首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The transport of substrates across a cellular membrane is a vitally important biological function essential for cell survival. ATP-binding cassette (ABC) transporters constitute one of the largest subfamilies of membrane proteins, accomplishing this task. Mutations in genes encoding for ABC transporters cause different diseases, for example, Adrenoleukodystrophy, Stargardt disease or Cystic Fibrosis. Furthermore, some ABC transporters are responsible for multidrug resistance, presenting a major obstacle in modern cancer chemotherapy. In order to translocate the enormous variety of substrates, ranging from ions, nutrients, small peptides to large toxins, different ABC-transporters utilize the energy gained from ATP binding and hydrolysis. The ATP binding cassette, also called the motor domain of ABC transporters, is highly conserved among all ABC transporters. The ability to purify this domain rather easily presents a perfect possibility to investigate the mechanism of ATP hydrolysis, thus providing us with a detailed picture of this process. Recently, many crystal structures of the ATP-binding domain and the full-length structures of two ABC transporters have been solved. Combining these structural data, we have now the opportunity to analyze the hydrolysis event on a molecular level. This review provides an overview of the structural investigations of the ATP-binding domains, highlighting molecular changes upon ATP binding and hydrolysis.  相似文献   

2.
Multidrug resistance of tumors, characterized by resistance against a variety of chemically unrelated anticancer agents, can be caused by overexpression of ATP-binding cassette (ABC) proteins, such as P-glycoprotein and MRP1. These multidrug-resistance proteins are plasma-membrane proteins that actively extrude chemotherapeutic agents from the cell interior, decreasing drug accumulation and thus, allowing the cells to survive in the presence of toxic levels of anticancer agents. ABC proteins contain multispanning transmembrane domains and nucleotide-binding domains (NBDs). The NBDs are responsible for the ATP binding/hydrolysis that drives drug transport, and their structure is conserved independently of the degree of primary-sequence homology. The transmembrane domains contain the drug-binding sites that are likely located in a flexible internal chamber that is sufficiently large to accommodate different drugs. It has been recently proposed that dimerization of the NBDs induced by ATP binding is a key step for the coupling of ATP hydrolysis to substrate transport. The power stroke for substrate transport can be the formation or the dissociation of the dimers. Since the NBDs and TMDs are tightly associated, association/dissociation of the NBDs may control the "gate" of the translocation pathway, formed by intracellular loops. In the case of P-glycoprotein it seems that the power stroke for transport is ATP binding (and therefore NBD dimerization), and not hydrolysis, because the major conformational and functional changes seem to occur at this step.  相似文献   

3.
Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. One important mechanism of MDR involves the multidrug transporter, P-glycoprotein (Pgp), which confers upon cancer cells the ability to resist lethal doses of certain cytotoxic drugs by pumping the drugs out of the cells and thus reducing their cytotoxicity. Pgp belongs to the ATP-binding cassette (ABC) family of transporter molecules which require hydrolysis of ATP to run the transport mechanism. The substrates of Pgp may be endogenous (steroid hormones, cytokines) or exogenous (cytostatic drugs). A number of studies have demonstrated a negative correlation between Pgp expression levels and chemosensitivity or survival in a range of human malignancies. In principle, Pgp mediated drug resistance can be circumvented by treatment regimens that either exclude Pgp substrate drugs or include Pgp inhibitory agents. Experimental studies have demonstrated that certain structural modifications of anthracyclines confer the ability to escape Pgp transport. The therapeutic benefit of Pgp inhibitors as chemosensitizers is currently being explored in phase III clinical trials, and the first promising results have already been reported. Another therapeutic option for Pgp inhibitors has recently evolved as several Pgp inhibitors, many of which are generally low-toxic substances, by themselves constrain proliferation and cause cell death by apoptosis in certain MDR cancer cell lines. The dual effect of Pgp inhibitors, targeting MDR cancer cells selectively, may translate into improved efficacy of cancer chemotherapy and perhaps new and less toxic drug treatment strategies in human MDR cancer.  相似文献   

