首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary We investigated the response of plasma and platelet free catecholamine ([CA]) and sulphated catecholamine ([CA-S]) concentrations after an incremental treadmill test to exhaustion and during recovery. In triathletes (n = 9) plasma and platelet [CA] and [CA-S] were measured before, immediately after and 0.5 and 24 h after exercise. In long-distance runners (n = 9) and in controls (n = 10) plasma [CA] and [CA-S] were determined 2 h instead of 24 h after exercise. Platelet [CA] and [CA-S] remained unchanged throughout the study. Plasma [CA] increased after exercise in all groups (P<0.05) and returned to pre-exercise values within 0.5 h of recovery. Plasma sulphoconjugated noradrenaline concentration ([NA-S]) was elevated after exercise in the triathletes, long-distance runners and in controls [9.96 (SEM 0.84) nmol·1–1, 11.8 (SEM 1.19) nmol·1–1, 9.53 (SEM 1.10) nmol·l–1, respectively;P<0.05] compared with resting values [7.13 (SEM 1.04) nmol·l–1, 6.19 (SEM 0.56) nmol·l–1, 6.76 (SEM 0.67) nmol·1–1, respectively] and remained elevated after 0.5 h of recovery [9.94 (SEM1.14) nmol·l–1, 10.96 (SEM 0.80) nmol·l–1, 8.95 (SEM 0.99) nmol·l–1, respectively;P<0.05]. In the long-distance runners and controls plasma [NA-S] remained elevated during 2 h of recovery [9.96 (SEM 0.76) nmol·l–1, 9.03 (SEM 0.88) nmol·l–1, respectively]. These results would indicate that plasma [NA-S] increases after sympathetic nervous system activation by an exhausting incremental exercise test and remain elevated up to 2 h after exercise.  相似文献   

2.
Summary The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration ([ANP]) and furthermore to compare ANP with the effect on aldosterone concentration ([Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (–28.5%, SEM 3.7% after 30 min, P<0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV –13.1%, SD 3.6%, sodium +6.2 mmol·1–1, SD 2.7, Osm +18.4 mosmol·kg H2O–1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].  相似文献   

3.
Plasma human growth hormone ([HGH]), adrenaline ([A]), noradrenaline ([NA]) and blood lactate ([La]b) concentrations were measured during progressive, multistage exercise on a cycle ergometer in 12 endurance-trained athletes [aged 32.0 (SEM 2.0) years]. Exercise intensities (3 min each) were increased by 50 W until the subjects felt exhausted. Venous blood samples were taken after each intensity. The [HGH] and catecholamine concentrations increased negligibly during exercise of low to moderate intensities revealing an abrupt rise at the load corresponding to the lactate threshold ([La]-T). Close correlations (P < 0.001) were found between [La]b and plasma [HGH] (r = 0.64), [A] (r = 0.71) and [NA] (r = 0.81). The mean threshold exercise intensities for [HGH], [A] and [NA], detected by log-log transformation, [154 (SEM 19) W, 162 (SEM 15) W and 160 (SEM 17) W, respectively] were not significantly different from the [La]-T [161 (SEM 12) W]. The results indicated that the threshold rise in plasma [HGH] followed the patterns of plasma catecholamine and blood lactate accumulation during progressive exercise in the endurancetrained athletes.  相似文献   

4.
Summary To elucidate the role of factors other than the nervous system in heart rate (f c) control during exercise, the kinetics off c and plasma catecholamine concentrations were studied in ten heart transplant recipients during and after 10-min cycle ergometer exercise at 50 W. Thef c did not increase at the beginning of the exercise for about 60 s. Then in the eight subjects who completed the exercise it increased following an exponential kinetic with a mean time constant of 210 (SEM 22) s. The two other subjects were exhausted after 5 and 8 min of exercise during whichf c increased linearly. At the cessation of the exercise,f c remained unchanged for about 50 s and then decreased exponentially with a time constant which was unchanged from that at the beginning of exercise. In the group of eight subjects plasma noradrenaline concentration ([NA]) increased after 30 s to a mean value above resting of 547 (SEM 124) pg · ml–1, showing a tendency to a plateau, while adrenaline concentration ([A]) did not increase significantly. In the two subjects who became exhausted an almost linear increase in [NA] occurred up to about 1,300 pg · ml–1 coupled with a significant increase in [A]. During recovery an immediate decrease in [NA] was observed towards resting values. The values of thef c increase above resting levels determined at the time of blood collection were linearly related with [NA] increments both at the beginning and end of exercise with a similar slope, i.e. about 2.5 beats · min–1 per 100 pg · ml–1 of [NA] change. These findings would seem to suggest that in the absence of heart innervation the increase inf c depends on plasma [NA].  相似文献   

