首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Transforming growth factor β is a strong growth inhibitor for many types of normal and transformed cells, although little is known on the mechanism of this anti-proliferative effect. The human lung adenocarcinoma cell line A549 is growth arrested by TGF-β1 and serves as a model for studying this effect. We describe that, concurrent with the inhibition of A549 cell growth, TGF-β1 treatment causes a dramatic reduction in the level of expression of the amphiregulin (AR) gene, a recently identified member of the EGF/TGFα family. Similar results were also observed with TGF-β2. Peak inhibition occurred at 24 hr of treatment and was reversible upon removal of TGF-β1. The level of AR protein secreted by A549 cells was also decreased by TGF-β1. In contrast, TGF-α mRNA was not detected in these cells regardless of TGF-β1 treatment. Another TGF-β inhibited cell line, PC-3 (human prostatic adenocarcinoma) also exhibited a decrease in AR message levels following exposure to TGF-β1. The growth inhibitory effects of TGF-β may in part be mediated by modulation of AR expression.  相似文献   

2.
3.
目的:通过研究重楼皂苷Ⅰ对人肺腺癌A549细胞侵袭转移能力及MMP2、E-cad表达的影响,探讨重楼皂苷Ⅰ抑制肺腺癌A549细胞侵袭转移的作用机制。方法:①应用CCK8法检测重楼皂苷Ⅰ对人肺腺癌A549细胞增殖的影响。②应用Transwell及细胞划痕实验检测重楼皂苷Ⅰ对人肺腺癌 A549 细胞侵袭转移能力的影响。③应用Western blot、Qrt-PCR检测重楼皂苷Ⅰ对肺腺癌A549细胞MMP2、E-cad表达的影响。结果:①细胞增殖实验结果表明浓度为0.25、0.5、1、2、4、8、16 mg/L重楼皂苷Ⅰ对肺腺癌A549细胞增殖的抑制率分别为(2.10±1.2)%、(11.98±2.4)%、(24.32±3.5)%、(38.76±4.3)%、(49.25±4.9)%、(62.55±5.3)%、(83.85±6.4)%,各抑制率比较差异有统计学意义(P<0.05);并且随着剂量的增加抑制率升高,抑制率与剂量呈正相关,具有量效关系。②Transwell及细胞划痕实验结果表明不同浓度的重楼皂苷Ⅰ与空白对照组比较,划痕愈合距离缩短,穿过的细胞数量减少,具有抑制细胞侵袭转移的能力,随着剂量的增加,抑制作用增强,各组比较差异有统计学意义(P<0.05)。③Western blot、Qrt-PCR实验结果表明不同浓度的重楼皂苷Ⅰ与空白对照组比较,MMP2表达降低,E-cad表达升高,随着剂量的增加,变化幅度增大,各组比较差异有统计学意义(P<0.05),说明重楼皂苷Ⅰ可以下调MMP2表达,上调E-cad表达,并且有量效依赖关系。结论:重楼皂苷Ⅰ具有抑制肺腺癌A549细胞侵袭转移的能力,作用机制可能为通过下调MMP2的表达、上调E-cad的表达实现。  相似文献   

