontal and temporo-parietal language areas. In this study we compared microstructural properties of the AF and three other fiber tracts (cortical spinal tract, cingulum and uncinate fasciculus), between 44 schizophrenia patients with chronic severe hallucinations and 42 control subjects using diffusion tensor imaging (DTI) and magnetic transfer imaging (MTI). The DTI scans were used to compute fractional anisotropy (FA) and to reconstruct the fiber bundles of interest, while the MTI scans were used to compute magnetic transfer ratio (MTR) values. The patient group showed a general decrease in FA for all bundles. In the arcuate fasciculus this decreased FA was coupled to a significant increase in MTR values. A correlation was found between mean MTR values in both arcuate fasciculi and the severity of positive symptoms. The combination of decreased FA and increased MTR values observed in the arcuate fasciculi in patients suggests increased free water concentrations, probably caused by degraded integrity of the axons or the supportive glia cells. This suggests that disintegrated fiber integrity in the connection between frontal and temporo-parietal language areas in the schizophrenia patients is associated with their liability for auditory verbal hallucinations.  相似文献   

3.
Abstract

Objectives. Auditory verbal hallucinations (AVH) are among the most common symptoms in schizophrenia. Earlier studies suggest changes in the structural connectivity of auditory areas involved in the pathophysiology of auditory hallucinations. Combining diffusion tensor imaging (DTI) and fibre tractography provides a unique opportunity to visualize and quantify entire fibre bundles. Methods. Fibre tracts connecting homotopic auditory areas via the corpus callosum were identified with DTI in ten first episode paranoid schizophrenia patients and ten healthy controls. Regions of interest were drawn manually, to guide tractography, and fractional anisotropy (FA) – a measure of fibre integrity – was calculated and averaged over the entire tract for each subject. Results. There was no difference in the FA of the interhemispheric auditory fibres between schizophrenic patients and healthy controls. However, the subgroup of patients hearing conversing voices showed increased FA relative to patients without these symptoms (P = 0.047) and trendwise increased FA relative to healthy controls (P = 0.066). In addition, a trendwise correlation between FA values and AVH symptoms (P = 0.089) was found. Conclusions. Our findings suggest that in addition to local deficits in the left auditory cortex and disturbed fronto-temporal connectivity, the interhemispheric auditory pathway might be involved in the pathogenesis of AVH.  相似文献   

4.
Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.Key words: DTI, MRI, schizotypal personality disorder, schizophrenia, psychosis, white matter, genu, cingulum, inferior longitudinal fasciculus  相似文献   

5.
The pathophysiology of auditory verbal hallucinations (AVH) is still unclear. Cognitive as well as electrophysiological studies indicate that a defect in sensory feedback (corollary discharge) may contribute to the experience of AVH. This could result from disruption of the arcuate fasciculus, the major tract connecting frontal and temporo‐parietal language areas. Previous diffusion tensor imaging studies indeed demonstrated abnormalities of this tract in schizophrenia patients with AVH. It is, however, difficult to disentangle specific associations with AVH in this patient group as many other factors, such as other positive and negative symptoms, medication or halted education could likewise have affected tract integrity. We therefore investigated AVH in relative isolation and studied a group of non‐psychotic individuals with AVH as well as patients with AVH and non‐hallucinating matched controls. We compared tract integrity of the arcuate fasiculus and of three other control tracts, between 35 non‐psychotic individuals with AVH, 35 schizophrenia patients with AVH, and 36 controls using diffusion tensor imaging and magnetization transfer imaging. Both groups with AVH showed an increase in magnetization transfer ratio (MTR) in the arcuate fasciculus, but not in the other control tracts. In addition, a general decrease in fractional anisotropy (FA) for almost all bundles was observed in the patient group, but not in the non‐psychotic individuals with AVH. As increased MTR in the arcuate fasciculus was present in both hallucinating groups, a specific association with AVH seems plausible. Decreases in FA, on the other hand, seem to be related to other disease processes of schizophrenia. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Recent magnetic resonance imaging (MRI) studies using diffusion tensor imaging (DTI) have suggested reduced fractional anisotropy (FA) in the white matter (WM) of the brain in patients with schizophrenia. We tried to examine whether such reduction in FA exists and whether such changes in FA progress in an age-dependent manner in a Japanese sample of chronic schizophrenia. FA values were compared between 42 patients with chronic schizophrenia and 42 controls matched for age and gender, by using DTI with voxel-by-voxel and region-of-interest analyses. Correlations of FA values with age and duration of illness were examined. Patients with schizophrenia showed lower FA values, compared to controls, in the widespread WM areas including the uncinate fasciculi and cingulum bundles. A significant group-by-age interaction was found for FA in the WM, i.e., age-related reduction of FA was more pronounced in schizophrenics than in controls. A significant negative correlation between FA and duration of illness was also found in the WM. Our data confirmed decreased FA in schizophrenics, compared to controls in the widespread WM areas. Such decreased FA values in schizophrenia might be attributable, at least in part, to progressive changes after the onset of the illness.  相似文献   

