首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growing evidence points to the potential of agonistic anti-CD40 mAbs as adjuvants for vaccination against cancer. These appear to act by maturing dendritic cells (DCs) and allowing them to prime CD8 cytotoxic T lymphocytes (CTLs). Although it is well established that optimal T-cell priming requires costimulation via B7:CD28, recent studies emphasize the contribution of TNF receptors to this process. To understand how anti-CD40 mAbs trigger effective antitumor immunity, we investigated the role of TNFR superfamily members CD27 and 4-1BB in the generation of this immunity and showed that, although partially dependent on 4-1BB:4-1BBL engagement, it is completely reliant on CD27:CD70 interactions. Importantly, blocking CD70, and to some extent 4-1BBL, during anti-CD40 treatment prevented accumulation of tumor-reactive T cells and subsequent tumor protection. However, it did not influence changes in DC number, phenotype, nor the activity of CTLs once immunity was established. We conclude that CD27:CD70 and 4-1BB:4-1BBL interactions are needed for DC-driven accumulation of antitumor CTLs following anti-CD40 mAb treatment. Finally, in support of the critical role for CD70:CD27, we show for the first time that agonistic anti-CD27 mAbs given without a DC maturation signal completely protect tumor-bearing mice and provide a highly potent reagent for boosting antitumor T-cell immunity.  相似文献   

2.
Gene-modified dendritic cells (DCs) are promising targets for cancer immunotherapy. In this study, we demonstrated that lentiviral transduction of DCs with the gp34/OX40L gene, one of the costimulatory molecules, facilitates alloreactive CD4+ T-cell response in vitro. We achieved a 20% to 40% efficiency of gp34/OX40L gene transfer into DCs by the lentiviral vector, and lentiviral gp34/OX40L gene transfer did not alter the surface phenotype of either immature or mature DCs, suggesting that expression of gp34/OX40L did not induce the maturation of immature DCs and that gp34/OX40L-transduced DCs could fully differentiate into mature DCs. gp34/OX40L gene transfer facilitated an allogeneic CD4+ T-cell response in vitro by mature DCs but not by immature DCs. Dose escalation of the transgene induced an increasing amount of gp34/OX40L expression, leading to an increasing level of up-regulation of the allogeneic CD4+ T-cell response. The addition of anti-gp34 monoclonal antibody totally abrogated this up-regulation. These results suggest that this facilitation of allogeneic CD4+ T-cell response is specifically dependent on gp34/OX40L expressed on transduced DCs. Taken together, our findings show that gp34/ OX40L plays an important role in allogeneic CD4+ T-cell activation by DCs and that lentiviral gp34/OX40L gene transfer into DCs may be a useful strategy for cancer immunotherapy.  相似文献   

3.
Dendritic cells (DCs) have attracted wide interest because of their unique capacity to elicit primary and secondary antitumor responses. We have generated autologous tumor lysate-pulsed DCs from three patients with medullary thyroid carcinoma (MTC) and tested them for their ability to stimulate cytotoxic T-cell responses against autologous MTC tumor cells in vitro. The aim of our investigations was to evaluate the potential efficacy of DC-based immunotherapy in patients with MTC. DCs were generated from peripheral blood monocytes using GM-CSF and IL-4 (immature DCs) or GM-CSF, IL-4, and TNFalpha (mature DCs). Our results indicate that mature tumor lysate-pulsed DCs are able to elicit a human leukocyte antigen class I-restricted cytotoxic T-cell response against autologous MTC tumor cells, whereas immature tumor lysate-pulsed DCs do not stimulate significant antitumor activity. We feel that our data may be relevant for future clinical trials of active immunotherapy using tumor lysate-pulsed DCs in patients with MTC who have residual or distant disease after surgical treatment. The fact that mature DCs displayed a substantially higher capacity to stimulate autologous antitumor T-cell responses than immature DCs underlines the importance of a maturation step in immunotherapy protocols based on DCs.  相似文献   