4.
Src has a role in the anoikis resistance in lung adenocarcinomas. We focused on two epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cell lines, HCC827 (E746-A750 deletion) and H1975 (L858R+T790M), in suspension to elucidate whether suspended lung adenocarcinoma cells are eradicated by long-term treatment with Src tyrosine kinase inhibitors (TKIs). We also examined metastasis-positive lymph nodes from 16 EGFR-mutant lung adenocarcinoma patients for immunohistochemical expression of mutant-specific EGFR. Almost all suspended HCC827 cells underwent apoptosis after 144?h of combination treatment with AZD0530, trichostatin A (TSA), and ABT-263, whereas many suspended H1975 cells survived the treatment. AZD0530 is a Src TKI, TSA is a histone deacetylase inhibitor, and ABT-263 is a Bcl-2 inhibitor. During the therapy, the phosphorylation of EGFR decreased in HCC827 cells and remained stable in H1975 cells. The phosphorylated EGFR of Src TKI-resistant H1975 cells, as well as HCC827 cells, was completely suppressed by the third generation EGFR TKI, WZ4002. Consequently, both the suspended cell lines were almost completely eradicated within 144?h, with the combined therapy of WZ4002, ABT-263, and TSA. Interestingly, treated suspended cells underwent apoptosis to a greater extent than did adherent cells. Intrasinus floating lung adenocarcinoma cells in the lymph nodes expressed a mutant-specific EGFR. These findings suggest that suspended EGFR-mutant lung adenocarcinoma cells depend significantly more on EGFR activation for survival than attached cells do. The tumor cells circulating in vessels, which express mutant-specific EGFR, would be highly susceptible to the combination therapy of WZ4002, ABT-263, and TSA.  相似文献   

5.
6.
The ability to resist anoikis is critical for carcinoma cells to metastasize. Although several lung adenocarcinoma cell lines were shown to repress anoikis through the activation of Src, it remains unknown whether Src actually plays a crucial role in anoikis resistance in lung adenocarcinoma tissues. We examined 20 human lung adenocarcinoma tissues with lymphatic permeation and nine cell lines to investigate whether intralymphatic floating carcinoma cells in the tissues, used as an in vivo model of anoikis resistance, actually suppressed anoikis and whether cell lines in suspension culture, an in vitro model of anoikis resistance, survived through Src activation. We observed that the intralymphatic carcinoma cells aggregated tightly to form nests expressing E‐cadherin and phosphorylated Src (p‐Src). The apoptotic indices of these cells were comparable to those of extracellular matrix adhesive cells in all tissues, indicating that the intralymphatic cells actually evaded anoikis. Next, we found that the nine cell lines in suspension aggregated loosely (five cell lines) or tightly (four cell lines), and all cells resisted anoikis. Upon detachment, four cell lines (LC‐KJ, HCC827, H1650, and H1975) formed compact spheroids that expressed E‐cadherin and p‐Src. The spheroids were similar to intralymphatic tumour nests and were thus considered to be a suitable model of the nests. The spheroids of the four cell lines underwent apoptosis after treatment with the Src/Abl/Kit inhibitor PP1 or Src/Abl inhibitor bosutinib. On the other hand, the Abl/Kit inhibitor imatinib did not affect cell growth or apoptosis in the four types of spheroids. These results indicate that Src, but not Abl or Kit, plays an essential role in the development of anoikis resistance in lung adenocarcinomas. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

7.
Bioluminescent imaging (BLI) permits sensitive in vivo detection and quantification of cells specifically engineered to emit visible light. Three stable human tumor cell lines engineered to express luciferase were assessed for their tumorigenicity in subcutaneous, intravenous and spontaneous metastasis models. Bioluminescent PC-3M-luc-C6 human prostate cancer cells were implanted subcutaneously into SCID-beige mice and were monitored for tumor growth and response to 5-FU and mitomycin C treatments. Progressive tumor development and inhibition/regression following drug treatment were observed and quantified in vivo using BLI. Imaging data correlated to standard external caliper measurements of tumor volume, but bioluminescent data permitted earlier detection of tumor growth. In a lung colonization model, bioluminescent A549-luc-C8 human lung cancer cells were injected intravenously and lung metastases were monitored in vivo by whole animal imaging. Anesthetized mice were imaged weekly allowing a temporal assessment of in vivo lung tumor growth. This longitudinal study design permitted an accurate, real-time evaluation of tumor burden in the same animals over time. End-point bioluminescence measured in vivo correlated to total lung weight at necropsy. For a spontaneous metastatic tumor model, bioluminescent HT-29-luc-D6 human colon cancer cells implanted subcutaneously produced metastases to lung and lymph nodes in SCID-beige mice. Both primary tumors and micrometastases were detected by BLI in vivo. Ex vivo imaging of excised lung lobes and lymph nodes confirmed the in vivo signals and indicated a slightly higher frequency of metastasis in some mice. Levels of bioluminescence from in vivo and ex vivo images corresponded to the frequency and size of metastatic lesions in lungs and lymph nodes as subsequently confirmed by histology. In summary, BLI provided rapid, non-invasive monitoring of tumor growth and regression in animals. Its application to traditional oncology animal models offers quantitative and sensitive analysis of tumor growth and metastasis. The ability to temporally assess tumor development and responses to drug therapies in vivo also improves upon current standard animal models that are based on single end point data.  相似文献   

