首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro   总被引:20,自引:0,他引:20       下载免费PDF全文
The protein kinase Chk2, the mammalian homolog of the budding yeast Rad53 and fission yeast Cds1 checkpoint kinases, is phosphorylated and activated in response to DNA damage by ionizing radiation (IR), UV irradiation, and replication blocks by hydroxyurea (HU). Phosphorylation and activation of Chk2 are ataxia telangiectasia-mutated (ATM) dependent in response to IR, whereas Chk2 phosphorylation is ATM-independent when cells are exposed to UV or HU. Here we show that in vitro, ATM phosphorylates the Ser-Gln/Thr-Gln (SQ/TQ) cluster domain (SCD) on Chk2, which contains seven SQ/TQ motifs, and Thr68 is the major in vitro phosphorylation site by ATM. ATM- and Rad3-related also phosphorylates Thr68 in addition to Thr26 and Ser50, which are not phosphorylated to a significant extent by ATM in vitro. In vivo, Thr68 is phosphorylated in an ATM-dependent manner in response to IR, but not in response to UV or HU. Substitution of Thr68 with Ala reduced the extent of phosphorylation and activation of Chk2 in response to IR, and mutation of all seven SQ/TQ motifs blocked all phosphorylation and activation of Chk2 after IR. These results suggest that in vivo, Chk2 is directly phosphorylated by ATM in response to IR and that Chk2 is regulated by phosphorylation of the SCD.  相似文献   

2.
Profiling of UV-induced ATM/ATR signaling pathways   总被引:3,自引:0,他引:3  
To ensure survival in the face of genomic insult, cells have evolved complex mechanisms to respond to DNA damage, termed the DNA damage checkpoint. The serine/threonine kinases ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) activate checkpoint signaling by phosphorylating substrate proteins at SQ/TQ motifs. Although some ATM/ATR substrates (Chk1, p53) have been identified, the lack of a more complete list of substrates limits current understanding of checkpoint pathways. Here, we use immunoaffinity phosphopeptide isolation coupled with mass spectrometry to identify 570 sites phosphorylated in UV-damaged cells, 498 of which are previously undescribed. Semiquantitative analysis yielded 24 known and 192 previously uncharacterized sites differentially phosphorylated upon UV damage, some of which were confirmed by SILAC, Western blotting, and immunoprecipitation/Western blotting. ATR-specific phosphorylation was investigated by using a Seckel syndrome (ATR mutant) cell line. Together, these results provide a rich resource for further deciphering ATM/ATR signaling and the pathways mediating the DNA damage response.  相似文献   

3.
Checkpoint kinase (Chk)1 is an evolutionarily conserved protein kinase that was first identified in fission yeast as an essential component of the DNA damage checkpoint. In mice, Chk1 provides an essential function in the absence of environmentally imposed genotoxic stress. Here we show that human cells lacking Chk1 exhibit defects in both the ionizing radiation (IR)-induced S and G(2) checkpoints. In addition, loss of Chk1 resulted in the accumulation of a hypophosphorylated form of the Cdc25A protein phosphatase, and Chk1-deficient cells failed to degrade Cdc25A after IR. The IR-induced S and G(2) checkpoints were partially restored in Chk1-deficient cells when Cdc25A accumulation was interfered with. Finally, Cdc25A was phosphorylated by Chk1 in vitro on similar sites phosphorylated in vivo, including serine-123. These findings indicate that Chk1 directly phosphorylates Cdc25A during an unperturbed cell cycle, and that phosphorylation of Cdc25A by Chk1 is required for cells to delay cell cycle progression in response to double-strand DNA breaks.  相似文献   

