首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonhuman primate model for malaria vaccine development allowing reliable, stringent sporozoite challenge and evaluation of both cellular and antibody responses is needed. We therefore constructed a multicomponent, multistage DNA vaccine for the simian malaria species Plasmodium knowlesi including two preerythrocytic-stage antigens, the circumsporozoite protein (PkCSP) and sporozoite surface protein 2 (PkSSP2), and two blood stage antigens, apical merozoite antigen 1 (PkAMA1) and merozoite surface protein 1 (PkMSP1p42), as well as recombinant canarypox viruses encoding the four antigens (ALVAC-4). The DNA vaccine plasmids expressed the corresponding antigens in vitro and induced antiparasite antibodies in mice. Groups of four rhesus monkeys received three doses of a mixture of the four DNA vaccine plasmids and a plasmid encoding rhesus granulocyte-monocyte colony-stimulating factor, followed by boosting with a single dose of ALVAC-4. Three groups received the priming DNA doses by different routes, either by intramuscular needle injection, by intramuscular injection with a needleless injection device, the Biojector, or by a combination of intramuscular and intradermal routes by Biojector. Animals immunized by any route developed antibody responses against sporozoites and infected erythrocytes and against a recombinant PkCSP protein, as well as gamma interferon-secreting T-cell responses against peptides from PkCSP. Following challenge with 100 P. knowlesi sporozoites, 1 of 12 experimental monkeys was completely protected and the mean parasitemia in the remaining monkeys was significantly lower than that in 4 control monkeys. This model will be important in preclinical vaccine development.  相似文献   

2.
The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 microg of p PyCSP plus 30 microg of pGM-CSF) or low-dose (1 microg of p PyCSP plus 1 microg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8(+)-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-gamma) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8(+) T cells. In contrast, the memory CD8(+)-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8(+) T cells, but at the single-cell level it produced significantly higher levels of IFN-gamma than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system.  相似文献   

3.
A reliable procedure to measure antigen specific T cell responses in rhesus macaques is required to determine the efficacy of vaccines and immunotherapies. The currently available T cell assays are poorly quantifiable or technically difficult to perform. Classical 51Cr-release cytotoxic T cell (CTL) assays are cumbersome and difficult to quantitate reproducibly. Detection of specific T-cell using MHC-peptide tetrameric complexes is highly sensitive, but requires knowledge of MHC type and prior identification of T cell epitopes. We therefore developed a rhesus interferon-gamma (IFN-gamma) ELISPOT assay capable of detecting IFN-gamma secretion in response to stimulation with pooled 20-mer peptides. Peripheral blood mononuclear cells (PBMCs) from rhesus monkeys immunized with a DNA vaccine and recombinant canary pox encoding the Plasmodium knowlesi circumsporozoite protein (PkCSP) were incubated with pools of peptides from PkCSP. Positive responses to peptide pools and individual peptides ranging from 100 to 450 spot forming cells (SFC)/10(6) PBMC were detected in four of four immunized monkeys and in zero of two control monkeys. In two monkeys studied in detail, the IFN-gamma response was focussed on a single 20-mer peptide, QGDGANAGQPQAQGDGANAG, and was dependent on CD4(+), but not CD8(+), T cells. Background responses in control monkeys and preimmunization PBMCs ranged from 10 to 50 SFC/10(6) PBMC. The average within assay and between assay coefficients of variation (CV) for this peptide ELISPOT were 21.9 and 24.7%, respectively. This peptide IFN-gamma assay will be a useful tool for evaluation of T cell responses in rhesus macaques.  相似文献   