8.
目的:研究微小RNA-181a(mi RNA-181a)在不同人肺腺癌细胞中的表达及其转染人肺腺癌耐药细胞A549/DDP后对其细胞功能的影响及机制。方法:利用实时荧光定量PCR方法检测mi RNA-181a在人正常肺上皮细胞系BEAS-2B、人肺腺癌细胞系A549、人肺腺癌耐药细胞系A549/DDP中的表达;利用p Genesil-mi RNA-181a真核表达质粒转染A549/DDP细胞,同时设置未转染组和空载组;分别采用实时荧光定量PCR、MTT法、流式细胞术、Transwell实验以及Western blot法检测mi RNA-181a转染前后的表达情况、对A549/DDP细胞活力、细胞周期、细胞侵袭能力和顺铂(DDP)作用下的细胞生长抑制率、细胞凋亡率的影响以及对A549/DDP细胞中mi RNA-181a的靶基因bcl-2和p53蛋白表达的影响。结果:mi RNA-181a在A549和A549/DDP中的表达量显著低于BEAS-2B(P0.05),且在A549/DDP中表达量最低;mi RNA-181a转染A549/DDP细胞后其表达显著升高(P0.05)且能够抑制A549/DDP细胞活力、细胞周期和细胞侵袭能力(P0.05),同时升高DDP作用下A549/DDP细胞的生长抑制率和细胞凋亡率(P0.05);mi RNA-181a转染A549/DDP细胞后抑制Bcl-2蛋白的表达而促进P53蛋白的表达(P0.05)。结论:mi RNA-181a可能参与了肺腺癌的发生发展,mi RNA-181a可作为人肺腺癌治疗的新靶点。  相似文献   

9.
A set of hydroxamate derivatives of folic acid and methotrexate (MTX) was synthesized and evaluated for the inhibitory activity against histone deacetylase (HDAC) and dihydrofolate reductase (DHFR), two enzymes overexpressed in metastasizing tumors. The synthesized compounds were further screened for their antiproliferative activity in two human cancer cell lines, A549 (non-small cell lung carcinoma) and PC-3 (prostate adenocarcinoma). All derivatives showed significant inhibitory activity against HDACs (micromolar range) while only the MTX derivative was reasonably effective in DHFR inhibition. A docking study provided insight into the binding mode of the most potent inhibitor in the active sites of the enzymes, allowing rationalization of the bioassays. The MTX-based compound could be of interest for testing against metastasizing tumors in an animal model. The studied derivatives represent promising molecular templates for further development of dual activity anti-cancer drugs.  相似文献   