4.
OBJECTIVE: CD40L restores the antigen-presenting cell (APC) function of some B-cell tumors and induces professional APC maturation. We therefore evaluated the effects of transgenic CD40L expression on the behavior and immunogenicity of human multiple myeloma (MM) cells. MATERIALS AND METHODS: CD40L expression was induced in a CD40(+) (RPMI 8226) and a CD40(-) (U266B1) human myeloma cell line (HMCL) by adenoviral vector gene transfer. The viability and proliferative activity of control HMCL and HMCL/CD40L were determined by daily trypan blue staining and methyl-3H-thymidine incorporation. Mixed lymphocyte reaction (MLR) with allogeneic mononuclear cells (MNCs) and coculture of allogeneic dendritic cells (DCs) with HMCL expressing transgenic CD40L were used to evaluate the APC function of modified HMCL as well as the role of bystander DCs in inducing an anti-tumor immune response. RESULTS: CD40L expression significantly inhibited the growth of the CD40(+) HMCL and induced apoptosis. These effects were less evident for the CD40(-) HMCL. There was no upregulation of costimulatory molecules on either HMCL following CD40L expression. Both HMCL expressing transgenic CD40L induced maturation of bystander DCs and enhanced their ability to stimulate the proliferation of MNCs. DCs cultured with the poorly immunogenic RPMI 8226 expressing CD40L upregulated T-lymphocyte release of IFN-gamma and other Th1 cytokines (interleukin-2, tumor necrosis factor-alpha). CONCLUSIONS: Our data suggest that transgenic expression of CD40L exerts a dual effect favoring generation of an immune response to human MM. Where the tumor cells are CD40(+), the engagement of CD40 antigen by CD40L on tumor cells induces their apoptosis, allowing uptake of tumor-associated antigen by professional APC. Independently of tumor-cell expression of CD40, transgenic expression of CD40L on tumor cells allows them to stimulate CD40(+) APC, to increase their maturation and their capacity to stimulate cytotoxic T lymphocytes (CTL) that recognize the tumor-derived antigens the APC may have engulfed.  相似文献   

5.
Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.  相似文献   

6.
BACKGROUND: Atherosclerosis is a disease triggered by diverse exogenous stimuli and sustained by chronic inflammatory processes. Dendritic cells (DCs) are key regulatory antigen-presenting cells and play a crucial role in regulating the adaptive and innate immune system in any chronic inflammatory process. DCs are present in atherosclerotic lesions in the areas of the highest T-cell density. So far, their role in atherosclerosis has not been fully elucidated. We investigated the phenotypic properties of DCs in patients with coronary artery disease (CAD) in comparison to healthy individuals. METHODS: Peripheral blood monocytes were isolated from 50 patients with CAD and 19 healthy individuals and differentiated over 9 days to immature and mature DCs. Analysis of the distribution of important stimulatory and costimulatory molecules on the surface of immature and mature DCs was performed by flow cytometry. RESULTS: We observed no changes between the groups concerning cell numbers or expression of CD1a or HLA-DR on DCs. Patients with CAD, however, showed a significant upregulation of the costimulatory molecules CD80, CD86 and CD40 as compared with healthy controls. Expression of CD40, CD80 and CD86 on DCs partly correlated with smoking, family history of CAD, as well as with C-reactive protein levels. High-density lipoprotein cholesterol was inversely associated with the expression of CD40 and CD80 on mature DCs (P<0.05). CONCLUSION: Upregulation of important costimulatory molecules on monocyte-derived DCs of CAD patients, is influenced multifactorially. Our results show notable differences between CAD patients and healthy individuals, possibly contributing to the pathophysiological processes in atherogenesis.  相似文献   