7.
With the introduction of diffusion tensor imaging (DTI), structural differences in white matter (WM) architecture between psychiatric populations and healthy controls can be systematically observed and measured. In particular, DTI-tractography can be used to assess WM characteristics over the entire extent of WM tracts and aggregated fiber bundles. Using 64-direction DTI scanning in 27 participants with bipolar disorder (BD) and 26 age-and-gender-matched healthy control subjects, we compared relative length, density, and fractional anisotrophy (FA) of WM tracts involved in emotion regulation or theorized to be important neural components in BD neuropathology. We interactively isolated 22 known white matter tracts using region-of-interest placement (TrackVis software program) and then computed relative tract length, density, and integrity. BD subjects demonstrated significantly shorter WM tracts in the genu, body and splenium of the corpus callosum compared to healthy controls. Additionally, bipolar subjects exhibited reduced fiber density in the genu and body of the corpus callosum, and in the inferior longitudinal fasciculus bilaterally. In the left uncinate fasciculus, however, BD subjects exhibited significantly greater fiber density than healthy controls. There were no significant differences between groups in WM tract FA for those tracts that began and ended in the brain. The significance of differences in tract length and fiber density in BD is discussed.  相似文献   

8.
Several lines of evidence suggest that the normal integration of cerebral communication may be compromised in schizophrenia, with white matter (WM) abnormalities being integral to these functional deficits. Diffusion tensor imaging (DTI) is a neuroimaging technique which has increasingly been used to study WM through quantitative indices of its structural and orientational characteristics. Identifying the WM differences early in the course of schizophrenia may assist in prevention, early diagnosis and identification of treatment targets. In that respect, the aims of the present study were to (a) systematically review WM integrity in the early stages of schizophrenia as inferred by DTI and (b) specifically examine parameters that may affect WM: age, duration of illness and treatment. In summary, DTI studies in early schizophrenia suggest that structural dysconnectivity may be already present in recent‐onset and drug‐naïve patients, as well as in individuals clinically at high risk for developing schizophrenia. Although the pattern of WM differences is not totally consistent frontal, fronto‐temporal and fronto‐limbic connections, with tracts including the superior longitudinal fasciculus, cingulum bundle, uncinate fasciculus and corpus callosum seem to be affected. These differences may depend on the developmental stage of the subjects, the duration of illness and exposure to antipsychotic medication.  相似文献   

9.

Background

In light of the evidence for brain white matter (WM) abnormalities in schizophrenia, study of normal WM maturation in adolescence may provide critical insights relevant to the neurodevelopment of the disorder. Voxel-wise diffusion tensor imaging (DTI) studies have consistently demonstrated increases in fractional anisotropy (FA), a putative measure of WM integrity, from childhood into adolescence. However, the WM tracts that show FA increases have been variable across studies. Here, we aimed to assess which WM tracts show the most pronounced changes across adolescence.

Methods

DTI was performed in 78 healthy subjects aged 8–21 years, and voxel-wise analysis conducted using tract-based spatial statistics (TBSS). In addition, we performed the first meta-analysis of TBSS studies on WM development in adolescence.

Results

In our sample, we observed bilateral increases in FA with age, which were most significant in the left superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and anterior thalamic radiation. These findings were confirmed by the meta-analysis, and FA increase in the bilateral SLF was the most consistent finding across studies. Moreover, in our sample, FA of the bilateral SLF showed a positive association with verbal working memory performance and partially mediated increases in verbal fluency as a function of increasing age.

