首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for preparing the PLGA nanospheres with hydrophilic surface has been designed and characterized. Because of good solubility of tetraglycol in water, PLGA (poly(lactide-co-glycolide)) nanospheres were formed by spraying the PLGA/tetraglycol solution into water. The size of PLGA nanospheres was manipulated by changing the concentration of PLGA/tetraglycol solution. Based on the hydrophobic interaction between PLGA and poly(propylene oxide) domain of F-127 (one of Pluronics, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127-coated PLGA nanospheres was prepared to enhance the stability of PLGA nanospheres in the aqueous media. For the application as a drug delivery vehicle, it was characterized by measuring the loading amount, the encapsulation efficiency and the release pattern of drug. Paclitaxel used as a potent anti-cancer drug was selected as a model drug.  相似文献   

2.
A mucoadhesive drug delivery system for systemic delivery of nitrendipine, a calcium channel blocker through buccal route was formulated. Mucoadhesive polymers like hydroxypropylmethylcellulose K-100, hydroxypropylcellulose, sodium carboxymethylcellulose, sodium alginate, polyvinyl alcohol, polyvinyl pyrrolidone K-30 and carbopol-934P were used for film fabrication. The films were evaluated for their weight, thickness, percentage moisture absorbed and lost, surface pH, folding endurance, drug content uniformity, In vitro residence time, In vitro release and ex vivo permeation. Based on the evaluation of these results, it was concluded that buccal films made of hydroxylpropylcellulose and sodium carboxymethylcellulose (5±2% w/v; F-4), which showed moderate drug release (50% w/w at the end of 2 h) and satisfactory film characteristics could be selected as the best among the formulations studied.  相似文献   

3.
Enalapril maleate is used in the treatment of hypertension and angina pectoris. It shows low bioavailability due to high hepatic first pass metabolism. Hence the present work was undertaken to formulate mucoadhesive buccal films of enalapril maleate with an objective to improve therapeutic efficacy, patient compliance and the bioavailability. In the present study ten formulations of mucoadhesive drug delivery system of enalapril maleate were prepared as buccal films, by solvent casting technique. Sodium carboxymethylcellulose, hydroxylpropylmethylcellulose, hydroxyethylcellulose and polyvinyl pyrrolidone K-90 were used as mucoadhesive polymers. Prepared films were evaluated for their weight, thickness, surface pH, swelling index, drug content uniformity, in vitro residence time, folding endurance in vitro release and permeation studies. Films exhibited controlled release over more than 10 h in permeation studies. It was concluded that the films containing 20 mg of enalapril maleate in sodium carboxymethylcellulose 2% w/v and hydroxyethyl cellulose 2% w/v (formulation F5), showed good swelling, a convenient residence time and promising controlled drug release, thus can be selected for the development of buccal film for effective therapeutic uses.  相似文献   

4.
目的考察微球载体材料聚乳酸-羟基乙酸共聚物(poly-lactic-co-glycolic acid,PLGA)和聚乳酸(poly(D,L-lactide acid),PLA)的不同封端基团对于包载醋酸曲普瑞林(triptorelin acetate,TA)微球的形态、粒径、包封率、体外释放行为以及体内药效学的影响。方法使用复乳化-溶剂挥发法制备包载TA的PLGA和PLA微球;用扫描电镜观察微球的形态,用激光粒度测定仪测定微球的粒径;建立高效液相色谱法(HPLC)用于TA包封率及体外释放度的测定;采用酶联-免疫吸附法考察了微球经肌肉注射后对正常雄性Sprague Dawley大鼠血浆睾酮浓度的影响。结果制备得到的微球形态为球形或类球形,平均粒径约为30μm。PLGA和PLA,尤其是PLGA,其分子末端基团对TA的包封率和体外释放速率均有影响。酯封端的PLGA微球的包封率显著高于酸封端的微球,而酯封端的释放速度要慢于酸封端。体内药效学实验结果显示,大鼠体内睾酮水平在注射微球后两个小时达到峰值,之后逐渐下降,不同微球之间无显著性差异。结论不同封端结尾的PLGA和PLA对微球形态、包封率和体外释药速率有显著影响,但对正常大鼠体内睾酮水平的影响没有显著性差异。  相似文献   

5.
制备了分子量、比旋度、摩尔比及分子链末端修饰不同的丙交酯-乙交酯共聚物,并测定理化参数.以其为载体制备纳曲酮微球,比较了体外释药速率.结果表明,用分子量较小、有光学活性、单体摩尔比较小、分子链末端未酯化的共聚物制备的微球体外释药速率较快.  相似文献   