4.
5.
Understanding the role of DNA damage checkpoint kinases in the cellular response to genotoxic stress requires the knowledge of their substrates. Here, we report the use of quantitative phosphoproteomics to identify in vivo kinase substrates of the yeast DNA damage checkpoint kinases Mec1, Tel1, and Rad53 (orthologs of human ATR, ATM, and CHK2, respectively). By analyzing 2,689 phosphorylation sites in wild-type and various kinase-null cells, 62 phosphorylation sites from 55 proteins were found to be controlled by the DNA damage checkpoint. Examination of the dependency of each phosphorylation on Mec1 and Tel1 or Rad53, combined with sequence and biochemical analysis, revealed that many of the identified targets are likely direct substrates of these kinases. In addition to several known targets, 50 previously undescribed targets of the DNA damage checkpoint were identified, suggesting that a wide range of cellular processes is likely regulated by Mec1, Tel1, and Rad53.  相似文献   

6.
Checkpoint kinase 1 (Chk1) is a key regulator of checkpoint signaling in both the unperturbed cell cycle and DNA damage response. Under these conditions, Chk1 becomes active to prevent premature CDK1 activation and mitotic entry until DNA is properly replicated or repaired. It is unclear how Chk1 activity is controlled in the unperturbed cell cycle. During DNA damage, Chk1 is activated by ataxia telangiectasia and Rad3 related (ATR)-mediated phosphorylation; however, it is not entirely clear how this phosphorylation results in Chk1 activation. Here we report an N-terminally truncated alternative splice variant of Chk1, Chk1-S. Importantly, we show that Chk1-S is an endogenous repressor and regulator of Chk1. In the unperturbed cell cycle, Chk1-S interacts with and antagonizes Chk1 to promote the S-to-G2/M phase transition. During DNA damage, Chk1 is phosphorylated, which disrupts the Chk1-Chk1-S interaction, resulting in free, active Chk1 to arrest the cell cycle and facilitate DNA repair. Higher levels of Chk1-S are expressed, along with Chk1, in fetal and cancer tissues than in normal tissues. However, forced overexpression of Chk1-S in cultured cells and tumor xenografts induces premature mitotic entry, mitotic catastrophe, and reduction of tumor growth. The identification of Chk1-S as a unique splice variant and key regulator of Chk1 provides insights into cell cycle regulation and DNA damage response.  相似文献   

7.
The mismatch repair proteins function upstream in the DNA damage signaling pathways induced by the DNA methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We report that MSH2 (MutS homolog 2) protein interacts with the ATR (ATM- and Rad3-related) kinase to form a signaling module and regulate the phosphorylation of Chk1 and SMC1 (structure maintenance of chromosome 1). We found that phosphorylation of Chk1 by ATR also requires checkpoint proteins Rad17 and replication protein A. In contrast, phosphorylation of SMC1 by ATR is independent of Rad17 and replication protein A, suggesting that the signaling pathway leading to SMC1 phosphorylation is distinct from that mediated by the checkpoint proteins. In addition, both MSH2 and Rad17 are required for the activation of the S-phase checkpoint to suppress DNA synthesis in response to MNNG, and phosphorylation of SMC1 is required for cellular survival. These data support a model in which MSH2 and ATR function upstream to regulate two branches of the response pathway to DNA damage caused by MNNG.  相似文献   

8.
In higher eukaryotes, the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) checkpoint kinases play distinct, but partially overlapping, roles in DNA damage response. Yet their interrelated function has not been defined for telomere maintenance. We discover in Drosophila that the two proteins control partially redundant pathways for telomere protection: the loss of ATM leads to the fusion of some telomeres, whereas the loss of both ATM and ATR renders all telomeres susceptible to fusion. The ATM-controlled pathway includes the Mre11 and Nijmegen breakage syndrome complex but not the Chk2 kinase, whereas the ATR-regulated pathway includes its partner ATR-interacting protein but not the Chk1 kinase. This finding suggests that ATM and ATR regulate different molecular events at the telomeres compared with the sites of DNA damage. This compensatory relationship between ATM and ATR is remarkably similar to that observed in yeast despite the fact that the biochemistry of telomere elongation is completely different in the two model systems. We provide evidence suggesting that both the loading of telomere capping proteins and normal telomeric silencing requires ATM and ATR in Drosophila and propose that ATM and ATR protect telomere integrity by safeguarding chromatin architecture that favors the loading of telomere-elongating, capping, and silencing proteins.  相似文献   