7.
8.
9.
Mosca PJ  Hobeika AC  Clay TM  Nair SK  Thomas EK  Morse MA  Lyerly HK 《Blood》2000,96(10):3499-3504
Dendritic cells (DCs) may arise from multiple lineages and progress through a series of intermediate stages until fully mature, at which time they are capable of optimal antigen presentation and T-cell activation. High cell surface expression of CD83 is presumed to correlate with full maturation of DCs, and a number of agents have been shown to increase CD83 expression on DCs. We hypothesized that interleukin 12 (IL-12) expression would be a more accurate marker of functionally mature DCs capable of activating antigen-specific T cells. We used combinations of signaling through CD40, using CD40 ligand trimer (CD40L), and interferon gamma to demonstrate that CD83 expression is necessary but not sufficient for optimal production of IL-12 by DCs. Phenotypically mature DCs could be induced to produce high levels of IL-12 p70 only when provided 2 simultaneous stimulatory signals. By intracellular cytokine detection, we determined that only a subset of cells that express high levels of CD80 and CD83 generate large amounts of IL-12. DCs matured with both signals are superior to DCs stimulated with the individual agents in activating antigen-specific T cell in vitro. These findings have important implications regarding the identification, characterization, and clinical application of functionally mature DCs.  相似文献   

10.
Tolerogenic dendritic cells: cytokine modulation comes of age   总被引:27,自引:4,他引:23       下载免费PDF全文
Rutella S  Danese S  Leone G 《Blood》2006,108(5):1435-1440
Dendritic cells (DCs) include a heterogeneous family of professional APCs involved in initiation of immunity and in immunologic tolerance. Specifically, peripheral tolerance can be achieved and maintained by promoting regulatory T-cell (Treg) responses and/or T-cell anergy or deletion. Until recently, immature developmental stages of DC differentiation were believed to induce T-cell anergy or Treg cells, whereas DCs transformed into mature DCs by activation stimuli were thought to represent immunogenic DCs capable of inciting primary T-cell responses. This paradigm has been challenged by the demonstration of Treg-cell expansion by antigen-bearing, fully mature DCs. Similarly, semimature DCs with a distinctive interleukin 10 (IL-10)+ IL-12- cytokine production profile might be endowed with tolerogenic functions, supporting the concept that DC maturation per se should no longer be considered as a distinguishing feature of immunogenic as opposed to tolerogenic DCs (TDCs). Cytokine-modulated TDCs reflect an incomplete or altered status of monocyte differentiation and promote in vitro induction of Treg cells and/or in vivo protection from autoimmune diseases. Several growth factors, including IL-10, transforming growth factor beta (TGF-beta), granulocyte colony-stimulating factor (G-CSF), hepatocyte growth factor (HGF), and vasoactive intestinal peptide (VIP), modulate DC maturation and favor the differentiation of TDCs. From a therapeutic standpoint, cytokine-modulated TDCs might be beneficial for prevention and/or treatment of posttransplantation graft-versus-host disease (GVHD) and autoimmunity.  相似文献   

11.
OBJECTIVES: Interleukin-15 (IL-15) has potential therapeutic advantage for patients receiving umbilical cord blood (CB) transplantation. The present study aims to examine the ability of IL-15 to modulate the survival, maturation, and function of anti-CD3/anti-CD28 stimulated CB CD4+ T cells, in comparison with responses from adult peripheral blood (APB) CD4+ T cells. METHODS: Enriched CB and APB CD4+ T cells were stimulated with anti-CD3 and anti-CD28 (anti-CD3/anti-CD28) in the presence or absence of IL-15 (10 ng/mL) for 5 d. The percentages of apoptotic cells were assessed by propidium iodide/annexin-V flow cytometric staining. T-cell activation was analyzed with the expression of surface markers (CD45RO/CD69/CD25). Interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) production in culture supernatant was determined by enzyme-linked immunosorbent assay. RESULTS: CB CD4+ T cells had a higher survival and lower apoptotic response following anti-CD3/anti-CD28 stimulation, compared with APB CD4+ T cells. IL-15 enhanced apoptosis and promoted CD45RO conversion of anti-CD3/anti-CD28 activated CB CD4+ T cells, an effect not observed with APB CD4+ T cells. Although activated CB CD4+ T cells expressed comparable level of CD69/CD25 expression to adults, IFN-gamma production of activated CB CD4+ T cells was markedly deficient compared with that of corresponding APB CD4+ T cells. Exogenous IL-15 further enhanced the production of IFN-gamma, but not TNF-alpha, of activated CB CD4+ T cells. CONCLUSIONS: IL-15 preferentially resulted in an activation-enhancing effect on CB CD4+ T cells, accompanied by increased apoptosis. Our finding may have therapeutic implications while designing IL-15 immunotherapy for patients receiving CB transplant.  相似文献   