5.
We tested the hypothesis that measurement of plasma catecholamine sulphate concentration after exercise reflects the overall activation of the sympathoadrenergic system during the whole period of repeated bouts of short-term exercise. A group of 11 male athletes performed two exercise tests at similar average power outputs consisting of three sets each. The tests either started with one set of three very intense sprints (95% of maximal running speed) followed by two sets of three less intense sprints (85% of maximal running speed; HLX) or vice versa (LHX). Similar mean areas under the curve of free noradrenaline (NA) during HLX and LHX [622 (SEM 13) vs 611 (SEM 14) nmol?·?l?1?·?min) as well as similar mean heart rates [143 (SEM 9) vs 143 (SEM 8) beats?·?min?1] indicated comparable sympathetic activation during both exercise tests. Even so, plasma concentration of free NA was still significantly higher at the end of LHX than of HLX [35.7 (SEM 3.5) vs 22.5 (SEM 2.1) nmol?·?l?1, respectively], i.e. when exercise ended with the more intense set of sprints. Plasma noradrenaline sulphate (NA-S) increased with exercise intensity showing higher mean increments after the first set of HLX compared to LHX [1.83 (SEM 0.42) vs 1.18 (SEM 0.29) nmol?·?l?1; P?0.05]. However, after the end of HLX and LHX, increments in plasma NA-S were similar [4.52 (SEM 0.76) vs 4.06 (SEM 0.79) nmol?·?l?1], suggesting that NA-S response changed in parallel with the overall activation of the sympathetic nervous system during repeated bouts of short-term exercise. The results supported the hypothesis that measurement of plasma NA-S immediately after repeated bouts of short-term exercise reflects overall activation of the sympathetic nervous system during prolonged periods of this type of exercise.  相似文献   

6.
The response of plasma insulin-like growth factor I (IGF I) to exercise-induced increase of total human growth hormone concentration [hGHtot] and of its molecular species [hGH20kD] was investigated up to 48 h after an 1-h ergometer exercise at 60% of maximal capacity during normoxia (N) and hypoxia (H) (inspiratory partial pressure of oxygen = 92 mmHg (12.7 kPa);n = 8). Lactate and glucose concentrations were differently affected during both conditions showing higher levels under H. Despite similar maximal concentrations, the increase of human growth hormone (hGH) was faster during exercise during H than during N[hGHtot after 30 min: 8.6 (SD 11.4) ng · ml–1 (N); 16.2 (SD 11.6) ng · ml–1 (H);P < 0.05]. The variations in plasma [hGH20kD] were closely correlated to those of [hGHtot], but its absolute concentration did not exceed 3% of the [hGHtot]. Plasma IGF I concentration was significantly decreased 24 h after both experimental conditions [N from 319 (SD 71) ng · ml-1 to 228 (SD 72) ng · ml–1,P < 0.05; H from 253 (SD 47) to 200 (SD 47) ng · ml–1,P < 0.01], and was still lower than basal levels 48 h after exercise during H [204 (SD 44) ng · ml–1,P < 0.01]. Linear regression analysis yielded no significant correlation between increase in plasma [hGHtot] or [hGH20kD] during exercise and the plasma IGF I concentration after exercise. It was concluded that the exercise-associated elevated plasma [hGH] did not increase the hepatic IGF I production. From our study it would seem that the high energy demand during and after the long-lasting intensive exercise may have overridden an existing hGH stimulus on plasma IGH I, which was most obvious during hypoxia.  相似文献   