4.
Two Salmonella enterica serovar Typhi strains that express and export a truncated version of Plasmodium falciparum circumsporozoite surface protein (tCSP) fused to Salmonella serovar Typhi cytolysin A (ClyA) were constructed as a first step in the development of a preerythrocytic malaria vaccine. Synthetic codon-optimized genes (t-csp1 and t-csp2), containing immunodominant B- and T-cell epitopes present in native P. falciparum circumsporozoite surface protein (PfCSP), were fused in frame to the carboxyl terminus of the ClyA gene (clyA::t-csp) in genetically stabilized expression plasmids. Expression and export of ClyA-tCSP1 and ClyA-tCSP2 by Salmonella serovar Typhi vaccine strain CVD 908-htrA were demonstrated by immunoblotting of whole-cell lysates and culture supernatants. The immunogenicity of these constructs was evaluated using a "heterologous prime-boost" approach consisting of mucosal priming with Salmonella serovar Typhi expressing ClyA-tCSP1 and ClyA-tCSP2, followed by parenteral boosting with PfCSP DNA vaccines pVR2510 and pVR2571. Mice primed intranasally on days 0 and 28 with CVD 908-htrA(pSEC10tcsp2) and boosted intradermally on day 56 with PfCSP DNA vaccine pVR2571 induced high titers of serum NANP immunoglobulin G (IgG) (predominantly IgG2a); no serological responses to DNA vaccination were observed in the absence of Salmonella serovar Typhi-PfCSP priming. Mice primed with Salmonella serovar Typhi expressing tCSP2 and boosted with PfCSP DNA also developed high frequencies of gamma interferon-secreting cells, which surpassed those produced by PfCSP DNA in the absence of priming. A prime-boost regimen consisting of mucosal delivery of PfCSP exported from a Salmonella-based live-vector vaccine followed by a parenteral PfCSP DNA boosting is a promising strategy for the development of a live-vector-based malaria vaccine.  相似文献   

5.
目的:探讨BCG初次免疫(BCG-prime),结核杆菌共表达DNA疫苗加强免疫(DNA疫苗-boost)的策略对小鼠的免疫效果。方法:将BCG及结核杆菌重组DNA疫苗依次免疫小鼠,通过检测CTL和NK细胞的杀伤活性和特异性淋巴细胞增殖,以及小鼠血清抗体及细胞因子的水平,观测BCG-prime、共表达结核杆菌Ag85A/GM-CSFDNA疫苗boost策略对小鼠的免疫效果。结果:采用prime-boost免疫策略组的小鼠CTL的杀伤活性明显增强、特异性淋巴细胞明显增殖、IFN-γ的水平明显增高,NK细胞杀伤活性与对照组相比也有一定提高,但未超过BCG单独免疫效果。免疫小鼠血清特异性抗体的滴度超过单独DNA疫苗免疫组。结论:在采用BCG-prime-结核杆菌DNA疫苗boost免疫策略后,能增强对小鼠的免疫效应,尤其是Th1型细胞免疫反应增强明显,为进一步在动物体内进行保护性效应试验的研究提供了实验依据。  相似文献   

6.
Eight rhesus monkeys immunized with a partially purified preparation of Plasmodium knowlesi gametes were monitored for over 6 years to determine the extent of transmission blocking immunity. Monkeys were challenged regularly, and anti-gamete antibodies were assayed by in vivo and in vitro mosquito feedings. Transmission blocking immunity persisted at high levels in most of the monkeys. In those animals in which protection waned between challenges, a challenge infection provided a sufficient booster effect to prevent infection of mosquitoes. Immunity to other stages of malaria (i.e., sporozoites and asexual erythrocyte forms) failed to induce immunity against gametes.  相似文献   

7.
本文报告应用间接荧光抗体(IFA)试验,检测恒河猴感染了食蟹猴疟原虫后的抗体滴度,着重探讨长期感染的原虫密度和抗体滴度消长。结果表明,抗体滴度不仅在原虫密度高峰后较高,而且在红细胞内期低原虫密度阶段,甚至在原虫消失后4个多月内仍保持一定的水平。上述抗体滴度和原虫密度有规则的变化,对食蟹猴疟原虫-恒河猴模型的应用和间日疟的免疫研究提供了基础资料。  相似文献   