12.
In the initial stage of cutaneous T-cell lymphoma (CTCL), proliferating CTCL cells are concentrated in the epidermis in close association with an immature dendritic cell (DC), the Langerhans cell. Because long-term in vitro culture of CTCL cells has proven difficult, the in vivo association with the major antigen-presenting cell (APC) of the epidermis has been postulated to play a role in directly stimulating the clonal T-cell proliferation. We report that CTCL cells can be reproducibly grown in culture for 3 months when cocultured with immature DCs. CTCL cells retain the phenotype and genotype of the initial malignant clone, whereas the APCs are a mixture of immature and mature DCs. CTCL cell and DC survival was dependent on direct membrane contact. Growth was inhibited by antibodies that bound to the T-cell receptor (TCR) or interfered with the interaction of CD40 with its ligand on the CTCL cell. Addition of antibody to CD3 or the clonotypic TCR caused rapid CTCL cell apoptosis followed by engulfment by avidly phagocytic immature DCs and subsequent DC maturation. The opportunity to study CTCL cells and immature DCs for prolonged periods will facilitate studies of tumor cell biology and will allow investigation of the intriguing hypothesis that CTCL cell growth is driven through TCR recognition of class II-presented self-peptides. In addition, the culture of CTCL cells will permit evaluation of therapies in vitro before clinical intervention, thereby improving safety and efficacy.  相似文献   

13.
Dendritic cells (DCs) control T cell-based immunity. To do so they need to mature and migrate to sites of T-cell priming. We have previously shown that cognate interactions of human CD4+ T cells with DCs induce DC maturation. We show here that CC chemokines produced during antigen-specific T-DC interactions also induce strong morphologic modifications and migration of immature DCs. These modifications are required for efficient T-cell activation. Moreover, we show that CC chemokines produced during antigen-specific DC-T-cell interactions induce the dissolution of structures involved in cell motility and present on immature DCs (ie, podosomes). We thus propose a model in which chemokines secreted during Ag-specific contact between T cells and DCs induce disassembly of interacting and neighboring immature DC podosomes, leading to recruitment of more immature DCs toward sites of antigenic stimulation and to amplification of T-cell responses.  相似文献   

14.
Adequate spontaneous activation of tumor-specific T lymphocytes in tumor-bearing hosts is rare, despite the expression of tumor antigens that are potentially highly immunogenic. For example, failure of the immune system to raise competent responses against established tumors expressing the human adenovirus E1A-antigen allows this tumor to grow in immunocompetent mice. We show that systemic in vivo administration of agonistic anti-CD40 antibodies into tumor-bearing mice results in tumor eradication mediated by CD8(+) T cells. Treatment resulted in a strong expansion and systemic accumulation of E1A-specific CTL and depended on CD40 expression on host cells, as the tumor was CD40(-), and therapy failed in CD40-deficient mice. Local intratumoral administration of anti-CD40 mAb is equally effective in licensing strong, systemic CTL immunity, resulting in the clearance of distant tumor nodules. Our data indicate that the immune response after cancer-host interactions can be directed toward competence, leading to the cure of established tumors merely by delivery of a CD40-dependent "license to kill" signal.  相似文献   

15.
Morva A  Lemoine S  Achour A  Pers JO  Youinou P  Jamin C 《Blood》2012,119(1):106-114
Mature dendritic cells (DCs) are stimulators of T-cell immune response, whereas immature DCs support T-cell tolerance. Murine B cells can inhibit the production of IL-12 by DCs and thereby hinder the inflammatory response. Notwithstanding the importance of this modulation, only a few studies are available in humans. Here, we have developed an in vitro model of cocultures to assess its significance. We establish that human activated B cells restrained the development of monocytes into immature DCs and their differentiation into mature DCs. In addition, they decreased the density of HLA-DR from mature DCs, the expression of CD80 and CD86 coactivation molecules, the production of IL-12p70 required for antigen presentation and Th1 differentiation, and inhibited the DC-induced T-cell proliferation. These modulations were mediated by CD19(+)IgD(low)CD38(+)CD24(low)CD27(-) B cells and needed direct cell-to-cell contacts that involved CD62L for the control of CD80 and CD86 expression and a soluble factor for the control of IL-12 production. Moreover, mature DCs from patients with systemic lupus erythematosus displayed insensitivity to the regulation of IL-12. Overall, it appears that human B cells can regulate DC maturation and function and that inefficient B-cell regulation may influence an improper balance between an effector inflammatory response and tolerance induction.  相似文献   