9.
Recent studies of yeast G1 DNA damage response have identified characteristic changes in chromatin adjacent to double-strand breaks (DSBs). Histone H2A (yeast H2AX) is rapidly phosphorylated on S129 by the kinase Tel1 (ATM) over a domain extending kilobases from the DSB. The adaptor protein Rad9 (53BP1) is recruited to this chromatin domain through binding of its tudor domains to histone H3 diMe-K79. Multisite phosphorylation of Rad9 by Mec1 (ATR) then activates the signaling kinase Rad53 (CHK2) to induce a delay in G1. Here, we report a previously undescribed role for Tel1 in G1 checkpoint response and show that H2A is the likely phosphorylation target, in a much as S129 mutation to Ala confers defects in G1 checkpoint arrest, Rad9 phosphorylation, and Rad53 activation. Importantly, Rad9 fails to bind chromatin adjacent to DSBs in H2A-S129A mutants. Previous work showed that H2A phosphorylation allows binding of NuA4, SWR, and INO80 chromatin remodeling complexes, perhaps exposing H3 diMe-K79. Yet, mutants lacking SWR or INO80 remain checkpoint competent, whereas loss of NuA4-dependent histone acetylation leads to G1 checkpoint persistence, suggesting that H2A phosphorylation promotes two independent events, rapid Rad9 recruitment to DSBs and subsequent remodeling by NuA4, SWR, and INO80.  相似文献   

10.
Chk1 is widely known as a DNA damage checkpoint signaling protein. Unlike many other checkpoint proteins, Chk1 also plays an essential but poorly defined role in the proliferation of unperturbed cells. Activation of Chk1 after DNA damage is known to require the phosphorylation of several C-terminal residues, including the highly conserved S317 and S345 sites. To evaluate the respective roles of these individual sites and assess their contribution to the functions of Chk1, we used a gene targeting approach to introduce point mutations into the endogenous human CHK1 locus. We report that the essential and nonessential functions of Chk1 are regulated through distinct phosphorylation events and can be genetically uncoupled. The DNA damage response function of Chk1 was nonessential. Targeted mutation of S317 abrogated G2/M checkpoint activation, prevented subsequent phosphorylation of Chk1, impaired efficient progression of DNA replication forks, and increased fork stalling, but did not impact viability. Thus, the nonessential DNA damage response function of Chk1 could be unambiguously linked to its role in DNA replication control. In contrast, a CHK1 allele with mutated S345 did not support viability, indicating an essential role for this residue during the unperturbed cell cycle. A distinct, physiologic mode of S345 phosphorylation, initiated at the centrosome during unperturbed mitosis was independent of codon 317 status and mechanistically distinct from the ordered and sequential phosphorylation of serine residues on Chk1 induced by DNA damage. Our findings suggest an essential regulatory role for Chk1 phosphorylation during mitotic progression.  相似文献   

11.
A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G(2)/M for 12-14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G(2)/M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-induced cell cycle delay; however, cells lacking Mec1's downstream protein kinase targets, Rad53 or Chk1, still have substantial G(2)/M delay, as do cells lacking securin, Pds1. This delay is eliminated only in the triple mutant chk1Delta rad53Delta pds1Delta, suggesting that Rad53 and Chk1 control targets other than the stability of securin in enforcing checkpoint-mediated cell cycle arrest. The G(2)/M arrest in rad53Delta and chk1Delta revealed a unique cytoplasmic phenotype in which there are frequent dynein-dependent excursions of the nucleus through the bud neck, without entering anaphase. Such excursions are infrequent in wild-type arrested cells, but have been observed in cells defective in mitotic exit, including the semidominant cdc5-ad mutation. We suggest that Mec1-dependent checkpoint signaling through Rad53 and Chk1 includes the repression of nuclear movements that are normally associated with the execution of anaphase.  相似文献   