8.
The search to identify Mycobacterium tuberculosis antigens capable of conferring protective immunity against tuberculosis has received a boost owing to the resurgence of tuberculosis over the past two decades. It has long been recognized that lymphoid cells are required for protection against M. tuberculosis. While traditionally the CD4(+) populations of T cells were believed to predominantly serve this protective function, a pivotal role for CD8(+) T cells in this task has been increasingly appreciated. We show that the 50- to 55-kDa Apa protein, specified by the Rv1860 gene of M. tuberculosis, can elicit both lymphoproliferative response and gamma interferon (IFN-gamma) production from peripheral blood mononuclear cells (PBMC) of purified protein derivative (PPD)-positive individuals, with significant differences recorded in the levels of responsiveness between PPD-positive healthy controls and pulmonary tuberculosis patients. Flow cytometric analysis of whole blood stimulated with the recombinant Apa protein revealed a sizeable proportion of CD8(+) T cells in addition to CD4(+) T cells contributing to IFN-gamma secretion. PBMC responding to the Apa protein produced no interleukin-4, revealing a Th1 phenotype. A DNA vaccine and a poxvirus recombinant expressing the Apa protein were constructed and tested for their ability to protect immunized guinea pigs against a challenge dose of virulent M. tuberculosis. Although the DNA vaccine afforded little protection, the poxvirus recombinant boost after DNA vaccine priming conferred a significant level of protective immunity, bringing about a considerable reduction in mycobacterial counts from the challenge bacilli in spleens of immunized guinea pigs, a result comparable to that achieved by BCG vaccination.  相似文献   

9.
Todryk SM  Walther M 《Immunology》2005,115(2):163-169
Since malaria continues to account for millions of deaths annually in endemic regions, the development of an effective vaccine remains highly desirable. The life cycle of malaria poses a number of challenges to the immune response since phases of the cycle express varying antigen profiles and have different locations, thus requiring differing antigenic targets and effector mechanisms. To confer sterile immunity, a vaccine would have to target the pre-erythrocytic stages of infection. Since at this stage the parasite is hidden within liver cells, the host defence predominantly requires cell-mediated immunity, chiefly T cells, to eliminate infected hepatocytes. The development of such vaccines has progressed from irradiated sporozoites, through recombinant proteins, to recombinant DNA and viral vectors. Some of the experimental vaccination regimens that explore various combinations of vaccines for priming and boosting, together with numbers of vaccinations, interval between them, and the vaccination site, are revealing strong immunogenicity and evidence of efficacy in human challenge studies and in field trials. Such approaches should lead to deployable vaccines that protect against malarial disease.  相似文献   

10.
In the present study, we report an attempt to improve the immunogenicity of the Omp31 antigen by a DNA prime-protein boost immunization regimen. We immunized BALB/c mice with an Omp31 DNA vaccine (pCIOmp31) followed by boosting with recombinant Omp31 (rOmp31) in incomplete Freund's adjuvant and characterized the resulting immune responses and the protective efficacy against Brucella ovis and B. melitensis infection. Immunoglobulin G1 (IgG1) and IgG2a titers were higher in sera from pCIOmp31/rOmp31-immunized mice than in sera from mice immunized with pCIOmp31 or rOmp31 alone. Splenocytes from pCIOmp31/rOmp31-immunized mice produced significantly higher levels of gamma interferon than did those from mice given rOmp31 alone. In contrast, interleukin 2 (IL-2) production levels were comparable between the two groups of immunized mice. Cells from all immunized mice produced undetectable levels of IL-4. Notably, rOmp31 stimulated IL-10 production in the pCIOmp31/rOmp31-immunized group but not in the pCIOmp31- or rOmp31-immunized group. Although the prime-boost regimen induced specific cytotoxic responses, these responses could not reach the levels achieved by the pCIOmp31 immunization. In conclusion, pCIOmp31 priming followed by rOmp31 boosting led to moderately improved protection against a challenge with B. ovis or B. melitensis.  相似文献   

11.
Sera from 27 rhesus monkeys immunized in various ways against the H strain of Plasmodium knowlesi were analyzed by quantitative crossed immunoelectrophoresis. The reaction of the sera was compared with a reference immune serum only reactive with P. knowlesi-specific 65,000-Mr glycoprotein-immune component 13 (gp65/ic13) in membranes of infected rhesus monkey erythrocytes. Triton X-100-solubilized, 125I-labeled membranes of schizont-infected erythrocytes were used as an antigen. Sera from 9 or 10 monkeys immunized by repeated infections with P. knowlesi reacted with gp65/ic13. In 6 of 10 sera, anti-gp65/ic13 was the only antibody reacting with host cell membrane proteins. In contrast, vaccination of 15 monkeys with predominantly sexual stages or trophozoites of P. knowlesi in Freund complete adjuvant resulted in protection against blood challenges in 7 monkeys, only 2 of which contained precipitating antibody against gp65/ic13. None of the sera from monkeys not protected by infections or vaccinations contained detectable levels of precipitating antibodies against gp65/ic13. Our data indicate that gp65/ic13 acts as a prominent immunogen in vivo during natural p. knowlesi infections of rhesus monkeys. There is a positive correlation suggested between anti-gp65/ic13 antibody and protection in the monkeys analyzed. This correlation does not apply to monkeys protected against P. knowlesi malaria by vaccination, pointing to other effective immune defense mechanisms.  相似文献   