16.
Adoptive cellular immunotherapy, infusions of interleukin 2 (IL-2) in conjunction with in vitro-activated killer cells, has brought new hope to patients with cancer. The broad application of this strategy, however, is constrained by the need for repeated leukapheresis and by the labor-intensive process of in vitro activation of cells. Also, current protocols generally use nonphysiological and toxic concentrations of IL-2. Identification of an in vivo stimulant that renders T cells responsive to physiologic concentrations of IL-2 represents a potential improvement over existing approaches. We have determined whether in vivo administration of monoclonal antibodies (mAbs) directed at the T-cell surface protein CD3 induces T-cell responsiveness to IL-2, stimulates cytolytic molecular programs of natural killer cells and cytotoxic T cells, and induces tumor regression. These hypotheses were explored in a murine hepatic MCA-102 fibrosarcoma model. We report that in vivo administration of anti-CD3 mAbs plus IL-2 results in intrahepatic expression of mRNA-encoding perforin, cytotoxic T-cell-specific serine esterase, and tumor necrosis factor alpha. Anti-CD3 mAbs alone or IL-2 alone failed to induce or induced minimal expression of these molecular mediators of cytotoxicity. The anti-CD3 mAbs plus IL-2 regimen also resulted in a significantly smaller number of hepatic metastases and a significantly longer survival time of tumor-bearing mice, compared to treatment with anti-CD3 mAbs alone or IL-2 alone. Our findings suggest that a regimen of anti-CD3 mAbs plus IL-2 is a more effective antitumor regimen compared with anti-CD3 mAbs alone or IL-2 alone and advance an alternative immunotherapy strategy of potential value for the treatment of cancer in humans.  相似文献   

17.
Dendritic cells (DCs) are potent antigen-presenting cells that are uniquely capable of inducing primary immune responses. Although tumour cells may directly inhibit DC maturation, exposure to tumour products may also result in their activation. Fusions of cancer cells and DCs are being explored as cancer vaccines. The effect of tumour cell fusion on DC maturation and their functional characteristics has not been defined. In the present study, immature and mature DC generated from human CD34+ and peripheral blood precursors were fused to multiple myeloma cells in the presence of polyethylene glycol. Fusion of both immature and mature DCs with tumour cells resulted in an activated phenotype. In this regard, fusion cells expressed interleukin-12, a cytokine essential for the induction of T-helper cell type 1 immunity. In contrast to immature DCs, fusion cells also strongly expressed CC-chemokine receptor R7, which is responsible for DC migration to draining lymph nodes. Fusions generated with both immature and mature DCs also potently stimulated T-cell expression of gamma-interferon and cytotoxic T lymphocyte killing of tumour targets. These findings demonstrate that tumour cell fusion induces DC maturation and the development of an activated phenotype necessary for their effectiveness as cancer vaccines.  相似文献   