7.
Summary This study examined the effect of exposure of the whole body to moderate cold on blood lactate produced during incremental exercise. Nine subjects were tested in a climatic chamber, the room temperature being controlled either at 30°C or at 10°C. The protocol consisted of exercise increasing in intensity in 35 W increments every 3 min until exhaustion. Oxygen consumption (VO2) was measured during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for the measurement of blood glucose, free fatty acid (FFA), noradrenaline (NA) and adrenaline (A) concentrations and, during the last 15 s of each exercise intensity, for the determination of blood lactate concentration [la]b. TheVO2 was identical under both environments. At 10°C, as compared to 30°C, the lactate anaerobic threshold (Than, la ) occurred at an exercise intensity 15 W higher and [Than, la ]b was lower for submaximal intensities above the Than, la Regardless of ambient temperature, glycaemia, A and NA concentrations were higher at exhaustion while FFA was unchanged. At exhaustion the NA concentration was greater at 10°C [15.60 (SEM 3.15) nmol·l–1] than at 30°C [8.64 (SEM 2.37) nmol·l–1]. We concluded that exposure to moderate cold influences the blood lactate produced during incremental exercise. These results suggested that vasoconstriction was partly responsible for the lower [la]b observed for submaximal high intensities during severe cold exposure.  相似文献   

8.
Summary The purpose of the present study was to investigate whether, in humans, hypoxia results in an elevated lactate production from exercising skeletal muscle. Under conditions of both hypoxia [inspired oxygen fraction (FIO2): 11.10%] and normoxia (FIO2: 20.94%), incremental exercise of a forearm was performed. The exercise intensity was increased every minute by 1.6 kg·m·min–1 until exhaustion. During the incremental exercise the partial pressure of oxygen (PO2) and carbon dioxide (PCO2), oxygen saturation (SO2), pH and lactate concentration [HLa] of five subjects, were measured repeatedly in blood from the brachial artery and deep veins from muscles in the forearm of both the active and inactive sides. The hypoxia (arterial SO2 approximately 70%) resulted in (1) the difference in [HLa] in venous blood from active muscle (values during exercise — resting value) often being more than twice that for normoxia, (2) a significantly greater difference in venous-arterial (v-a) [HLa] for the exercising muscle compared to normoxia, and (3) a difference in v-a [HLa] for non-exercising muscle that was slightly negative during normoxia and more so with hypoxia. These studies suggest that lower O2 availability to the exercising muscle results in increased lactate production.  相似文献   

9.
Summary Ten healthy sedentary subjects [age, 27.5 (SD 3.5) years; height, 180 (SD 5) cm; mass, 69.3 (SD 6.3) kg] performed two periods of maximal incremental graded cycle ergometer exercise in a supine position. Randomly ordered and using an open spirometric system, one exercise was carried out during normoxia [maximal oxygen consumption ( O2max)=38.6 (SD 3.5) ml·min–1·kg–1; maximal blood lactate concentration, 9.86 (SD 1.85) mmol·l–1; test duration, 22.6 (SD 2.7) min], the other during hypoxia [ O2max=33.2 (SD 3.2) ml·min–1· kg–1; maximal blood lactate concentration, 10.38 (SD 2.02) mmol·l–1; test duration, 19.7 (SD 2.8) min]. At rest, immediately (0 p) and 60 min (60 p) after exercise, counts of leucocyte subpopulations (flow cytometry), cortisol and catecholamine concentrations were determined. At 0 p in contrast to normoxia, during hypoxia there was no significant increase of granulocytes. There were no significant differences between normoxia and hypoxia in the increases from rest to 0 p in counts of monocytes, total lymphocytes and lymphocyte subpopulations [clusters of differentiation (CD), CD3+, CD4+CD45RO, CD4+CD45RO+, CD8+CD45RO, CD8+CD45RO+, CD3+HLA-DR+, CD3CD16/CD56+, CD3+CD16/CD56+, CD 19+] as well as adrenaline, noradrenaline and cortisol concentrations. The counts of CD3 CD16/CD56+-and CD8 +CD45RO+-cells increased most. At 60 p, CD3CD16/CD56+ and CD3+CD16/CD56+-cell counts were below pre-exercise levels and under hypoxia slightly but significantly lower than under normoxia. We concluded that the exercise-induced mobilization and redistribution of most leucocyte and lymphocyte subpopulations were unimpaired under acute hypoxia at sea level. Reduced increases of granulocyte counts during the study and reduced cell numbers of natural killer cells and cytotoxic, not major histocompatibility complex-restricted T-cells, only indicated marginal effects on the immune system.  相似文献   