4.
P-glycoprotein/MDR1 was the first member of the ATP-binding cassette (ABC) transporter superfamily to be identified in a eukaryote. In eukaryotes, ABC proteins can be classified into three major groups based on function: transporters, regulators, and channels. MDR1/P-glycoprotein is a prominent member of eukaryotic export-type ABC proteins. MDR1/P-glycoprotein extrudes a very wide array of structurally dissimilar compounds, all lipophilic and ranging in mass from approximately 300 to 2000 Da, including cytotoxic drugs that act on different intracellular targets, steroid hormones, peptide antibiotics, immunosuppressive agents, calcium channel blockers, and others. Nucleotide binding and hydrolysis by MDR1/P-glycoprotein is tightly coupled with its function, substrate transport. ATP binding and hydrolysis were extensively analyzed with the purified MDR1/P-glycoprotein. The vanadate-induced nucleotide trapping method was also applied to study the hydrolysis of ATP by MDR1/P-glycoprotein. When MDR1 hydrolyzes ATP in the presence of excess orthovanadate, an analog of inorganic phosphate, it forms a metastable complex after hydrolysis. Using this method, MDR1/P-glycoprotein can be specifically photoaffinity-labeled in the membrane, if 8-azido-[alpha(32)P]ATP is used as ATP. Visualization of the structure, as well as the biochemical data, is needed to fully understand how MDR1/P-glycoprotein recognizes such a variety of compounds and how it carries its substrates across the membrane using the energy from ATP hydrolysis. To do so, large amounts of pure and stable proteins are required. Heterologous expression systems, which have been used to express P-glycoprotein, are also described.  相似文献   

5.
P-glycoprotein (Pgp) is a multidrug resistance transporter that limits the penetration of a wide range of neurotherapeutics into the brain including opioids. The diphenylpropylamine opioids methadone and loperamide are structurally similar, but loperamide has about a 4-fold higher Pgp-mediated transport rate. In addition to these differences, they showed significant differences in their effects on Pgp-mediated adenosine triphosphate (ATP) hydrolysis. The activation of Pgp-mediated ATP hydrolysis by methadone was monophasic, whereas loperamide activation of ATP hydrolysis was biphasic implying methadone has a single binding site and loperamide has 2 binding sites on Pgp. Quenching of tryptophan fluorescence with these drugs and digoxin showed competition between the opioids and that loperamide does not compete for the digoxin-binding site. Acrylamide quenching of tryptophan fluorescence to probe Pgp conformational changes revealed that methadone- and loperamide-induced conformational changes were distinct. These results were used to develop a model for Pgp-mediated transport of methadone and loperamide where opioid binding and conformational changes are used to explain the differences in the opioid transport rates between methadone and loperamide.  相似文献   

6.
Cellular expression of ATP-binding cassette (ABC) transport proteins, such as P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), or ABCG2, is known to confer a drug-resistant phenotype. Thus, the development of effective transporter inhibitors could be of value to cancer treatment. CBT-1 is a bisbenzylisoquinoline plant alkyloid currently in development as a Pgp inhibitor. We characterized its interactions with the three major ABC transporters associated with drug resistance - Pgp, MRP1 and ABCG2 - and compared it to other known inhibitors. CBT-1 completely inhibited rhodamine 123 transport from Pgp-overexpressing cells at a concentration of 1muM. Additionally, 1 microM completely reversed Pgp-mediated resistance to vinblastine, paclitaxel and depsipeptide in SW620 Ad20 cells. CBT-1 was found to compete [(125)I]-IAAP labeling of Pgp with an IC(50) of 0.14 microM, and low concentrations of CBT-1 (<1 microM) stimulated Pgp-mediated ATP hydrolysis. In MRP1-overexpressing cells, 10 microM CBT-1 was found to completely inhibit MRP1-mediated calcein transport. CBT-1 at 25 microM did not have a significant effect on ABCG2-mediated pheophorbide a transport. Serum levels of CBT-1 in samples obtained from eight patients receiving CBT-1 increased intracellular rhodamine 123 levels in CD56+ cells 2.1- to 5.7-fold in an ex vivo assay. CBT-1 is able to inhibit the ABC transporters Pgp and MRP1, making it an attractive candidate for clinical trials in cancers where Pgp and/or MRP1 might be overexpressed. Further clinical studies with CBT-1 are warranted.  相似文献   