12.
Proteins present on the surface of malaria parasites that participate in the process of invasion and adhesion to host cells are considered attractive vaccine targets. Aided by the availability of the partially completed genome sequence of the simian malaria parasite Plasmodium knowlesi, we have identified a 786-bp DNA sequence that encodes a 262-amino-acid-long protein, containing an altered version of the thrombospondin type I repeat domain (SPATR). Thrombospondin type 1 repeat domains participate in biologically diverse functions, such as cell attachment, mobility, proliferation, and extracellular protease activities. The SPATR from P. knowlesi (PkSPATR) shares 61% and 58% sequence identity with its Plasmodium falciparum and Plasmodium yoelii orthologs, respectively. By immunofluorescence analysis, we determined that PkSPATR is a multistage antigen that is expressed on the surface of P. knowlesi sporozoite and erythrocytic stage parasites. Recombinant PkSPATR produced in Escherichia coli binds to a human hepatoma cell line, HepG2, suggesting that PkSPATR is a parasite ligand that could be involved in sporozoite invasion of liver cells. Furthermore, recombinant PkSPATR reacted with pooled sera from P. knowlesi-infected rhesus monkeys, indicating that native PkSPATR is immunogenic during infection. Further efficacy evaluation studies in the P. knowlesi-rhesus monkey sporozoite challenge model will help to decide whether the SPATR molecule should be developed as a vaccine against human malarias.  相似文献   

13.
Transgenic pathogenic microorganisms expressing host cytokines such as gamma interferon (IFN-gamma) have been shown to manipulate host-pathogen interaction, leading to immunomodulation and enhanced protection. Expression of host cytokines in malaria parasites offers the opportunity to investigate the potential of an immunomodulatory approach by generating immunopotentiated parasites. Using the primate malaria parasite Plasmodium knowlesi, we explored the conditions for expressing host cytokines in malaria parasites. P. knowlesi parasites transfected with DNA constructs for expressing rhesus monkey (Macaca mulatta) IFN-gamma under the control of the heterologous P. berghei apical membrane antigen 1 promoter, produced bioactive IFN-gamma in a developmentally regulated manner. IFN-gamma expression had no marked effect on in vitro parasite development. Bioactivity of the parasite-produced IFN-gamma was shown through inhibition of virus cytopathic effect and confirmed by using M. mulatta peripheral blood cells in vitro. These data indicate for the first time that it is feasible to generate malaria parasites expressing bioactive host immunomodulatory cytokines. Furthermore, cytokine-expressing malaria parasites offer the opportunity to analyze cytokine-mediated modulation of malaria during the blood and liver stages of the infection.  相似文献   

14.
Merozoite vaccination against Plasmodium knowlesi malaria.   总被引:7,自引:0,他引:7       下载免费PDF全文
G H Mitchell  G A Butcher    S Cohen 《Immunology》1975,29(2):397-407
Free malarial merozoites isolated from in vitro cultures of P. knowlesi and emulsified with Freund's complete (FCA) or incomplete (FIA) adjuvant were used to vaccinate twelve Rhesus monkeys against the uniformly lethal infection caused by P. knowlesi. Initial challenge of six monkeys with the same parasite variant as used for vaccination produced no detectable infection in three monkeys, while three others developed low-grade parasitaemia (maximum 1.5 per cent), which terminated after 6-11 days. Vaccination with merozoites in either FCA or FIA induced protection against homologous variant challenge. Six other monkeys were challenged first with a parasite variant different from that used for vaccination. Two animals immunized with merozoites in FIA alone or in FCA on only one occasion developed fatal infections. The other four animals vaccinated at least twice with merozoites in FCA showed low-grade parasitaemia (maximum 1.5 per cent) which terminated after 8-12 days. Eight monkeys rechallenged on eleven occasions at intervals of up to 16 weeks were completely resistant to several variants and a distinct laboratory strain of P. knowlesi, but developed chronic malaria similar to that in unimmunized controls when challenged with a different species of malaria, P. cynomolgi bastianellii. It is concluded that merozoite vaccination of Rhesus monkeys induces immunity against the erythrocyte stages of P. knowlesi far greater in degree and significantly broader in variant specificity than that achieved by previous methods of immunization or by repeated drug-controlled infections.  相似文献   