10.
To elucidate the mechanisms of lactate formation during submaximal exercise, eight men were studied during one- (1-LE) and two-leg (2-LE) exercise (approximately 11-min cycling) using the catheterization technique and muscle biopsies (quadriceps femoris muscle). The absolute exercise intensity and thus the energy demand for the exercising limb was the same [mean 114 (SEM 7) W] during both 1-LE and 2-LE. At the end of exercise partial pressure of O2 and O2 saturation in femoral venous blood were lower and arterial adrenaline and noradrenaline were higher during 2-LE than during 1-LE. Mean arterial blood lactate concentration increased to 10.8 (SEM 0.8) (2-LE) and 5.2 (SEM 0.4) mmol · 1–1 (1-LE) after 10 min of exercise. The intramuscular metabolic response to exercise was attenuated during 1-LE [mean, lactate = 49 (SEM 9); glucose 6-P = 3.3 (SEM 0.3); nicotinamide adenine dinucleotide, reduced = 0.17 (SEM 0.02); adenosine 5-diphosphate 2.7 (SEM 0.1) mmol · kg dry mass–1] compared to 2-LE [76 (SEM 6); 6.1 (SEM 0.7); 0.21 (SEM 0.02); 3.0 (SEM 0.1) mmol · kg dry mass–1, respectively]. To elucidate whether the lower plasma adrenaline concentration could contribute to the attenuated metabolic response, additional experiments were performed on four of the eight subjects with infusion of adrenaline during 1-LE (1-LEE). Average plasma adrenaline concentration was increased during 1-LEE and reached 2–4 times higher levels than during 2-LE. Post-exercise muscle lactate and glucose 6-P contents were higher during 1-LEE than during 1-LE and were similar to those during 2-LE. Also, leg lactate release was elevated during 1-LEE versus 1-LE. It was concluded that during submaximal dynamic exercise the intramuscular metabolic response not only depended on the muscle power output, but also on the total muscle mass engaged. Plasma adrenaline concentrations and muscle oxygenation were found to be dependent upon the working muscle mass and both may have affected the metabolic response during exercise.  相似文献   

11.
Summary In seven healthy male volunteers we investigated changes in plasma atrial natriuretic factor ([ANF]), arginine vasopressin ([AVP]) and plasma volume (PV) during supine immersion. Twenty minutes head-out water immersion in a supine position in a thermo-neutral water bath attenuated the increase in PV induced by 20 min in a supine position in air, but increased the mean plasma [ANF] from 32.0 pg · ml–1, SEM 5.1 to 53.3 pg · m–1, SEM 3.6 and decreased the mean plasma [AVP] from 1.4 pg · ml –1, SEM 0.1 to 0.9 pg · ml–1, SEM 0.04. Simultaneously, diuresis and natriuresis increased markedly. During a 20-min control period in the supine posture without immersion, PV, plasma [ANF] and [AVP] remained unaffected while diuresis and natriuresis did not increase to the same extent. These data suggest that an increase in the central blood volume induced by a weak external hydrostatic pressure during supine immersion triggered the changes in plasma [ANF] and [AVP] and that the increase was probably due to a shift of blood volume from peripheral to central vessels. The changes in plasma [ANF] contributed to the changes in natriuresis.  相似文献   