Conclusions

These data highlight increasing connectivity in the SLF during adolescence. In light of evidence for compromised SLF integrity in high-risk and first-episode patients, these data suggest that abnormal maturation of the SLF during adolescence may be a key target in the neurodevelopment of schizophrenia.  相似文献   

10.
Although not consistently replicated, diffusion tensor imaging (DTI) studies in schizophrenia have revealed lower fractional anisotropy (FA) in various white matter regions, a finding consistent with the disruption of white matter integrity. In this study, we used voxel-based DTI to investigate possible whole-brain differences in the white matter FA values between 58 schizophrenia patients and 58 healthy controls. We also explored the association between FA values and clinical symptoms in schizophrenia. Compared with the controls, the schizophrenia patients showed significant FA reductions in bilateral superior longitudinal fasciculus, bilateral inferior fronto-occipital fasciculus, and genu of right internal capsule. Furthermore, in the patient group, the FA value of the anterior part of the corpus callosum was negatively correlated with the avolition score on the Scale for the Assessment of Negative Symptoms. These findings suggest widespread disruption of white matter integrity in schizophrenia, which could partly explain the severity of negative symptomatology.  相似文献   

11.
Several studies have suggested that white matter integrity is disrupted in some brain regions in patients with schizophrenia. The purpose of this study was to assess the white matter integrity of the cingulum, uncinate fasciculus, fornix, and corpus callosum using diffusion tensor imaging (DTI). Participants comprised 39 patients with schizophrenia (19 males and 20 females) and 40 age-matched normal controls (20 males and 20 females). We quantitatively assessed the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the anterior cingulum, body of the cingulum, uncinate fasciculus, fornix, and corpus callosum on a tract-specific basis using diffusion tensor tractography (DTT). Group differences in FA and ADC between the patients and normal controls were sought. Additional exploratory analyses of the relationship between the FA or ADC and four clinical parameters (i.e., illness duration, positive symptom scores, negative symptom scores, and medication dosage) were performed. Results were analyzed in gender-combined and gender-separated group comparisons. FA was significantly lower on both sides of the anterior cingulum, uncinate fasciculus, and fornix in the schizophrenia patients irrespective of gender group separation. In the gender-combined analyses, significantly higher ADC values were demonstrated in the schizophrenia patients in both sides of the anterior cingulum, body of the cingulum and uncinate fasciculus, the left fornix, and the corpus callosum, compared with those of the normal controls. In the gender-separated analyses, the male patients showed higher ADC in the left anterior cingulum, the bilateral cingulum bodies, and the bilateral uncinate fasciculi. The female patients showed higher ADC in the right anterior cingulum, the left fornix, and the bilateral uncinate fasciculus. In correlation analyses, a significant negative correlation was found between illness duration and ADC in the right anterior cingulum in the gender-combined analyses. The gender-separated analyses found that the male patients had a significant negative correlation between negative symptom scores and FA in the right fornix, a positive correlation between illness duration and FA in the right anterior cingulum, and a negative correlation between illness duration and FA in the left uncinate fasciculus. Our DTI study showed that the integrity of white matter is disrupted in patients with schizophrenia. The results of our sub-analyses suggest that changes in FA and ADC may be related to negative symptom scores or illness duration.  相似文献   

12.
In this diffusion tensor imaging (DTI) study, the authors investigated white matter integrity in schizophrenia and the relationships between white matter alterations and specific symptoms of the disorder. We compared DTI images of 25 schizophrenia patients and 25 matched healthy controls and performed voxel-wise correlational analyses using the patient's DTI data and their severity scores of positive and negative symptoms. We found diffuse deficits in multiple types of white matter tracts in schizophrenia, and an inverse relationship of DTI fractional anisotropy (FA) values with positive symptom scores in association fibers, supporting a "disconnection" hypothesis of positive symptoms in schizophrenia.  相似文献   