15.
The gene encoding the 60-kDa heat shock protein of Plasmodium yoelii (PyHsp60) was cloned into the VR1012 and VR1020 mammalian expression vectors. Groups of 10 BALB/c mice were immunized intramuscularly at 0, 3, and 9 weeks with 100 microg of PyHsp60 DNA vaccine alone or in combination with 30 microg of pmurGMCSF. Sera from immunized mice but not from vector control groups recognized P. yoelii sporozoites, liver stages, and infected erythrocytes in an indirect fluorescent antibody test. Two weeks after the last immunization, mice were challenged with 50 P. yoelii sporozoites. In one experiment the vaccine pPyHsp60-VR1012 used in combination with pmurGMCSF gave 40% protection (Fisher's exact test; P = 0.03, vaccinated versus control groups). In a second experiment this vaccine did not protect any of the immunized mice but induced a delay in the onset of parasitemia. In neither experiment was there any evidence of a protective effect against the asexual erythrocytic stage of the life cycle. In a third experiment mice were primed with PyHsp60 DNA, were boosted 2 weeks later with 2 x 10(3) irradiated P. yoelii sporozoites, and were challenged several weeks later. The presence of PyHsp60 in the immunization regimen did not lead to reduced blood-stage infection or development of parasites in hepatocytes. PyHsp60 DNA vaccines were immunogenic in BALB/c mice but did not consistently, completely protect against sporozoite challenge. The observation that in some of the PyHsp60 DNA vaccine-immunized mice there was protection against infection or a delay in the onset of parasitemia after sporozoite challenge deserves further evaluation.  相似文献   

16.
A major challenge in developing an HIV-1 vaccine is to identify immunogens and their delivery methods that can elicit broad neutralizing antibodies against primary isolates of different genetic subtypes. Recently, we demonstrated that priming with DNA vaccines expressing primary HIV-1 envelope glycoprotein (Env) followed by recombinant Env protein boosting was successful in generating positive neutralizing antibody responses against a clade B primary HIV-1 isolate, JR-FL, that was not easily neutralized. In the current study, we examined whether the DNA priming plus recombinant protein boosting approach delivering a polyvalent primary Env formulation was able to generate neutralizing antibodies against primary HIV-1 viral isolates from various genetic subtypes. New Zealand White rabbits were first immunized with DNA vaccines expressing one, three or eight primary HIV-1 gp120 antigens delivered by a gene gun followed by recombinant gp120 protein boosting. Neutralizing antibody responses were examined by two independently executed neutralization assays: the first one was a single round infection neutralization assay against a panel of 10 primary HIV-1 isolates of subtypes A, B, C and E and the second one used the PhenoSense assay against a panel of 12 pseudovirues expressing primary HIV-1 Env antigens from subtypes A, B, C, D and E as well as 2 pseudoviruses expressing the Env antigens from MN and NL4-3 viruses. Rabbit sera immunized with the DNA priming plus protein boosting approach, but not DNA vaccine alone or Env protein alone, were capable of neutralizing 7 of 10 viruses in the first assay and 12 of 14 viruses in the second assay. More importantly, sera immunized with the polyvalent Env antigens were able to neutralize a significantly higher percentage of viruses than the sera immunized with the monovalent antigens. Our results suggest that DNA priming followed by recombinant Env protein boosting can be used to deliver polyvalent Env-antigen-based HIV-1 vaccines to elicit neutralizing antibody responses against viruses with diverse genetic sequence variations.  相似文献   