12.
Serum erythropoietin levels (s‐[epo]), haemoglobin concentration ([Hb]), haematocrit (hct), and ferritin concentration ([fer]) were measured in seven healthy male volunteers (20–23 years) exposed continuously to hypoxia (PO2 14 kPa) for 10 days. Serum erythropoietin concentration increased significantly from 9.5 ± 3.51 to 33.6 ± 11.64 U L–1 (P < 0.05) after 2 days of hypoxia. Thereafter, s‐[epo] decreased. However, after 10 days s‐[epo] was 18.7 ± 5.83 U L–1 which was still increased above the pre‐hypoxia level (P < 0.05). Serum haemoglobin concentration and hct increased over the 10 days of hypoxia, [Hb] from 152 ± 8.9 to 168 ± 9.2 gL–1 (P < 0.001), and hct from 43 ± 2.4 to 49 ± 2.6% (P < 0.001). Ferritin concentration decreased significantly during the hypoxic exposure from 82 ± 46.9 to 44 ± 31.7 mmol L–1 after 10 days (P < 0.01). In conclusion, the initial increase of s‐[epo] under controlled normobaric hypoxia was marked, 353%, and levelled off after 5–10 days at 62–97% above normoxia level. There was also a significant increase in [Hb] and hct and a decrease in [fer] after 10 days of exposure to normobaric hypoxia.  相似文献   

13.
There is a prevailing hypothesis that an acute change in the fraction of oxygen in inspired air (F IO2) has no effect on maximal cardiac output ( ), although maximal oxygen uptake ( ) and exercise performance do vary along with F IO2. We tested this hypothesis in six endurance athletes during progressive cycle ergometer exercise in conditions of hypoxia (F IO2=0.150), normoxia (F IO2=0.209) and hyperoxia (F IO2=0.320). As expected, decreased in hypoxia [mean (SD) 3.58 (0.45) l·min–1, P<0.05] and increased in hyperoxia [5.17 (0.34) l·min–1, P<0.05] in comparison with normoxia [4.55 (0.32) l·min–1]. Similarly, maximal power ( ) decreased in hypoxia [334 (41) W, P<0.05] and tended to increase in hyperoxia [404 (58) W] in comparison with normoxia [383 (46) W]. Contrary to the hypothesis, was 25.99 (3.37) l·min–1 in hypoxia (P<0.05 compared to normoxia and hyperoxia), 28.51 (2.36) l·min–1 in normoxia and 30.13 (2.06) l·min–1 in hyperoxia. Our results can be interpreted to indicate that (1) the reduction in in acute hypoxia is explained both by the narrowing of the arterio-venous oxygen difference and reduced , (2) reduced in acute hypoxia may be beneficial by preventing a further decrease in pulmonary and peripheral oxygen diffusion, and (3) reduced and in acute hypoxia may be the result rather than the cause of the reduced and skeletal muscle recruitment, thus supporting the existence of a central governor. Electronic Publication  相似文献   

14.
Summary Serum potassium, aldosterone and insulin, and plasma adrenaline, noradrenaline and cyclic adenosine 3:5-monophosphate (cAMP) concentrations were measured during graded exhausting exercise and during the following 30 min recovery period in six untrained young men. During exercise there was an increase in concentration of serum potassium (4.74 mmol·1–1, SEM 0.12 at the end of exercise vs 3.80 mmol·1–1, SEM 0.05 basal,P<0.001), plasma adrenaline (2.14 nmol·1–1, SEM 0.05 at the end of exercise vs 0.30 nmol·1–1, SEM 0.02 basal,P<0.001), plasma noradrenaline (1.10 nmol·1–1, SEM 0.64 at the end of exercise vs 1.50 nmol·1–1, SEM 0.05 basal,P< 0.001), serum aldosterone (0.92 nmol·1–1, SEM 0.14 at the end of exercise vs 0.36 nmol·1–1, SEM 0.05 basal,P<0.01), and plasma cAMP (35.4 nmol·1–1, SEM 2.3 at the end of exercise vs 21.4 nmol·1–1, SEM 4.5 basal,P<0.05). While concentrations of serum potassium, plasma adrenaline and cAMP returned to their basal levels immediately after exercise, those of plasma noradrenaline and serum aldosterone remained elevated 30 min later (1.90 nmol·1–1, SEM 0.01,P<0.01; and 0.85 nmol·1–1, SEM 0.12,P<0.01, respectively). Serum insulin concentration did not change during exercise (6.47 mlU·1–1, SEM 0.58 at the end of exercise vs 5.47 mlU·1–1, SEM 0.41 basal, NS) but increased significantly (P<0.02) at the end of the recovery period (7.12 mlU·1–1, SEM 0.65). Serum potassium increases with exhausting exercise appeared to be caused not only by its release from contracting muscles but also by an -adrenergic stimulation produced by adrenaline and noradrenaline. On the other hand, the increased levels of plasma noradrenaline maintained during the recovery period may have served to avoid excessive hypokalaemia through the stimulation of muscle -receptors. Thus, catecholamines may play an important role in the regulation of serum potassium concentrations during and after exercise. Any disturbance of these adrenergic effects may lead either to an excessive increase or to a decrease of kalaemia, with the consequent risk of arrhythmias linked to exercise.  相似文献   