10.
ING4, as a novel candidate tumor suppressor gene, has been implicated in several human malignances by tumor growth inhibition and apoptosis enhancement. The mechanism of ING4 remains largely unknown. The purpose of this study was to investigate the inhibitory tumor growth effects of ING4 on lung adenocarcinoma, and its mechanism, by ING4 cDNA transduction into A549 cells. Furthermore, the expression level of ING4 in lung adenocarcinoma tissues was examined. The expression of ING4 was markedly reduced in human lung adenocarcinoma tissues. Overexpression of ING4 can induce growth inhibition in A549 cells both in vitro and in vivo, and also induce up‐regulation of p27, down‐regulation of cyclinD1, SKP2, and Cox2, and inactivation of the Wnt‐1/β‐catenin pathway. Moreover, overexpression of ING4 can enhance the sensitivity of A549 cells to radiotherapy and chemotherapy. Thus, ING4 may play an inhibitory role on A549 cell proliferation and tumor growth in lung adenocarcinoma by up‐regulation or down‐regulation of cell proliferation‐regulating proteins such as p27, cyclinD1, SKP2, and Cox2 by means of inactivation of Wnt‐1/β‐catenin signaling. Anat Rec, 291:593–600, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
目的探讨泰素帝对肺腺癌细胞A549凋亡,生存素(Survivin)表达和Caspase-3活性的影响。方法体外细胞培养,待细胞生长处于对数期时,加入不同浓度泰素帝,MTY比色法检测细胞活性。参考MTT结果,选取100ng/ml泰素帝处理A549细胞。透射电镜,流式细胞术检测细胞凋亡的发生;RT-PCR检测Survivin mRNA的表达;Western印迹法检测Survivin蛋白质的表达;Caspase-3活性检测试剂盒检测Caspase-3活性。结果泰素帝可抑制A549细胞生长,诱导细胞凋亡,呈时间依赖性降低Survivin的表达,增强Caspase-3酶活性。结论 100ng/ml泰素帝可诱导A549细胞凋亡,Survivin表达降低和Caspase-3活性增强可能是其诱导肺腺癌细胞凋亡的分子途径之一。  相似文献   

12.
Non small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and is the most common cause of lung cancer death. Currently, the epidermal growth factor receptor inhibitor gefitinib is widely used for patients with advanced NSCLC. However, drug resistance is a major obstacle. Mig-6 is a feedback inhibitor of EGFR and its down-stream pathway; it has been shown to play a role in gefitinib sensitivity. There is neither systematical research on the relationship between Mig-6 expression and gefitinib sensitivity, nor has the contribution of up-regulated Mig-6 on the gefitinib-resistant cell lines. In the present work, four NSCLC cell lines (H1299, A549, PC-9, and PC-9/AB11) with different sensitivities to gefitinib were subjected to analysis of the expression of Mig-6. We found that Mig-6 is over-expressed in gefitinib-sensitive NSCLC cell lines, but is low in gefitinib-resistant NSCLC cell lines. Further analysis revealed that over-expression of Mig-6 increased cell apoptosis and inhibited proliferation of gefitinib-resistant NSCLC cells treated with gefitinib, whereas lowering the expression of Mig-6 decreased cell apoptosis and promoted cell proliferation after treatment with gefitinib in gefitinib-sensitive NSCLC cell lines. These results suggest that Mig-6 is involved in mediating the response to gefitinib in NSCLC cell lines. Additionally we demonstrated that Mig-6 could reverse gefitinib resistance through inhibition of EGFR/ERK pathway in NSCLC cells. Our work uncovered that Mig-6 may be an effective therapeutic target in gefitinib-resistant lung cancer patients.  相似文献   

13.
We determined the molecular mechanisms that regulate the pathogenesis of malignant pleural effusion (PE) associated with advanced stage of human, non-small-cell lung cancer. Intravenous injection of human PC14 and PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells into nude mice yielded numerous lung lesions. PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability. Lung lesions produced by H226 cells were confined to the lung parenchyma with no PE. The level of expression of VEGF mRNA and protein by the cell lines directly correlated with extent of PE formation. Transfection of PC14PE6 cells with antisense VEGF165 gene did not inhibit invasion into the pleural space but reduced PE formation. H226 cells transfected with either sense VEGF 165 or sense VEGF 121 genes induced localized vascular hyperpermeability and produced PE only after direct implantation into the thoracic cavity. The production of PE was thus associated with the ability of tumor cells to invade the pleura, a property associated with expression of high levels of urokinase-type plasminogen activator and low levels of TIMP-2. Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF.  相似文献   