6.
The aim of this study was to confirm the feasibility of gelatin/gelatinized tapioca starch (α st) films for buccal delivery and to evaluate their irritancy. Lidocaine (LB) and lidocaine hydrochloride (LH) were used as model drugs and glycerin was used as the plasticizer. The scanning electron microscopy, atomic force electron microscopy, X-ray diffraction and thermogravimetric analysis results confirmed the compatibility of gelatin/α st/glycerin (Gαgly) films. Drug releases of LB- or LH-Gαgly films were evaluated. The drug release profiles of medicated films presented good patterns in both short time and 8 h drug release studies. The permeation study was examined through chick chorioallantoic membrane (CAM) by using modified Franz diffusion cells. Moreover, the irritancy study for buccal films was also examined by a hen’s egg test on CAM model (HET-CAM). The results revealed that LB and LH could permeate through CAM, and these Gαgly films created no irritation on HET-CAM. This indicates that the LB- and LH-Gαgly films are possible to use as buccal films.  相似文献   

7.
Abstract

The purpose of this study was to prepare orally disintegrating films containing nanoparticles loaded with acetaminophen. Nanoparticles were prepared by the emulsion-solvent evaporation method where acetone phase containing acetaminophen and poly(lactide-co-glycolide acid) (PLGA) was added to water phase containing hydroxypropyl methyl cellulose, poly ethylene glycol, polyvinyl alcohol (PVA) and aspartame in a rate of 1.5 drop?s?1 and agitated at 1200?rpm. The size, polydispersity index (PI) and drug entrapment (DE) were measured. The emulsions were cast to form films, which were evaluated physico-mechanically. The effect of different degrees of hydrolization of PVA and polymerization of PLGA and the effect of different ratios of PVA to PLGA was studied. Films with acceptable physico-mechanical properties were further studied. The size and PI of the nanoparticles was dependent on PVA hydrolization, PLGA polymerization and the ratio of PVA to PLGA. All films disintegrated in less than one minute, but acetaminophen was not free in the dissolution media even after six days. These results may indicate that although the nanoparticles released from the films immediately when impressed in solution the drug is sustained in the nanoparticles for longer time, which is to be clarified in future work.  相似文献   

8.
目的制备葫芦素B聚乳酸羟基乙酸纳米球。方法采用溶剂挥发法制备葫芦素B聚乳酸羟基乙酸纳米球;以包封率、载药量及粒径为指标,考察处方因素及工艺条件对纳米球质量的影响;采用正交设计法L9(34)对处方进行优化;采用冰箱及室温留样观察法考察制剂稳定性。结果纳米球包封率为85.61%,平均粒径为126 nm;纳米球混悬液在冰箱中4℃保存1个月能基本保持稳定,长期放置则不稳定;纳米球冻干品,室温放置3个月,pH值、粒度分布、包封率和载药量均无明显变化。结论溶剂挥发法制得的葫芦素B聚乳酸羟基乙酸纳米球包封率较高,制备工艺简单。  相似文献   

9.
The buccal route of administration has a number of advantages including bypassing the gastrointestinal tract and the hepatic first pass effect. Mucoadhesive films are retentive dosage forms and release drug directly into a biological substrate. Furthermore, films have improved patient compliance due to their small size and reduced thickness, compared for example to lozenges and tablets. The development of mucoadhesive buccal films has increased dramatically over the past decade because it is a promising delivery alternative to various therapeutic classes including peptides, vaccines, and nanoparticles. The “film casting process” involves casting of aqueous solutions and/or organic solvents to yield films suitable for this administration route. Over the last decade, hot-melt extrusion has been explored as an alternative manufacturing process and has yielded promising results. Characterization of critical properties such as the mucoadhesive strength, drug content uniformity, and permeation rate represent the major research areas in the design of buccal films. This review will consider the literature that describes the manufacture and characterization of mucoadhesive buccal films.  相似文献   

10.
三氧化二砷白蛋白纳米微球的制备及体外释药特性   总被引:5,自引:0,他引:5  
目的:制备三氧化二砷白蛋白纳米微球(As_2O_3-BSA-NS)并鉴定其体外释放特性。方法:通过交联固化的方法制备三氧化二砷蛋白徽球。以粒子(粒径<1μm)分布百分数、载药量和包封率为指标设立总的优化指数(DF)。选择因素有油相/水相比、高速分散速度、BSA浓度和搅拌固化时间,按正交设计优化制备工艺。用体外释药方法研究其释放特性。结果:4个因素中,高速分散速度对总优化指数影响最大(P<0.01),其次是BSA浓度和油相/水相比(P<0.05),搅拌固化时间对指数几乎没有影响(P>0.05)。体外释药实验证实三氧化二砷蛋白微球释药速度明显慢于单纯的三氧化二砷。结论:使用优化的交联固化的方法可以制备出符合要求的三氧化二砷蛋白微球,其具有明显的缓释功能。  相似文献   