17.
pHSP65疫苗增强结核杆菌特异性T细胞产生IFN-γ   总被引:1,自引:0,他引:1  
为提高BCG的免疫效果,以BCG进行初次免疫,比较pHSP65基因疫苗和BCG疫苗加强免疫的效果,寻找新型结核疫苗的初免-加强免疫策略。于第0周皮下接种BCG,第6、8周给予pHSP65滴鼻免疫或BCG加强免疫,末次免疫后2周检测全身及肺脏局部IFN-γ的产生。与BCG初免/BCG加强免疫相比,经pHSP65基因疫苗滴鼻加强免疫后,ELISPOT结果显示脾脏和肺局部分泌IFN-γ的淋巴细胞数量显著增加,流式检测显示IFN-γ+CD4+T细胞数量显著增加,ELISA结果证实淋巴细胞IFN-γ的分泌显著增高,提示经BCG初次免疫后,以pHSP65 DNA滴鼻加强免疫可显著增强全身和肺局部T淋巴细胞IFN-γ的产生,具有良好的抗结核感染潜能。  相似文献   

18.
The introduction of vaccine technology has facilitated an unprecedented multiantigen approach to develop an effective vaccine against complex pathogens, such as Plasmodium spp., that cause severe malaria. The capacity of multisubunit DNA vaccines encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and IFN-gamma responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be multi-immune (i.e., capable of eliciting more than one type of immune response, including cell-mediated and humoral). In the case of malaria parasites, a cytotoxic T-lymphocyte response is categorically needed against the intracellular hepatocyte stage while a humoral response, with antibodies targeted against antigens from all stages of the life cycle, is also needed. Therefore, the key to success for any DNA-based therapy is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of nonviral DNA-mediated gene-transfer techniques, such as liposomes, virosomes, microspheres and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. In addition, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells. Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. This review comprises various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccines.  相似文献   

19.
《Molecular immunology》2015,67(2):384-391
Brucellosis is one of the most common zoonotic diseases caused by species of Brucella. At present, there is no commercially available vaccine for the human brucellosis. Brucella melitensis and Brucella abortus are the main causes of human brucellosis, worldwide. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved among human Brucella pathogens. The purpose of the current study was to evaluate and compare the immunogenicity and protective efficacy of the L7/L12-TOmp31 construct administered as DNA/DNA and DNA/Pro vaccine regimens. Vaccination of BALB/c mice with the DNA/Pro regimen provided more protection levels against B. melitenisis and B. abortus challenge than did the DNA/DNA regimen. IgG1 and IgG2a titers were higher in the sera from DNA/Pro-immunized mice than in those from mice immunized with DNA alone. Moreover, splenocytes from DNA/Pro-immunized mice produced significantly higher levels of IFN-γ than did those from mice given DNA alone. The pcDNA-L7/L12-TOmp31 priming followed by rL7/L12-TOmp31 boosting led to improved protection against B. abortus or B. melitensis infection.  相似文献   

20.
Repeated evidence has demonstrated that combined primer-booster immunization regimens can improve both secreted and humoral immune responses to antigens derived from viral, bacterial, and parasitic pathogens. For the present work, we evaluated the synergic serum immunoglobulin G (IgG) and fecal IgA antibody responses elicited in BALB/c mice who were intramuscularly primed with a DNA vaccine, pRECFA, followed by oral boosting with an attenuated Salmonella enterica serovar Typhimurium vaccine (HG3) strain, with both vaccines encoding the structural subunit (CfaB) of the CFA/I fimbriae produced by human-derived enterotoxigenic Escherichia coli (ETEC) strains. The immunological properties of the vaccine regimen were evaluated according to the order of the administered vaccines, the nature of the oral antigen carrier, the age of the vaccinated animals, the interval between the priming and boosting doses, and the amount of injected DNA. The production of gamma interferon and the IgG2a subclass in serum indicated that mice immunized with the primer-booster regimen developed prevailing type 1 T-cell-dependent immune responses. The synergic effect of the vaccine regimen on the induced antibody responses was also revealed by its ability to block the adhesive properties of CFA/I fimbriae expressed by live bacteria, as shown by the inhibition of Caco-2 cell and human erythrocyte binding. Moreover, DBA2 newborn mice were protected from lethal challenges with a CFA/I+ ETEC strain after the incubation of live bacteria with serum samples harvested from mice who were subjected to the primer-booster regimen. We propose, therefore, that the DNA primer-Salmonella booster regimen represents an alternative for the development of vaccines requiring both mucosal and systemic antibody responses for immunological protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号