14.
目的 在生物信息学基础上探讨微小RNA(miR)-140-3p靶向细胞分裂周期相关蛋白8(CDCA8)抑制肺腺癌细胞的侵袭和转移.方法 通过GEO数据库中的GEO2R分析肺腺癌芯片数据中差异表达的miRNA.TargetScanHuman7.2和 miRWalk 数据库查找 miR-140-3p 的靶基因.Cytosc...  相似文献   

15.
Src kinase mutations and/or overexpression have been implicated in the development of a number of human cancer including colon, breast, and lung cancers. Thus, designing potent and selective Src kinase inhibitors as anticancer agents is a subject of major interest. A series of 4-aryl substituted derivatives of 2-amino-7-dimethylamino-4H-chromene-3-carbonitrile were synthesized using one-pot reaction of appropriate substituted aromatic aldehydes, malononitrile, and 3-(dimethylamino)phenol in the presence of piperidine. All 23 compounds were evaluated for inhibition of Src kinase and cell proliferation in human colon adenocarcinoma (HT-29) and leukemia (CCRF-CEM) cell lines. Among the tested compounds, 2-chlorophenyl- (4c), 3-nitrophenyl- (4h), 4-trifluoromethyphenyl- (4i), and 2,3-dichlorophenyl- (4k) substituted chromenes showed Src kinase inhibitory effect with IC(50) values of 11.1-18.3 μM. Compound 4c was relatively selective against Src (IC(50) = 11.1 μM), when compared with selected kinases, epidermal growth factor receptor (EGFR, IC(50) > 300 μM), C-terminal Src kinase (Csk, IC(50) = 101.7 μM), and lymphocyte-specific protein tyrosine kinase (Lck, IC(50) = 46.8 μM). 3-Chlorophenyl substituted thiazole (4v) and 2-chlorophenylsubstituted thiazole (4u) chromene derivatives inhibited the cell proliferation of HT-29 and CCRF-CEM by 80% and 50% respectively, at a concentration of 50 μM. The data indicate that 4H-chromene-3-carbonitrile scaffold has the potential to be optimized further for designing more potent Src kinase inhibitors and/or anticancer lead compounds.  相似文献   

16.
Epidermal growth factor receptor (EGFR) mutations occur mostly in patients with lung adenocarcinoma; such patients are also more likely to express cyclooxygenase-2 (COX-2), indicating a possible relationship between EGFR mutation and COX-2. The COX-2 and EGFR pathways mutually enhance their procarcinogenic effects in different tumor types. Therefore, simultaneous EGFR and COX-2 inhibition may be a promising therapeutic approach for patients with lung adenocarcinoma. We obtained tissue and serum samples from patients with non-small cell lung cancer (NSCLC) to detect the relationship between EGFR mutation and serum COX-2 level. Subsequently, gefitinib was combined with celecoxib to investigate the efficacy of inhibition in vitro in two NSCLC cell lines: HCC827 (del E746-A750) and A549 (wild-type EGFR). The cells were treated with gefitinib or celecoxib alone or with gefitinib plus celecoxib. Cell proliferation and apoptosis were assessed and correlated with expression of COX-2 and phosphorylated (p)-EGFR. The EGFR mutation rate of the high-COX-2 patients was significantly higher than that in the low-COX-2 patients. Multivariate analysis showed that high COX-2 levels were independently associated with EGFR mutation. Celecoxib and gefitinib inhibited cell growth in both cell lines. At sufficiently high concentrations, celecoxib plus gefitinib significantly mutually enhanced their anti-proliferative and apoptotic effects in both cell lines. At low concentrations, the combination had no additional effects on A549 cells. There was increased down regulation of COX-2 and p-EGFR when both cell lines were treated with high-concentration celecoxib plus gefitinib compared to either agent alone. This study demonstrates that high serum COX-2 levels may indicate EGFR mutations and that the efficacy of combined celecoxib and gefitinib is significantly greater in NSCLC cells with EGFR mutations; at high concentrations, the combination is efficacious in wild-type NSCLC cells.  相似文献   

17.