15.
The purpose of the present study was to compare exercise status during the follicular (FP) and luteal (LP) phases of the menstrual cycle of a single group of young, sedentary women, where the marked differential in the blood concentrations of 17-oestradiol ([E2]) and progesterone ([P4]) has the potential to alter the metabolic response to exercise. Fourteen females [21.8 (4.0) years, peak oxygen uptake (V̇O2peak) <45 ml·kg –1·min–1] performed both incremental exercise to exhaustion and steady-state submaximal cycle ergometer exercise while measurements were made of several metabolic and hormonal variables. With the incremental exercise test, time to exhaustion, maximal power output and total work done were not different between the two phases, nor were the absolute values for V̇O2peak or the corresponding values for ventilation (V̇E), respiratory frequency (fR) and heart rate (HR). Resting, end-exercise and peak (post-exercise) plasma lactate concentrations and the lactate threshold were not different between the two phases either. However, as the workloads increased during the incremental protocol, plasma lactate concentration, carbon dioxide output (CO2) and the respiratory exchange ratio (RER) all were lower during LP, while oxygen uptake (V̇O2) was higher. With steady-state submaximal exercise, at workloads corresponding to 25% and 75% of menstrual cycle phase-specific O2peak, V̇O2 and the oxygen pulse (V̇O2/HR) were higher and RER and plasma lactate concentration lower during LP. Regardless of phase, [E2] increased with both incremental and steady-state submaximal exercise, while [P4] was unchanged. It is concluded that while exercise capacity, as defined by O2peak and the lactate threshold, is unaffected by cycle phase in young, sedentary women, the metabolic responses in the LP during both incremental and steady-state submaximal exercise suggest a greater dependence on fat as an energy source.  相似文献   

16.
The diurnal variations of serum-erythropoietin concentration ([s-EPO]) were investigated in six physically trained (T) and eight untrained (UT) men. The T subjects had a higher mean maximal oxygen uptake than UT subjects [75.7 (SEM 1.6) ml · min–1 · kg–1 versus 48.3 (SEM 1.4) ml · min–1 · kg–1, P < 0.0001] and a lower mean body mass index [BMI, 21.7 (SEM 0.7) kg · m–2 versus 24.4 (SEM 0.6) kg · m–2, P=0.02]. Each subject was followed individually for 24 h as they performed their normal daily activities. Venous blood samples were collected from awakening (0 min) until the end of the 24-h period (1440 min). Both T and UT had a nadir of [s-EPO] 120 min after awakening [10.0 (SEM 0.3) U · 1–1 versus 11.5 (SEM 2.1) U · 1–1, P > 0.05]. The UT and T increased their [s-EPO] to peak values at 960 min and 960–1200 min, respectively (ANOVA P=0.03) after awakening [UT: 18.4 (SEM 2.8) U · l–1; T: 16.2 (SEM 2.5) U · l–1, P > 0.05]. The mean 24-h [s-EPO] were 14.5 (SEM 1.0) U · l–1 and 14.9 (SEM 0.9) U · l–1 in T and UT, respectively (P > 0.05). The individual mean 24-h [s-EPO] were not correlated to body mass, BMI or maximal oxygen uptaken. Significant diurnal variations in [s-EPO] occurred in these healthy subjects irrespective of their levels of physical activity.  相似文献   