13.
Atypical age‐dependent changes of white matter (WM) microstructure play a central role in abnormal brain maturation of the children with autism spectrum disorder (ASD), but their early manifestations have not been systematically characterized. The entire brain core WM voxels were surveyed to detect differences in WM microstructural development between 31 children with ASD of 2–7 years and 19 age‐matched children with typical development (TD), using measurements of fractional anisotropy (FA) and radial diffusivity (RD) from diffusion tensor imaging (DTI). The anatomical locations, distribution, and extent of the core WM voxels with atypical age‐dependent changes in a specific tract or tract group were delineated and evaluated by integrating the skeletonized WM with a digital atlas. Exclusively, unidirectional FA increases and RD decreases in widespread WM tracts were revealed in children with ASD before 4 years, with bi‐directional changes found for children with ASD of 2–7 years. Compared to progressive development that raised FA and lowered RD during 2–7 years in the TD group, flattened curves of WM maturation were found in multiple major WM tracts of all five tract groups, particularly associational and limbic tracts, in the ASD group with trend lines of ASD and TD crossed around 4 years. We found atypical age‐dependent changes of FA and RD widely and heterogeneously distributed in WM tracts of children with ASD. The early higher WM microstructural integrity before 4 years reflects abnormal neural patterning, connectivity, and pruning that may contribute to aberrant behavioral and cognitive development in ASD. Hum Brain Mapp 37:819–832, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Background and purpose Brain tumors may dislocate, infiltrate, or disrupt the adjacent fiber tracts. We examined (1) microstructural changes of white matter (WM) adjacent to supratentorial low grade tumors in children and (2) WM tracts of the affected hemisphere using diffusion tensor imaging (DTI). We hypothesized that the structural integrity of the adjacent WM tracts would be preserved in these slow-growing tumors. Materials and methods DTI was performed in 11 children with low grade tumors diagnosed by magnetic resonance imaging (MRI). Regions of interest were placed in the tumor, in WM adjacent to tumor, and on the normal contralateral side. Fractional anisotropy (FA), trace, and eigenvalues were measured. Color-coded maps and tractography were used to grade the WM tracts: Grade one was normal tract size and color hue; grade two was reduced tract size but preserved color hue; and grade three was loss of color hue or failure to track on tractography. Grades one and two were subcategorized as “a” or “b,” depending on the absence or presence of tract displacement. Results There were no significant differences in FA, trace, and eigenvalues between WM adjacent to tumor and the contralateral side. One patient had grade 1a changes, six grade 1b, and four grade 2b. Conclusion We found preserved microstructural integrity of WM adjacent to low grade tumors in children. Color vector maps and tractography demonstrated displacement of the WM tracts in all but one patient. Our findings could be useful for neurosurgical planning to minimize injury to the WM tracts and improve preoperative risk analysis.  相似文献   

15.
Sun Z  Wang F  Cui L  Breeze J  Du X  Wang X  Cong Z  Zhang H  Li B  Hong N  Zhang D 《Neuroreport》2003,14(14):1833-1836
Diffusion tensor imaging (DTI) can non-invasively examine the molecular diffusion of water in vivo and directly reflects the anatomical integrity of neural fibers in white matter. Fractional anisotropy (FA) can be calculated from DTI data, and utilized to evaluate white matter integrity. DTI was performed on 30 patients with schizophrenia and 19 healthy controls, and their FA values were subsequently measured in multiple brain regions. Statistical analyses revealed that FA values were decreased in the anterior cingulum of schizophrenia subjects. There were no significant differences between patients and controls in any other regions. This study supports the hypothesis that schizophrenia is associated with abnormal white matter integrity of the anterior cingulum.  相似文献   

16.
White matter (WM) microstructure deficit may be an underlying factor in the brain dysconnectivity hypothesis of schizophrenia using diffusion tensor imaging (DTI). However, WM dysfunction is unclear in schizophrenia. This study aimed to investigate the association between structural deficits and functional disturbances in major WM tracts in schizophrenia. Using functional magnetic resonance imaging (fMRI) and DTI, we developed the skeleton‐based WM functional analysis, which could achieve voxel‐wise function–structure coupling by projecting the fMRI signals onto a skeleton in WM. We measured the fractional anisotropy (FA) and WM low‐frequency oscillation (LFO) and their couplings in 93 schizophrenia patients and 122 healthy controls (HCs). An independent open database (62 schizophrenia patients and 71 HCs) was used to test the reproducibility. Finally, associations between WM LFO and five behaviour assessment categories (cognition, emotion, motor, personality and sensory) were examined. This study revealed a reversed pattern of structure and function in frontotemporal tracts, as follows. (a) WM hyper‐LFO was associated with reduced FA in schizophrenia. (b) The function–structure association was positive in HCs but negative in schizophrenia patients. Furthermore, function–structure dissociation was exacerbated by long illness duration and severe negative symptoms. (c) WM activations were significantly related to cognition and emotion. This study indicated function–structure dys‐coupling, with higher LFO and reduced structural integration in frontotemporal WM, which may reflect a potential mechanism in WM neuropathologic processing of schizophrenia.  相似文献   

17.
Diffusion tensor imaging (DTI) studies have identified changes in white matter tracts in schizophrenia patients and those at high risk of transition. Schizotypal samples represent a group on the schizophrenia continuum that share some aetiological risk factors but without the confounds of illness. The aim of the current study was to compare tract microstructural coherence as measured by fractional anisotropy (FA) between 12 psychometrically defined schizotypes and controls. We investigated bilaterally the uncinate and arcuate fasciculi (UF and AF) via a probabilistic tractography algorithm (PICo), with FA values compared between groups. Partial correlations were also examined between measures of subclinical hallucinatory/delusional experiences and FA values. Participants with schizotypal features were found to have increased FA values in the left hemisphere UF only. In the whole sample there was a positive correlation between FA values and measures of hallucinatory experience in the right AF. These findings suggest subtle changes in microstructural coherence are found in individuals with schizotypal features, but are not similar to changes predominantly observed in clinical samples. Correlations between mild hallucinatory experience and FA values could indicate increasing tract coherence could be associated with symptom formation.  相似文献   

