首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABAergic control of basal forebrain cholinergic neurons and memory   总被引:1,自引:0,他引:1  
The involvement of the GABAergic innervation of basal forebrain neurons in the rats' conditional visual discrimination performance was examined. Performance in such a task is based on the subjects's ability to retrieve information about response rules, and previous experiments have demonstrated that basal forebrain lesions interfere with this ability. Following the acquisition of the task, chronic guide cannulae were stereotaxically implanted into the substantia innominata of both hemispheres, and the animals were retrained. Administration of the GABAA-agonist muscimol into the substantia innominata (0, 25, 50 ng/0.5 microliters/hemisphere) dose-dependently decreased the number of correct responses, increased the number of errors of omission, increased response latency, but did not affect side bias. Systemic co-administration of the cholinesterase inhibitor physostigmine (0, 0.1, 0.2 mg/kg; i.p.) exclusively interacted with the effects of muscimol on correct responding. Specifically, physostigmine dose-dependently intensified and attenuated the muscimol-induced reduction in correct responding. Although it cannot be excluded that alternative neuronal mechanisms were involved in the mediation of the effects of muscimol and their interaction with physostigmine, these findings support previous evidence indicating that the activity of basal forebrain cholinergic neurons is controlled by a GABAergic input, and that this neuronal link is involved in mnemonic processing.  相似文献   

2.
The aim of this review is to survey biochemical, electrophysiological and behavioral evidence of the interactions between the cholinergic and histaminergic systems and evaluate their possible involvement in cognitive processes. The cholinergic system has long been implicated in cognition, and there is a plethora of data showing that cholinergic deficits parallel cognitive impairments in animal models and those accompanying neurodegenerative diseases or normal aging in humans. Several other neurotransmitters, though, are clearly implicated in cognitive processes and interact with the cholinergic system. The neuromodulatory effect that histamine exerts on acetylcholine release is complex and multifarious. There is clear evidence indicating that histamine controls the release of central acetylcholine (ACh) locally in the cortex and amygdala, and activating cholinergic neurones in the nucleus basalis magnocellularis (NBM) and the medial septal area-diagonal band that project to the cortex and to the hippocampus, respectively. Extensive experimental evidence supports the involvement of histamine in learning and memory and the procognitive effects of H(3) receptor antagonists. However, any attempt to strictly correlate cholinergic/histaminergic interactions with behavioral outcomes without taking into account the contribution of other neurotransmitter systems is illegitimate. Our understanding of the role of histamine in learning and memory is still at its dawn, but progresses are being made to the point of suggesting potential treatment strategies that may produce beneficial effects on neurodegenerative disorders associated with impaired cholinergic function.  相似文献   

3.
The present study provides a detailed report about similarities and dissimilarities between the effects of neostriatally applied dopaminergic (apomorphine, 250-300 ng; haloperidol, 250-500 ng), cholinergic (carbachol, 50-100 ng; scopolamine, 200-500 ng), and GABAergic (muscimol, 1-2 ng; bicuculline, 5-35 ng) drugs upon swimming of rats. The used swimming test consisted of 4 parts: (a) open-field test for analyzing drug-induced changes in normal behavior; (b) 'swimming without escape' test for analyzing drug-induced changes in the ability to switch from one type of behavior to another; (c) 'swimming with escape' test for analyzing drug-induced changes in the ability to switch from ongoing swimming behavior to climbing behavior by allowing the rats to escape via a rope; and (d) 'rope' test for analyzing drug-induced changes in the kind of contact behaviors needed to switch to the latter climbing behavior. In the open-field test the drugs produced neither abnormal behavior nor motor disturbances, which prevented the display of normal behavior in the remaining tests. Both apomorphine and carbachol produced identical effects in all tests. Muscimol produced overall effects which were not only opposite to those of apomorphine and carbachol, but also comparable to those of scopolamine. All effects elicited by apomorphine, carbachol and muscimol were antagonized by their corresponding antagonists: haloperidol, scopolamine and bicuculline respectively, whereas the effects of the latter were suppressed by their corresponding agonists. These data globally show that dopamine and acetylcholine act in the same direction but opposite to that of GABA as far as it concerns the regions investigated. The finding that haloperidol injected into the GABA target area produced effects which were not only similar to those of haloperidol injected into the dopamine target area, but also dissimilar to those of muscimol and bicuculline injected into the GABA target area, shows that the effects were drug-specific rather than region-specific. Though 3 distinct cholinergic regions were investigated, cholinergic-specific effects could only be elicited from one region, suggesting that the neostriatum is heterogeneous in this respect. Finally, well-delineated dissimilarities between haloperidol-, scopolamine-, and muscimol-treated rats were found in the rope test. These data show that behavior-relevant information transmitted by GABAergic drugs surmounted that transmitted by cholinergic drugs which, in turn, surmounted behavior-relevant information transmitted by dopaminergic drugs.  相似文献   