7.
Hepatobiliary transport of endogenous and exogenous compounds is mediated by the coordinated action of multiple transport systems present at the sinusoidal (basolateral) and canalicular (apical) membrane domains of hepatocytes. During the last few years many of these transporters have been cloned and functionally characterized. In addition, the molecular bases of several forms of cholestatic liver disease have been defined. Combined, this has greatly expanded our understanding of the normal physiology of bile formation, the pathophysiology of intrahepatic cholestasis, as well as of drug elimination and disposition processes. In this review recent advances, with respect to function and regulation of ATP binding cassette transport proteins expressed in liver, are summarized and discussed.  相似文献   

8.
Hepatobiliary transport of endogenous and exogenous compounds is mediated by the coordinated action of multiple transport systems present at the sinusoidal (basolateral) and canalicular (apical) membrane domains of hepatocytes. During the last few years many of these transporters have been cloned and functionally characterized. In addition, the molecular bases of several forms of cholestatic liver disease have been defined. Combined, this has greatly expanded our understanding of the normal physiology of bile formation, the pathophysiology of intrahepatic cholestasis, as well as of drug elimination and disposition processes. In this review recent advances, with respect to function and regulation of ATP binding cassette transport proteins expressed in liver, are summarized and discussed.  相似文献   

9.
Transport mechanisms for the exclusion of toxic xenobiotics and their metabolites from cellular environment are crucial for living organisms. Accumulation of these toxins may affect a number of regulatory and other functions, ultimately leading to cell death. This trafficking of toxins and their metabolites is an energy dependent, primary active process, involving the hydrolysis of nucleotide triphosphates (ATP or GTP), while transferring substrate molecules across the cell membrane, against a concentration gradient of the substrate. Therefore, specific membrane associated proteins, known as efflux pumps, are required to remove these undesirable molecules from the cellular environment. These transport proteins have diverse structural characteristics with molecular weights ranging from 28 kDa to 190 kDa and a broad substrate specificity ranging from anionic to weakly cationic compounds. While these transport mechanisms constitute an important part of the cellular defense machinery, they also pose a formidable threat to the efficacy of chemotherapy against pathogenic bacteria and cancer cells. In cancer cells, the over expression of these proteins may confer a multidrug resistance (MDR) phenotype. This problem of MDR in cancer cells has so far been attributed to the two major families of efflux pumps, P-glycoprotein (Pgp) and multidrug resistance associated proteins (MRP), which belong to the ATP-binding cassette (ABC) super family. However, the existence of these pumps has not been able to explain all types of acquired MDR. Therefore, the importance of transport mechanisms other than these ABC-transporters cannot be ruled out. One such transporter is DNP-SG ATPase, whose identity has recently been established with RLIP76, a Ral binding GTPase activating protein known to be involved in the Ras-Rho-Ral mediated signaling mechanism. In the present article, we review the comparative functional, structural, and molecular characteristics of some transporters and discuss their role in xenobiotic transport and multidrug resistance.  相似文献   