18.
Mature dendritic cells (DCs), in addition to providing costimulation, can define the Th1, in contrast to the Th2, nature of a T-cell response through the production of cytokines and chemokines. Because calcium signaling alone causes rapid DC maturation of both normal and transformed myeloid cells, it was evaluated whether calcium-mobilized DCs polarize T cells toward a Th1 or a Th2 phenotype. After human monocytes were cultured for 24 hours in serum-free medium and granulocyte-macrophage colony-stimulating factor to produce immature DCs, additional overnight culture with either calcium ionophore (CI) or interferon gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and soluble CD40L resulted in phenotypically mature DCs that produced interleukin-8 (IL-8) and displayed marked expression of CD80, CD86, CD40, CD54, CD83, DC-LAMP, and RelB. DCs matured by IFN-gamma, TNF-alpha, and soluble CD40L were additionally distinguished by undetectable CD4 expression, marked secretion of IL-12, IL-6, and MIP-1beta, and preferential ability to promote Th1/Tc1 characteristics during T-cell sensitization. In contrast, DCs matured by CI treatment were distinguished by CD4 expression, modest or absent levels of IL-12, IL-6, and MIP-1beta, and preferential ability to promote Th2/Tc2 characteristics. Calcium signaling selectively antagonized IL-12 production by mature DCs activated with IFN-gamma, TNF-alpha, and soluble CD40L. Although the activation of DCs by calcium signals is largely mediated through calcineurin phosphatase, the inhibition of IL-12 production by calcium signaling was independent of this enzyme. Naturally occurring calcium fluxes in immature DCs, therefore, negatively regulate Dc1 differentiation while promoting Dc2 characteristics and Th2/Tc2 polarization. Calcium-mobilized DCs may have clinical usefulness in treating disease states with excessive Th1/Tc1 activity, such as graft-versus-host disease or autoimmunity.  相似文献   

19.
Dendritic cell (DC) activation through CD40-CD40 ligand interactions is a key regulatory step for the development of protective T-cell immunity and also plays an important role in the initiation of T-cell responses involved in autoimmune diseases and allograft rejection. In contrast to previous reports, we show that the immunosuppressive drug dexamethasone (DEX) redirects rather than simply blocks this DC activation process. We found that DCs triggered through CD40 in the presence of DEX were unable to acquire high levels of costimulatory, adhesion, and major histocompatibility complex class I and II molecules and failed to express the maturation marker CD83, whereas antigen uptake was not affected. Moreover, DEX strikingly modified the CD40-activated DC cytokine secretion profile by suppressing the production of the proinflammatory cytokine interleukin (IL)-12 and potentiating the secretion of the anti-inflammatory cytokine IL-10. Accordingly, DEX-exposed CD40-triggered DCs displayed a decreased T-cell allostimulatory potential and a dramatically impaired ability to activate cloned CD4(+) T helper 1 (Th1) cells. Moreover, interaction between Th1 cells and these DCs rendered the T cells hyporesponsive to further antigen-specific restimulation. Collectively, our results demonstrate that DEX profoundly modulates CD40-dependent DC activation and suggest that the resulting alternatively activated DCs can be exploited for suppression of unwanted T-cell responses in vivo.  相似文献   

20.
Antibodies against CD3epsilon are widely used as immunosuppressive agents. Although it is generally assumed that these reagents exert their immunomodulatory properties by inducing T-cell deletion and/or inactivation, their precise mechanism of action remains to be elucidated. Using a murine model, we demonstrate in this report that administration of anti-CD3epsilon antibodies causes the migration and maturation of dendritic cells (DC) in vivo, as determined by immunohistochemical analysis. This maturation/migration process was followed by selective loss of splenic DC, which resulted in a selective inhibition of antigen-presenting cell (APC) functions in vitro. Spleen cells from anti-CD3epsilon-treated animals were unable to productively stimulate naive alloreactive T cells and Th1-like clones in response to antigen, while retaining the ability to present antigen to a T-cell hybridoma and Th2 clones. Anti-CD3epsilon treatment was found to induce a selective deficiency in the ability of spleen cells to produce bioactive interleukin-12 in response to CD40 stimulation. APC dysfunction was not observed when nonmitogenic forms of anti-CD3epsilon antibodies were used, suggesting that splenic DC loss was a consequence of in vivo T-cell activation. Nonmitogenic anti-CD3epsilon monoclonal antibodies were found to be less immunosuppressive in vivo, raising the possibility that APC dysfunction contributes to anti-CD3epsilon-induced immunomodulation. Collectively, these data suggest a novel mechanism by which mitogenic anti-CD3epsilon antibodies downregulate immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号