17.
The relationship of glycogen availability to performance and blood metabolite accumulation during repeated bouts of maximal exercise was examined in 11 healthy males. Subjects performed four bouts of 30 s maximal, isokinetic cycling exercise at 100 rev · min–1, each bout being separated by 4 min of recovery. Four days later, all subjects cycled intermittently to exhaustion [mean (SEM) 106 (6) min] at 75% maximum oxygen uptake Subjects were then randomly assigned to an isoenergetic low-carbohydrate (CHO) diet [7.8 (0.6)% total energy intake,n = 6] or an isoenergetic high-CHO diet [81.5 (0.4)%,n = 5], for 3 days. On the following day, all subjects performed 30 min cycling at 75% and, after an interval of 2 h, repeated the four bouts of 30 s maximal exercise. No difference was seen when comparing total work production during each bout of exercise before and after a high-CHO diet. After a low-CHO diet, total work decreased from 449 (20) to 408 (31) J · kg–1 body mass in bout 1 (P < 0.05), from 372 (15) to 340 (18) J · kg–1 body mass in bout 2 (P < 0.05), and from 319 (12) to 306 (16) J · kgt-1 body mass in bout 3 (P < 0.05), but was unchanged in bout 4. Blood lactate and plasma ammonia accumulation during maximal exercise was lower after a low-CHO diet (P < 0.001), but unchanged after a high-CHO diet. In conclusion, muscle glycogen depletion impaired performance during the initial three, but not a fourth bout of maximal, isokinetic cycling exercise. Irrespective of glycogen availability, prolonged submaximal exercise appeared to have no direct effect on subsequent maximal exercise performance.  相似文献   

18.
We examined the effects of sodium bicarbonate (BIC) and sodium citrate (CIT) ingestion on distance running performance. Seven male runners [mean = 61.7 (SEM 1.7) ml · kg–1 · min–1] performed three 30-min treadmill runs at the lactate threshold (LT) each followed by a run to exhaustion at 110% of LT. The runs were double-blind and randomly assigned from BIC (0.3 g · kg body mass–1), CIT (0.5 g · kg body mass–1) and placebo (PLC, wheat flour, 0.5 g · kg body mass–1). Venous blood samples were collected at 5, 15 and 25 min during the run and immediately post-exhaustion (POST-EX) and analysed for pH, and the concentrations of lactate ([1a]b) and bicarbonate ([HCO3 ]). Performance was measured as running time to exhaustion at 110% of LT (TIME-EX). The pH was significantly higher (P 0.05) for the BIC and CIT trials during exercise, but not POST-EX compared to PLC. The [1a]b was significantly higher (P 0.05) for the CIT trial compared to PLC during exercise, and for both CIT and BIC compared to PLC at POST-EX. Blood [HCO3 ] was significantly higher (P 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4) s; CIT 172.8 (SEM 29.7) s; and PLC 222.3 (SEM 39.7) s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.  相似文献   

19.
Summary The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

20.
Owing to changes in cardiac output, blood volume distribution and the efficacy of the muscle pump, oxygen supply may differ during upright and supine cycle exercise. In the present study we measured, in parallel, circulatory (heart rate, stroke volume, blood pressure) and metabolic parameters (oxygen uptake, lactic acid concentration [1a]) during incremental-exercise tests and at constant power levels ranging from mild to severe exercise. In supine position, cardiac output exceeded the upright values by 1.0-1.5 1 · min–1 during rest, light ([la] < 2 mmol · 1–1) and moderate ([la] =2–4 mmol · 1–1) exercise. At higher exercise intensities the cardiac output in an upright subject approached and eventually slightly exceeded the supine values. For both rest-exercise transitions and large-amplitude steps (W 140 W) the cardiac output kinetics was significantly faster in upright cycling. The metabolic parameters (VO2 and [la]) showed no simple relationship to the circulatory data. In light to moderate exercise they were unaffected by body position. Only in severe exercise, when cardiac output differences became minimal, could significant influences be observed: with supine body posture, [la] started to rise earlier and maximal power (W=23 W) and exercise duration (64 s) were significantly reduced. However, the maximal [la] value after exercise was identical in both positions. The present findings generally show advantages of upright cycling only for severe exercise. With lower workloads the less effective muscle pump in the supine position appears to be compensated for by the improved central circulatory conditions and local vasodilatation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号