10.
Various mechanism of antitumour drug transport across cell membranes has been described. Particular attention has been paid to a passive transport, active transport and multidrug resistance of complexes contained in antitumour drugs. A drug supply to the target site depends on the blood circulation within the tumour, on characteristic drug diffusion in the tissue, and also on binding protein. The physiologic transfer of hydrophilic compounds across the membrane is usually intermediated by means of a specific receptor or a carrier in that membrane, which facilitates the transport of compounds to and from the cell. Some drugs, e.g. doxorubicin and annamycin, can pass across the membrane by intermediacy of liposomes which exhibit a great activity in penetrating into tumour cells. The efficiency of antitumour drugs is limited by the appearance of resistance, i.e. by the lack of sensitivity of the cell to the administered drug. The presence in the membrane of specific proteins belonging to the ABC carriers group is postulated in a resistance theory; they would be responsible for 'pumping out' lipophilic drug molecules from the cell. Participation of high-energy ATP molecule is required by P-glycoprotein (Pgp) and by MRP protein described in this paper for their action. The mechanisms that are responsible for the cell resistance to drugs have been presented by analysing the resistance to antimetabolites, particularly to folate and fluoropyrimidine analogues, to alkylating agents, e.g. cisplatinum, and to heterocyclic compounds being responsible for so-called multidrug resistance.  相似文献   

11.
A symposium entitled 'Drug efflux pumps: challenges and opportunities' addressed the detection and functional characterization of drug efflux pumps, their influence on the cytochrome P450 (CYP450) system and their role in blood-brain barrier (BBB) permeability. Drug efflux pumps utilize ATP as the energy source in exporting solutes, and belong to the family of ATP-binding cassette transporters (ABC transporters). P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP) are members of this family of transporters. These transporters are overexpressed in cancer cells leading to decreased drug accumulation and hence drug resistance. Another causative factor for drug resistance is increased elimination mechanisms, metabolism by CYP450 enzymes being the most important. The multidrug resistance gene (mdr) is a key determinant in the expression of CYP3A enzymes, the most predominant subclass of CYP450. New techniques are being developed to identify and characterize drug efflux pumps, the latest being gamma-scintigraphy and hypertonic saline (HTS). Efflux pumps play a major role in restricting the drug transport across the BBB. Currently, structural domains that are responsible for the functional activity of the efflux proteins are being investigated to design better inhibitors for drug efflux pumps.  相似文献   

12.
ATP-binding cassette (ABC) transporters comprise one of the largest membrane bound protein families. They are involved in transport of numerous compounds. These proteins transport substrates against a concentration gradient with ATP hydrolysis as a driving force across the membrane. Mammalian ABC proteins have important physiological, pharmacological and toxicological functions including the transport of lipids, bile salts, drugs, toxic and environmental agents. The efflux pumps serve both as natural defense mechanisms and influence the bioavailability and disposition of drugs. In general terms, the transporters remove xenobiotics from the cellular environment. For example, in cancer cells, over expression of these molecules may confer to multidrug resistance against cytostatic drugs. In addition, based on diverse structural characteristics and a broad substrate specifity, ABC transport proteins alter the intracellular concentration of a variety of therapeutically used compounds and toxicologically relevant agents. We review the function of the human multidrug resistance protein MDR1, (P-glycoprotein, ABCB1) and the multidrug resistance protein MRP2 (ABCC2). We focus on four topics namely 1) structure and physiological functions of these transporters, 2) substrates e.g., drugs, xenotoxins, and environmental toxicants including their conjugates, 3) drug-drug interactions, and the role of chemosensitizers which may be able to reverse drug resistance, and 4) pharmacologically and toxicologically relevant genetic polymorphisms in transport proteins and their clinical implications.  相似文献   