12.
Multiple human epidemiologic studies link caffeinated (but not decaffeinated) beverage intake with significant decreases in several types of cancer, including highly prevalent UV-associated skin carcinomas. The mechanism by which caffeine protects against skin cancer is unknown. Ataxia telangiectasia and Rad3-related (ATR) is a replication checkpoint kinase activated by DNA stresses and is one of several targets of caffeine. Suppression of ATR, or its downstream target checkpoint kinase 1 (Chk1), selectively sensitizes DNA-damaged and malignant cells to apoptosis. Agents that target this pathway are currently in clinical trials. Conversely, inhibition of other DNA damage response pathways, such as ataxia telangiectasia mutated (ATM) and BRCA1, promotes cancer. To determine the effect of replication checkpoint inhibition on carcinogenesis, we generated transgenic mice with diminished ATR function in skin and crossed them into a UV-sensitive background, Xpc(-/-). Unlike caffeine, this genetic approach was selective and had no effect on ATM activation. These transgenic mice were viable and showed no histological abnormalities in skin. Primary keratinocytes from these mice had diminished UV-induced Chk1 phosphorylation and twofold augmentation of apoptosis after UV exposure (P = 0.006). With chronic UV treatment, transgenic mice remained tumor-free for significantly longer (P = 0.003) and had 69% fewer tumors at the end of observation of the full cohort (P = 0.019), compared with littermate controls with the same genetic background. This study suggests that inhibition of replication checkpoint function can suppress skin carcinogenesis and supports ATR inhibition as the relevant mechanism for the protective effect of caffeinated beverage intake in human epidemiologic studies.  相似文献   

13.
Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. Much of our current understanding of checkpoints comes from genetic studies conducted in yeast. In the fission yeast Schizosaccharomyces pombe (Sp), SpRad3 is an essential component of both the DNA damage and DNA replication checkpoints. The SpChk1 and SpCds1 protein kinases function downstream of SpRad3. SpChk1 is an effector of the DNA damage checkpoint and, in the absence of SpCds1, serves an essential function in the DNA replication checkpoint. SpCds1 functions in the DNA replication checkpoint and in the S phase DNA damage checkpoint. Human homologs of both SpRad3 and SpChk1 but not SpCds1 have been identified. Here we report the identification of a human cDNA encoding a protein (designated HuCds1) that shares sequence, structural, and functional similarity to SpCds1. HuCds1 was modified by phosphorylation and activated in response to ionizing radiation. It was also modified in response to hydroxyurea treatment. Functional ATM protein was required for HuCds1 modification after ionizing radiation but not after hydroxyurea treatment. Like its fission yeast counterpart, human Cds1 phosphorylated Cdc25C to promote the binding of 14-3-3 proteins. These findings suggest that the checkpoint function of HuCds1 is conserved in yeast and mammals.  相似文献   

14.
ATR [ataxia-telangiectasia-mutated (ATM)- and Rad3-related] is a protein kinase required for both DNA damage-induced cell cycle checkpoint responses and the DNA replication checkpoint that prevents mitosis before the completion of DNA synthesis. Although ATM and ATR kinases share many substrates, the different phenotypes of ATM- and ATR-deficient mice indicate that these kinases are not functionally redundant. Here we demonstrate that ATR but not ATM phosphorylates the human Rad17 (hRad17) checkpoint protein on Ser(635) and Ser(645) in vitro. In undamaged synchronized human cells, these two sites were phosphorylated in late G(1), S, and G(2)/M, but not in early-mid G(1). Treatment of cells with genotoxic stress induced phosphorylation of hRad17 in cells in early-mid G(1). Expression of kinase-inactive ATR resulted in reduced phosphorylation of these residues, but these same serine residues were phosphorylated in ionizing radiation (IR)-treated ATM-deficient human cell lines. IR-induced phosphorylation of hRad17 was also observed in ATM-deficient tissues, but induction of Ser(645) was not optimal. Expression of a hRad17 mutant, with both serine residues changed to alanine, abolished IR-induced activation of the G(1)/S checkpoint in MCF-7 cells. These results suggest ATR and hRad17 are essential components of a DNA damage response pathway in mammalian cells.  相似文献   