Background

MiR-138-5p is regarded as a tumour suppressor in many cancers. Transforming growth factor beta (TGF-β) often acts as a tumor promotor at the late stages of human cancers. However, the function of miR-138-5p on lung adenocarcinoma cells induced by TGF-β remains to be further confirmed.

Methods

RT-qPCR was used to detect the expression of human lung adenocarcinoma tissues, adjacent normal tissues, and relative cell lines. When the lung adenocarcinoma cells A549 and H1299 were transfected with negative control (NC), miR-138-5p mimics and miR-138-5p inhibitor by lipofectamine3000 and treated with or without TGF-β1, the lung adenocarcinoma cell function was detected by Immunofluorescence, Western blotting (WB), cell counting Kit-8 (CCK8), colony formation, EdU, Wound-healing and Transwell assays. The relation between miR-138-5p and zinc finger E-box-binding homeobox 2 (ZEB2) was detected by RT-qPCR, WB, and Luciferase reporter assays. When ZEB2 was knocked down, the lung adenocarcinoma cell function was detected by WB, CCK8 and Transwell assays.

Results

The expression of miR-138-5p was decreased in lung adenocarcinoma tissues and cell lines. When treated with or without TGF-β1, overexpression of miR-138-5p suppressed EMT, proliferation and metastasis of A549 and H1299. ZEB2 was verified as the direct target of miR-138-5p. Downregulation of ZEB2 suppressed EMT, proliferation and metastasis of lung adenocarcinoma cell, which could be reversed by miR-138-5p inhibitor.

Conclusions

MiR-138-5p inhibits epithelial-mesenchymal transition, growth and metastasis of lung adenocarcinoma cells through targeting ZEB2.  相似文献   

18.
To explore the relationship between death associated protein kinase (DAPK) gene promoter methylation and gefitinib resistance in Lung adenocarcinoma cell lines. EGFR-mutation lung adenocarcinoma cell lines PC9 and the gefitinib-resistant with T790M Mutation cell lines PC9/GR were chosen as cell models, and PC9/GR were treated with 5-aza-CdR (1 μmol/L). The experiments were divided into three groups: PC9 group, PC9/GR group and PC9/GR with 5-Aza-CdR pretreatment group. Treat three groups cell with different concentrations gefitinib, the cell proliferation was determined by MTT assay. The apoptotic rates were detected by flow cytometry. The methylation of DAPK gene promoter region was examined by methylation-specific PCR (MSP). The expressions of DAPK protein were detected by Western blot. MTT results showed that the half maximal inhibitory concentration (IC50) of PC9 and PC9/GR cell lines increase from 0.12 μmol/L to 8.52 μmol/L. But after treated with 5-aza-CdR, the IC50 of PC9/GR cell lines decrease to 4.35 μmol/L, and the resistance index (RI) decrease from 71 to 36 (P<0.05). Flow cytometry results showed that the apoptosis rate were 24.80%±0.28%, 12.70%±0.31%, 19.8%±0.15% respectively. MSP results showed that DAPK gene promoter region was un-methylated in PC9 cells and methylated in PC9/GR cells, when treated with 5-aza-CdR, DAPK gene promoter region was partly methylated in PC9/GR cells (P<0.05). Western blot results showed that the levels of DAPK protein were reduced significantly in PC9/GR cell lines compared with PC9, and after treated with 5-aza-CdR, the expression levels of DAPK protein in PC9/GR were increased (P<0.05). In conclusion, DAPK gene promoter methylation may contribute to the downregulation of DAPK gene and protein, and consequently affect the sensitivity of gefitinib in lung adenocarcinoma lines, induced gefitinib resistance. But 5-Aza-CdR can reverse gefitinib resistance by demethylation of DAPK gene promoter.  相似文献   