4.
Neurohormones like testosterone and estrogen have an important role in learning and memory. Many biological effects of androgens in the brain require the local conversion of these steroids to an estrogen. The current research has conducted to assess the effect of testosterone, estrogen and aromatase inhibitor (anastrozole) on spatial discrimination of rats, using Morris water maze and also the pathway of the effect of testosterone by using anastrozole. Adult male rats were bilaterally cannulated into CA1 region of hippocampus and divided into 15 groups. Different groups received DMSO 0.5 microl and DMSO 0.5 microl + DMSO 0.5 microl as control groups and different doses of testosterone enanthate (TE) (20, 40 and 80 microg/0.5 microl), estradiol valerat (EV) (1, 2.5, 5, 10, and 15 microg/0.5 microl), anastrozole (An) (0.25, 0.5, 1 microg/0.5 microl), TE 80 microg/0.5 microl + anastrozole 0.5 microg/0.5 microl and EV 15 microg/0.5 microl + anastrozole 0.5 microg/0.5 microl all days before training. TE and EV were injected 30-35 min before training and anastrozole was injected 25-30 min before training. Our results have shown both TE 80 microg/0.5 microl and EV 15 microg/0.5 microl groups increase in escape latency and traveled distance to find invisible platform. Also we have shown that anastrozole dose dependently decreases escape latency and traveled distance. We resulted that both TE and EN impaired acquisition of spatial learning and memory but anastrozole improved it. Anastrozole also could be buffered TE-induced impairment effect but not EV.  相似文献   

5.
The interaction between cholinergic and β-adrenergic systems on radial arm maze performance was investigated. Scopolamine significantly disrupted radial maze performance. Although neither propranolol (a centrally and peripherally acting β-antagonist), nor atenolol (a peripherally acting β1-antagonist) affected the maze performance, both antagonists significantly augmented the scopolamine disruption. These results suggest the importance of the interaction between central cholinergic and peripheral β-adrenergic systems on radial maze performance.  相似文献   

6.
Enzymes concerned with neurotransmitter metabolism were measured postmortem in 50 regions from the brains of 11 chronic schizophrenics, 2 patients with senile dementia, 1 depressive, and 18 controls. Enzymes studied were tyrosine hydroxylase, dopa decarboxylase, glutamic decarboxylase, choline acetyltransferase (CAT), and acetylcholinesterase. The schizophrenic group had high CAT activities in the hippocampus, caudate, putamen, and nucleus accumbens; the other patients from the same hospital did not. A compensatory response to long- or short-term drug usage is considered, but correlations are hard to establish in the group studied. An alternative hypothesis proposes that the high levels are a compensatory response to defective cholinergic receptors in the affected areas. On this hypothesis, and by analogy with chorea, dopaminergic antagonists would act in schizophrenia by helping to reestablish cholinergic-dopaminergic balance.  相似文献   

7.
Abstract

Few studies have specifically addressed the cholinergic role in visuospatial memory. In the present study, we employed a randomized double-blind repeated measures design to investigate the effects of scopolamine on Judgement of Line Orientation (JLO) and two distinct visuospatial memory tasks. Complex Figures (CF) is a test of drawn reproduction similar to the Rey complex figure. The Spatial Array Memory Test (SAMT) is a two-dimensional free-recall visuospatial test which minimizes constructive skills and allows sensitive measurement of placement errors. Scopolamine impaired performance on JLO and CF. However, no effects of scopolamine on SAMT were apparent even though the SAMT is sensitive to aging and right temporal-lobe lesions. Selective effects of scopolamine on focused versus distributed attention may account for these differential results.  相似文献   