13.
Tasigna (Nilotinib) is a BCR-ABL kinase inhibitor recently approved by the Food and Drug Administration, which is indicated for the treatment of drug-resistant chronic myelogenous leukemia (CML). The efflux of tyrosine kinase inhibitors by ATP-binding cassette (ABC) drug transporters, which actively pump these drugs out of cells utilizing ATP as an energy source, has been linked to the development of drug resistance in CML patients. We report here the synthesis and characterization of a fluorescent derivative of Tasigna to study its interaction with two major ABC transporters, P-glycoprotein (Pgp) and ABCG2, in in vitro and ex vivo assays. A fluorescent derivative of Tasigna, BODIPY FL Tasigna, inhibited the BCR-ABL kinase activity in K562 cells and was also effluxed by Pgp- and ABCG2-expressing cells in both cultured cells and rat brain capillaries expressing Pgp and ABCG2. In addition, [(3)H]-Tasigna was found to be transported by Pgp-expressing polarized LLC-PK1 cells in a transepithelial transport assay. Consistent with these results, both Tasigna and BODIPY FL Tasigna were less effective at inhibiting the phosphorylation of Crkl (a substrate of BCR-ABL kinase) in Pgp- and ABCG2-expressing K562 cells due to their reduced intracellular concentration. Taken together, these data provide evidence that BODIPY FL Tasigna is transported by Pgp and ABCG2, and Tasigna is transported by Pgp. Further, we propose that BODIPY FL Tasigna can potentially be used as a probe for functional analysis of Pgp and ABCG2 in cancer cells and in other preclinical studies.  相似文献   

14.
Multidrug resistance (MDR) is a kind of acquired resistance of microorganisms and cancer cells to chemotherapic drugs that are characterized by different chemical structure and different mechanism of action. Classic MDR is the consequence of the over-expression of a variety of proteins that extrude the chemotherapic from the cell, lowering its concentration below the effective one. The ABC (ATP Binding Cassette) is a ubiquitous and important family of such transporter proteins. Members of this super family are present in mammals as well as in prokaryotic organisms and use ATP as the energy source to activate the extrusion process. P-glycoprotein (Pgp) and Multidrug Resistance Proteins (MRP1 and sister proteins) are the most important and widely studied members of ABC super family. Our knowledge about the structures and functions of transporter proteins has definitely improved in recent years, following the resolution of the structure of bacterial pumps which opened the way to the building of homology models for the more complex Pgp and MRP. It can be anticipated that these results will have a strong impact on the design of more potent and safer MDR reverters. A huge number of small molecules, many of natural origin, are able to reverse multidrug resistance by inhibiting the functions of Pgp, MRP1 and sister proteins and their action has been considered a possible way to reverse MDR. However, while a few compounds have reached clinical trials, none of them has, so far, been cleared for therapeutic use. Two main reasons are at the base of this difficulty: i) MDR is a complex phenomenon that may arise from several different biochemical mechanisms, with the consequence that inhibition of transporter proteins may be insufficient to reverse it; ii) the physiological role of Pgp and sister proteins requires more potent modulators with proper selectivity and pharmacokinetic in order to avoid unwanted side effects. This paper first reviews the most recent discoveries on the structures and functions of the ABC super family, in particular Pgp and MRP. Then, the medicinal chemistry of MDR reverters, in light of these findings, is discussed and the molecules that are presently in development are reviewed.  相似文献   

15.
RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics.   总被引:4,自引:0,他引:4  
Transport of xenobiotics and their metabolites by ATP-binding cassette (ABC) transporters particularly P-glycoprotein (Pgp) and the multidrug resistance associated protein (MRP1) has been extensively studied during last decade. Our recent studies demonstrate that RLIP76, a previously known GTPase-activating protein catalyzes ATP-dependent, uphill transport of anionic glutathione conjugates as well as of weakly cationic anthracyclines including doxorubicin (Adriamycin), a widely used drug in cancer chemotherapy. RLIP76 has inherent ATPase activity, which is stimulated by doxorubicin and glutathione conjugates. RLIP76 does not meet the criteria for classical ABC proteins such as MRP1 or Pgp, but similar to ABC proteins, it has two ATP-binding sequences, (69)GKKKGK(74) and (418)GGIKDLSK(425). Mutations in these sequences abrogate its ATP-binding, ATPase activity, and transport function. Purified RLIP76 when reconstituted in proteoliposomes mediates ATP-dependent saturable transport of doxorubicin and glutathione conjugates. Transfection of K562 cells with RLIP76 confers these cells resistance to doxorubicin and 4-hydroxynonenal. Cells enriched with RLIP76 also acquire resistance to radiation toxicity. RLIP76 also catalyzes the transport of physiologic ligands such as leukotrienes (LTC4) and the conjugate of 4-hydroxynonenal and glutathione. In some cells (e.g., erythrocytes and lung cancer cells), the majority of transport activity for Adriamycin and glutathione conjugates including LTC4 is accounted for by RLIP76. These studies strongly suggest that RLIP76-mediated transport of organic ions has physiological and toxicological relevance and that it may play an important role in the mechanism of drug resistance.  相似文献   