15.
ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.  相似文献   

16.
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2 AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation(radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to coadministration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA doublestrand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit(DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2 A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer.  相似文献   

17.
The eukaryotic intra-S-phase checkpoint, which slows DNA synthesis in response to DNA damage, is poorly understood. Is DNA damage recognized directly, or indirectly through its effects on replication forks? Is the slowing of S phase in part because of competition between DNA synthesis and recombination/repair processes? The results of our genetic analyses of the intra-S-phase checkpoint in the fission yeast, Schizosaccharomyces pombe, suggest that the slowing of S phase depends weakly on the helicases Rqh1 and Srs2 but not on other recombination/repair pathways. The slowing of S phase depends strongly on the six checkpoint-Rad proteins, on Cds1, and on Rad4/Cut5 (similar to budding yeast Dpb11, which interacts with DNA polymerase epsilon) but not on Rhp9 (similar to budding yeast Rad9, necessary for direct damage recognition). These results suggest that, in fission yeast, the signal activating the intra-S-phase checkpoint is generated only when replication forks encounter DNA damage.  相似文献   

18.
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.  相似文献   

19.
The human neurodegenerative and cancer predisposition condition ataxia-telangiectasia is characterized at the cellular level by radiosensitivity, chromosomal instability, and impaired induction of ionizing radiation-induced cell cycle checkpoint controls. Recent work has revealed that the gene defective in ataxia-telangiectasia, termed ATM, encodes an approximately 350-kDa polypeptide, ATM, that is a member of the phosphatidylinositol 3-kinase family. We show that ATM binds DNA and exploit this to purify ATM to near homogeneity. Atomic force microscopy reveals that ATM exists in two populations, with sizes consistent with monomeric and tetrameric states. Atomic force microscopy analyses also show that ATM binds preferentially to DNA ends. This property is similar to that displayed by the DNA-dependent protein kinase catalytic subunit, a phosphatidylinositol 3-kinase family member that functions in DNA damage detection in conjunction with the DNA end-binding protein Ku. Furthermore, purified ATM contains a kinase activity that phosphorylates serine-15 of p53 in a DNA-stimulated manner. These results provide a biochemical assay system for ATM, support genetic data indicating distinct roles for DNA-dependent protein kinase and ATM, and suggest how ATM may signal the presence of DNA damage to p53 and other downstream effectors.  相似文献   

20.
Genomic rearrangements are common, occur by largely unknown mechanisms, and can lead to human diseases. We previously demonstrated that some genome rearrangements occur in budding yeast through the fusion of two DNA sequences that contain limited sequence homology, lie in inverted orientation, and are within 5 kb of one another. This inverted repeat fusion reaction forms dicentric chromosomes, which are well-known intermediates to additional rearrangements. We have previously provided evidence indicating that an error of stalled or disrupted DNA replication forks can cause inverted repeat fusion. Here we analyze how checkpoint protein regulatory pathways known to stabilize stalled forks affect this form of instability. We find that two checkpoint pathways suppress inverted repeat fusion, and that their activities are distinguishable by their interactions with exonuclease 1 (Exo1). The checkpoint kinase Rad53 (Chk2) and recombination protein complex MRX(MRN) inhibit Exo1 in one pathway, whereas in a second pathway the ATR-like kinases Mec1 and Tel1, adaptor protein Rad9, and effector kinases Chk1 and Dun1 act independently of Exo1 to prevent inverted repeat fusion. We provide a model that indicates how in Rad53 or MRX mutants, an inappropriately active Exo1 may facilitate faulty template switching between nearby inverted repeats to form dicentric chromosomes. We further investigate the role of Rad53, using hypomorphic alleles of Rad53 and null mutations in Rad9 and Mrc1, and provide evidence that only local, as opposed to global, activity of Rad53 is sufficient to prevent inverted repeat fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号