8.
9.
Synaptic inhibition from the substantia nigra pars reticulata (SNr) to the mesencephalic dopaminergic neurons, which was mediated by gamma (gamma)-amino-butyric acid (GABA), was investigated in a midbrain slice preparation of Wistar rats. Whole-cell patch-clamp recordings were used to record synaptic potentials/currents from the dopaminergic neurons (n = 93) located in the retrorubral field (n = 22), the substantia nigra pars compacta (n = 47) and the ventral tegmental area (n = 24). In the presence of ionotropic glutamate receptor antagonists electrical stimulation of the SNr induced inhibitory postsynaptic potentials (IPSPs) and/or currents (IPSCs) in 83 neurons. The IPSPs/IPSCs were comprised early and late components. The early IPSPs/IPSCs were mediated by chloride currents through GABA(A) receptors. The late IPSPs/IPSCs were mediated by potassium currents through GABA(B) receptors. Both GABA(A)- and GABA(B)-IPSPs were amplified by repetitive stimuli with frequencies between 25 and 200 Hz. This frequency range covers the firing frequencies of SNr neurons in vivo. It was observed that an application of a GABA(B) receptor antagonist increased the amplitude of the GABA(A)-IPSPs. The amplification was followed by a rebound depolarization that induced transient firing of dopaminergic neurons. These properties of the IPSPs were common in all of the three dopaminergic nuclei. These results suggest that postsynaptic GABA(A)- and GABA(B)-inhibition contribute to transient and persistent alternations of the excitability of dopaminergic neurons, respectively. These postsynaptic mechanisms may be, in turn, regulated by presynaptic GABA(B)-inhibition. Nigral GABAergic input may provide the temporospatial regulation of the background excitability of mesencephalic dopaminergic systems.  相似文献   

10.
11.
Possible interaction between disulfiram and isoniazid   总被引:1,自引:0,他引:1  
  相似文献   

12.
Extensive evidence indicates that disruption of cholinergic function is characteristic of aging and Alzheimer's disease (AD), and experimental manipulation of the cholinergic system in laboratory animals suggests age-related cholinergic dysfunction may play an important role in cognitive deterioration associated with aging and AD. Recent research, however, suggests that cholinergic dysfunction does not provide a complete account of age-related cognitive deficits and that age-related changes in cholinergic function typically occur within the context of changes in several other neuromodulatory systems. Evidence reviewed in this paper suggests that interactions between the cholinergic system and several of these neurotransmitters and neuromodulators--including norepinephrine, dopamine, serotonin, GABA, opioid peptides, galanin, substance P, and angiotensin II--may be important in learning and memory. Thus, it is important to consider not only the independent contributions of age-related changes in neuromodulatory systems to cognitive decline, but also the contribution of interactions between these systems to the learning and memory deficits associated with aging and AD.  相似文献   

13.
In rats, a distinct environment repeatedly paired with nicotine (0.421 mg/kg base, s.c.) comes to evoke an increase in activity in the absence of any drug. This hyperactivity indicates a Pavlovian-conditioned association between the environment and nicotine. We investigated whether a dopamine D(1) receptor antagonist (SCH-23390), a D(2)/D(3) antagonist (eticlopride) or a GABA(B) agonist (baclofen) would prevent the acquisition of nicotine-conditioned hyperactivity. In saline-pretreated rats, acute nicotine suppressed activity during the conditioning phase (i.e. environment-nicotine pairings); chronic nicotine stimulated activity. Pretreatment with SCH-23390 (0.01 mg/kg, i.p.) attenuated the activating effects of nicotine without affecting controls. Eticlopride (0.03-0.07 mg/kg, i.p.) and baclofen (0.625 and 1.25 mg/kg, i.p.) did not affect nicotine-induced activity in a selective manner. Regardless of the pretreatment drug, rats acquired the environment-nicotine association as indexed in a drug-free test. The inability of SCH-23390 to block the acquisition of nicotine-conditioned locomotor activity is notable because in past research SCH-23390 blocked expression of the learned association.  相似文献   