19.
Point mutations of the K-ras gene, which are found in 10 to 30% of lung adenocarcinomas, are regarded as being an early event during the carcinogenesis. Autonomous vigorous motility of neoplastic cells, as well as growth and survival advantages, are considered to be necessary for cancer development and progression. The present study describes the contributions of the K-ras gene mutation and its downstream pathway via phosphatidylinositol 3-OH kinase (PI3K)-Akt to the cell motility in an immortalized human peripheral airway epithelial cell (HPL1D) and lung adenocarcinoma cells (A549, H820, TKB6, and TKB14). We have also evaluated the relationship between pathological events and the K-ras-Akt pathway using surgically resected lung tumors. The HPL1D cells transfected with the mutated K-ras gene (HPL-V12) showed a significant increase in cell motility compared to those transfected with empty vector (HPL-E) or wild-type K-ras gene (HPL-K). The enhanced motility in the HPL-V12 cells was markedly reduced by either treatment with inhibitors of ras, PI3K, and/or MEK, or by transfection with the dominant-negative mutant Akt (dnAkt). The lung adenocarcinoma cells bearing the K-ras gene mutation (A549 and H820) showed consistently higher levels of cell motilities than those without the mutation (TKB6 and TKB14), and the motility of A549 and H820 cells were significantly inhibited by dnAkt transfection. These results suggest that the K-ras gene mutation could enhance the motility of neoplastic cells through a pathway involving PI3K-Akt. Actually, among the surgically resected lung tumors, the adenocarcinomas with the K-ras gene mutation tended to show a higher frequency and intensity of immunoreactivity for phosphorylated Akt (p-ser473Akt) than those without the mutation, supporting the in vitro observation that the mutated K-ras can activate the PI3K-Akt pathway. Immunoreactivity for p-ser473Akt was also seen in the pre-malignant and early lesions at a frequency similar to that in the advanced lung adenocarcinomas,. No correlation was seen between p-ser473Akt immunoreactivity and lymphatic/organ metastasis or prognosis. These results taken together suggest that the K-ras-Akt pathway might facilitate the motility of neoplastic cells during the early period of carcinogenesis in lung adenocarcinomas, and may contribute to their non-invasive expansion along the alveolar septa, rather than invasion or metastasis.  相似文献   

20.
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) plays a crucial role in tumorigenesis of lung cancer. However, the therapeutic potential for anti CEACAM6 monoclonal antibody (mAb) has only been limitedly explored. Here, we evaluate the therapeutic potential of naked anti CEACAM6 mAb against lung adenocarcinoma. Clone 8F5, recognizing B domain of CEACAM6, is established by immunizing A549 cells and screening for clones double positive for A549 and CEACAM6-Fc recombinant protein. We found that 85.7% of 70 resected lung adenocarcinoma tissue sections were positive for CEACAM6, whereas all squamous cell carcinoma examined were negative. A549 cells with high levels of CEACAM6 demonstrated more aggressive growth nature and showed increased paclitaxel chemosensitivity upon 8F5 binding. Treatment with 8F5 to A549 decreased cellular CEACAM6 expression and reversed anoikis resistance. 8F5 also decreased cellular status of Akt phosphorylation and increased apoptosis via caspase activation. In a mouse model of lung adenocarcinoma with xenotransplanted A549 cells, 8F5 treatment alone demonstrated 40% tumor growth inhibition. When combined with paclitaxel treatment, 8F5 markedly enhanced tumor growth inhibition, up to 80%. In summary, we demonstrate that anti CEACAM6 mAb is an effective therapeutic treatment for lung adenocarcinoma whose effect is further enhanced by combined treatment with paclitaxel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号