16.
No HeadingPurpose. Pluronic block copolymers are potent sensitizers of multidrug resistant (MDR) cancer cells. The sensitization effect by Pluronics is a result of two processes acting in concert: i) intracellular ATP depletion, and ii) inhibition of ATPase activity of drug efflux proteins. This work characterizes effects of Pluronic P85 on ATPase activities of Pgp, MRP1, and MRP2 drug efflux transport proteins and interaction of these proteins with their substrates, vinblastine, and leucotriene C4.Methods. Using membranes overexpressing Pgp, MRP1, and MRP2, the current study evaluates effects of Pluronic P85 (P85) on the kinetic parameters (Vmax, Km, Vmax/Km) of ATP hydrolysis by these ATPases.Results. The decreases in the maximal reaction rates (Vmax) and increases in apparent Michaelis constants (Km) for these transporters in the presence of various concentrations of P85 were observed. The mechanism of these effects may involve i) conformational changes of the transporter due to membrane fluidization and/or ii) nonspecific steric hindrance of the drug-binding sites by P85 chains embedded into cellular membranes. The extent of these alterations was increased in the row MRP1 < MRP2 << Pgp.Conclusions. These data suggest that there are unifying pathways for the inhibition of Pgp and MRPs by the block copolymer. However, the effect of P85 on Pgp ATPase activity is considerably greater compared with the effects on MRP1 and MRP2 ATPases. This may be a reason for greater inhibitory effects of Pluronic in Pgp-compared with MRP-overexpressing cells.  相似文献   

17.
Expression of the drug transport proteins, including P-glycoprotein (Pgp), in the brain vascular endothelium represents a challenge for the effective delivery of drugs for the treatment of several central nervous system (CNS) disorders including depression, schizophrenia and epilepsy. It has been hypothesized that Pgp plays a major role in drug efflux at the blood-brain barrier, and may be an underlying factor in the variable responses of patients to CNS drugs. However, the role of Pgp in the transport of many CNS drugs has not been directly demonstrated. To explore the role of Pgp in drug transport across an endothelial cell barrier derived from the central nervous system, the expression and activity of Pgp in bovine retinal endothelial cells (BRECs) and the effects of representative CNS drugs on Pgp activity were examined. Significant Pgp expression in BRECs was demonstrated by western analyses, and expression was increased by treatment of the cells with hydrocortisone. Intracellular accumulation of the well-characterized Pgp-substrate Taxol was markedly increased by the non-selective transporter inhibitor verapamil and the Pgp-selective antagonist PGP-4008, demonstrating that Pgp is active in these endothelial cells. In contrast, neither verapamil nor PGP-4008 affected the intracellular accumulation of [3H]paroxetine, [14C]phenytoin, [3H]clozapine or [14C]carbamazapine, indicating that these drugs are not substrates for Pgp. Paroxetine, clozapine and phenytoin were shown to be Pgp inhibitors, while carbamazapine did not inhibit Pgp at any concentration tested. These results indicate that Pgp is not likely to modulate patient responses to these drugs.  相似文献   