14.
Hippocampal long‐term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP‐inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N‐methyl‐D ‐aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress‐induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of γ‐aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience‐dependent fear memory, and that hippocampal synaptic response associated stress‐related processes is under mPFC regulation. Synapse 63:549‐556, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Haddjeri N  Lucas G  Blier P 《Neuroreport》2000,11(15):3397-3401
Several observations indicate that 5-HT1A receptors found on a long neuronal feedback loop, originating from the medial prefrontal cortex, regulate 5-HT neuronal firing. In the present study, the muscarinic (M) receptor antagonists atropine and scopolamine as well as the M2 receptor antagonist AF-DX 116, but not the preferential M1 receptor antagonist pirenzepine, reduced the suppressant effect of the 5-HT1A receptor agonist 8-OH-DPAT on the spontaneous firing activity of rat dorsal raphe 5-HT neurons. Moreover, AF-64A-induced lesions of cholinergic neurons directly in the medial prefrontal cortex and after its i.c.v. injection attenuated the effect of 8-OH-DPAT. Finally, the NMDA receptor antagonist (+)MK-801 and the GABA(B) receptor antagonist SCH-50911, but not the GABA(A) receptor antagonist (-)bicuculline, dampened the latter response. The present study unveiled a key role for the cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons.  相似文献   

16.
The therapeutic action of lithium in affective disorders is still unclear. One effect of lithium is to deplete membrane inositol and consequently to exhaust the phosphoinositide (PI) pathway. Under chronic lithium treatment, rats showed persistent performance deficits in an active avoidance task and in a visually cued maze. The same treatment, however, resulted in only a transient deficit in the performance of rats in a spatial memory task. Lithium treatment caused a similarly transient deficit in the ability of acetylcholine to potentiate responses to N-methyl-D-aspartate (NMDA) in neurons of the hippocampal slice. The authors propose that the development of compensatory mechanisms may account for the lack of severe memory impairments during lithium treatment. It is suggested that the effects of lithium on the PI pathway are not sufficient to explain the behavioral consequences of chronic lithium treatment.  相似文献   

17.
Chronic stress may have different effects on hippocampal CA3 and CA1 neuronal morphology and function depending upon hormonal status, but rarely are manipulations of stress and gonadal steroids combined. Experiment 1 investigated the effects of chronic restraint and 17β‐estradiol replacement on CA3 and CA1 dendritic morphology and spatial learning in ovariectomized (OVX) female Sprague–Dawley rats. OVX rats were implanted with 25% 17β‐estradiol, 100% cholesterol, or blank silastic capsules and then chronically restrained (6h/d/21d) or kept in home cages. 17β‐Estradiol or cholesterol prevented stress‐induced CA3 dendritic retraction, increased CA1 apical spine density, and altered CA1 spine shape. The combination of chronic stress and 17β‐estradiol facilitated water maze acquisition compared to chronic stress + blank implants and nonstressed controls + 17β‐estradiol. To further investigate the interaction between 17β‐estradiol and stress on hippocampal morphology, experiment 2 was conducted on gonadally intact, cycling female rats that were chronically restrained (6h/d/21d), and then euthanized at proestrus (high ovarian hormones) or estrus (low ovarian hormones). Cycling female rats failed to show chronic stress‐induced CA3 dendritic retraction at either estrous phase. Chronic stress enhanced the ratio of CA1 basal spine heads to headless spines as found in experiment 1. In addition, proestrous rats displayed increased CA1 spine density regardless of stress history. These results show that 17β‐estradiol or cholesterol protect against chronic stress‐induced CA3 dendritic retraction in females. These stress‐ and 17β‐estradiol‐induced morphological changes may provide insight into how dendritic complexity and spine properties contribute to spatial ability. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
It is widely accepted that learning first involves generating new memories and then consolidating them into long-term memory. Thus learning is generally viewed as a single continuous process with two sequential stages; acquisition and consolidation. Here, we tested an alternative hypothesis proposing that acquisition and consolidation take place, at least partly, in parallel. Human subjects learned two visuomotor tasks. One task required moving a cursor under visuomotor rotation and the other required arbitrary association of colour to direction of movement. Subjects learned the two tasks in sequence, and were tested for acquisition of the second immediately after learning the first, and for retention of the first on the following day. The results show that learning one task led to proactive interference to acquisition of the second. However, this interference was not accompanied by retroactive interference to consolidation of the first task, indicating that acquisition and consolidation can be uncoupled.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号