18.
Background: In the pathophysiology of schizophrenia, aberrant connectivity between brain regions may be a central feature. Diffusion tensor imaging (DTI) studies have shown altered fractional anisotropy (FA) in white brain matter in schizophrenia. Focal reductions in myelin have been suggested in patients using magnetization transfer ratio (MTR) imaging but to what extent schizophrenia may be related to changes in MTR measured along entire fiber bundles is still unknown. Methods: DTI and MTR images were acquired with a 1.5-T scanner in 40 schizophrenia patients and compared with those of 40 healthy participants. The mean FA and mean MTR were measured along the genu of the corpus callosum and the left and right uncinate fasciculus. Results: A higher mean MTR of 1% was found in the right uncinate fasciculus in patients compared with healthy participants. A significant negative correlation between age and mean FA in the left uncinate fasciculus was found in schizophrenia patients but not in healthy participants. Conclusions: Decreased FA in the left uncinate fasciculus may be more prominent in patients with longer illness duration. The increased mean MTR in the right uncinate fasciculus could reflect a compensatory role for myelin in these fibers or possibly represent aberrant frontotemporal connectivity.  相似文献   

19.
White matter (WM) changes, along with well-characterized cortical abnormalities, occur in patients with Alzheimer’s disease (AD). We investigated the integrity of WM tracts within association fibers by the use of fractional anisotropy (FA), and the relationship between FA values and cognitive function in patients with AD. Neuropsychological examination and conventional MRI, as well as diffusion tensor imaging, (DTI) were conducted on 12 patients with mild to moderate AD and 18 cognitively healthy volunteers. DTI was performed to measure FA in the bilateral inferior fronto-occipital fasciculus (IFOF) and the superior longitudinal fasciculus (SLF). Mini-Mental State Examination (MMSE) scores and Montreal Cognitive Assessment (MoCA) values were used to evaluate cognitive function and the Clinical Dementia Rating (CDR) scale was used as a staging tool for dementia severity. FA measures were analyzed and correlated with neuropsychological data. No patient showed any WM tract abnormality on either T1-weighted or T2-weighted MRI. However, the FA values in the bilateral IFOF and SLF and the MoCA scores in patients with AD were significantly decreased (p < 0.05) compared to the controls. Furthermore, the decreased FA values in the SLF were positively correlated with cognitive function (MMSE scores – right: r = 0.672, p = 0.033, left: r = 0.919, p < 0.01; MoCA values – right: r = 0.747, p = 0.013, left: r = 0.679, p = 0.031). Our findings confirmed that the loss of integrity of microstructural WM connectivity has a role in the cognitive decline of patients with AD. The data also suggest that the FA values of the SLF may be used as a clinical marker of cognitive function.  相似文献   

20.
A subgroup of patients with breast cancer suffers from mild cognitive impairment after chemotherapy. To uncover the neural substrate of these mental complaints, we examined cerebral white matter (WM) integrity after chemotherapy using magnetic resonance diffusion tensor imaging (DTI) in combination with detailed cognitive assessment. Postchemotherapy breast cancer patients (n = 17) and matched healthy controls (n = 18) were recruited for DTI and neuropsychological testing, including the self‐report cognitive failure questionnaire (CFQ). Differences in DTI WM integrity parameters [fractional anisotropy (FA) and mean diffusivity (MD)] between patients and healthy controls were assessed using a voxel‐based two‐sample‐t‐test. In comparison with healthy controls, the patient group demonstrated decreased FA in frontal and temporal WM tracts and increased MD in frontal WM. These differences were also confirmed when comparing this patient group with an additional control group of nonchemotherapy‐treated breast cancer patients (n = 10). To address the heterogeneity observed in cognitive function after chemotherapy, we performed a voxel‐based correlation analysis between FA values and individual neuropsychological test scores. Significant correlations of FA with neuropsychological tests covering the domain of attention and processing/psychomotor speed were found in temporal and parietal WM tracts. Furthermore, CFQ scores correlated negatively in frontal and parietal WM. These studies show that chemotherapy seems to affect WM integrity and that parameters derived from DTI have the required sensitivity to quantify neural changes related to chemotherapy‐induced mild cognitive impairment. Hum Brain Mapp 32:480–493, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号