18.
The rapid emergence of multidrug-resistant bacteria over the last two decades has catalyzed a shift away from traditional antibiotic development strategies and encouraged the search for unconventional drug targets. Prokaryotic substrate- binding proteins (SBPs), together with their cognate ATP-binding cassette (ABC) transporters, facilitate the unidirectional, transbilayer movement of specific extracytosolic cargoes against a concentration gradient, powered by ATP hydrolysis. In Gram-negative bacteria, SBPs are found in the periplasmic space, whereas in Gram-positive organisms these proteins are anchored to the outer cell wall by a lipid moiety. SBPs are vital components of the substrate-translocation machinery, as they determine cargo specificity and are involved in coupling the cargo uptake process with ABC transporter- mediated ATP hydrolysis. In this review, we focus on "Cluster A-1" divalent metal-binding proteins from within the SBP family. Acquisition of transition row metal ions is essential for bacterial colonization and virulence and Cluster A-1 SBPs play an integral role in this process. Cluster A-1 SBPs lack homologs in humans, bypass the need to deliver compounds into the bacterial cell, and are therefore potential drug targets against Gram-positive bacteria. Here we discuss the role SBPs play in the prokaryotic substrate-translocation machinery with emphasis in the substrate-binding mechanism of Cluster A-1 SBPs, the role of these proteins in virulence and their potential use as drug targets.  相似文献   

19.
Through an extensive herbal drug screening program, we found that gomisin A, a dibenzocyclooctadiene compound isolated from Schisandra chinensis, reversed multidrug resistance (MDR) in Pgp-overexpressing HepG2-DR cells. Gomisin A was relatively non-toxic but without altering Pgp expression, it restored the cytotoxic actions of anticancer drugs such as vinblastine and doxorubicin that are Pgp substrates but may act by different mechanisms. Several lines of evidence suggest that gomisin A alters Pgp-substrate interaction but itself is neither a Pgp substrate nor competitive inhibitor. (1) First unlike Pgp substrates gomisin A inhibited the basal Pgp-associated ATPase (Pgp-ATPase) activity. (2) The cytotoxicity of gomisin A was not affected by Pgp competitive inhibitors such as verapamil. (3) Gomisin A acted as an uncompetitive inhibitor for Pgp-ATPase activity stimulated by the transport substrates verapamil and progesterone. (4) On the inhibition of rhodamine-123 efflux the effects of gomisin A and the competitive inhibitor verapamil were additive, so were the effects of gomisin A and the ATPase inhibitor vanadate. (5) Binding of transport substrates with Pgp would result in a Pgp conformational change favoring UIC-2 antibody reactivity but gomisin A impeded UIC-2 binding. (6) Photocrosslinking of Pgp with its transport substrate [125I]iodoarylazidoprazosin was inhibited by gomisin A in a concentration-dependent manner. Taken together our results suggest that gomisin A may bind to Pgp simultaneously with substrates and alters Pgp-substrate interaction.  相似文献   

20.
The human placenta expresses a large number of transport proteins. The ATP-binding cassette (ABC) family of active efflux pumps, predominantly localised to the maternal-facing syncytial membrane of placental microvilli, comprise the major placental drug efflux transporters. A variety of other transporters are also expressed in the placenta that can facilitate xenobiotic transfer in both the maternal and fetal directions. Many drugs administered in pregnancy are ABC transporter substrates, and many are either teratogenic or fetotoxic. The in vitro, in vivo and clinical evidence reviewed in this article argues that active efflux of drugs by placental transporters helps to maintain its barrier function, reducing the incidence of adverse fetal effects. ABC transporter polymorphisms may explain the wide variability observed in fetal drug concentrations, incidence of teratogenesis or drug failure in pregnancies exposed to therapeutic agents. Although our understanding of the molecular mechanics and dynamics of placental drug transfer is advancing, much work is needed to fully appreciate the significance of placental drug transporters in the face of increasing drug administration in pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号