11.
Purpose. Nanospheres can be utilised for the targeting of drugs and diagnostic agents to the regional lymph nodes. The surface modification of model polystyrene, (PS), and poly(lactide-co-glycolide),(PLGA), nanospheres by poly(lactide)-poly(ethylene glycol), (PLA:PEG), copolymers has been assessed by in vitro characterisation and in vivobiodistribution studies following subcutaneous administration of the nanospheres to the rat. Methods. Three PLA: PEG copolymers were investigated, with PEG chain lengths of 750, 2000 and 5000 Da. The PLA:PEG copolymers were either coated onto the surface of PS and PLGA nanospheres or used as a co-precipitate in the formation of PLGA-PLA:PEG nanospheres. Coating of the nanospheres was confirmed by an increase in their particle size and a corresponding decrease in the surface potential. The kinetics of injection site drainage and lymph node retention was determined over a 24 hour time course for naked, coated and co-precipitated nanosphere systems. Results. Dependent on the surface characteristics, the distribution of the nanospheres can be significantly modified and the lymph node localisation dramatically enhanced by coating their surfaces with PLA:PEG copolymers or by producing co-precipitate nanospheres of PLGA and PLA:PEG. Conclusions. A fully biodegradable nanosphere system has been developed with excellent lymph node targeting characteristics.  相似文献   

12.
目的:建立石杉碱甲微球的加速释放度试验方法.方法:通过考察温度和释放介质的pH对石杉碱甲微球释药速度的影响,确定体外加速释放的条件.通过相关性评价建立加速与长期释放度数据的回归方程.结果:加速释放度与长期释放度数据之间具有良好的非线性相关(,=0.994 8),可以通过加速释放度数据较好地预测长期释放度数据.结论:加速释放度试验可用于快速评价石杉碱甲微球的释药特性.  相似文献   

13.
Woo  Byung H.  Jiang  Ge  Jo  Yeong W.  DeLuca  Patrick P. 《Pharmaceutical research》2001,18(11):1600-1606
Purpose. To prepare and characterize a novel composite microsphere system based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(acryloyl hydroxyethyl starch) (acHES) hydrogel for controlled protein delivery. Methods. Model proteins, bovine serum albumin, and horseradish peroxidase were encapsulated in the acHES hydrogel, and then the protein-containing acHES hydrogel particles were fabricated in the PLGA matrix by a solvent extraction or evaporation method. The protein-loaded PLGA-acHES composite microspheres were characterized for protein loading efficiency, particle size, and in vitro protein release. Protein stability was examined by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and monitoring the enzymatic activity. Results. Scanning electron microscopy showed discrete PLGA microspheres containing many acHES particles. The composite microspheres were spherical and smooth in size range of 39-93 m. The drug loading efficiency ranged from 51 to 101%. The composite microspheres showed more favorable in vitro release than conventional PLGA microspheres. The composite microspheres showed 20% less initial with a gradual sustained release compared to high burst (60%) followed by a very slow release with the conventional PLGA microspheres. The composite microspheres also stabilized encapsulated proteins from the loss of activity during the microsphere preparation and release. Proteins extracted from the composite microspheres showed good stability without protein degradation products and structural integrity changes in the size-exclusion chromatography and SDS-PAGE analyses. Horseradish peroxidase extracted from microspheres retained more than 81% enzymatic activity. Conclusion. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

14.
Purpose. Although the rate of drug release from poly(D,L-lactide-co-glycolide) (PLG) microspheres is often modulated by changing fabrication conditions or materials, the specific factors directly controlling the release profiles are often unclear. We have fabricated uniform rhodamine- and piroxicam-containing microspheres, 10 to 100 m in diameter, to better understand how microsphere size controls drug release. Methods. Drug distribution within the microspheres was examined using confocal fluorescence microscopy. The rate of polymer degradation was determined as the change in molecular weight, measured by gel permeation chromatography, during in vitro degradation experiments. Further, changes in the surface and interior morphology of the particles during in vitro degradation were investigated by scanning electron microscopy. Results. Microsphere size greatly affected drug distribution. Small (10-m) microspheres showed an essentially uniform drug distribution. Larger (100-m) microspheres showed redistribution of drug to specific regions of the microspheres. Rhodamine partitioned to the surface and piroxicam partitioned to the interior of large PLG microspheres. Further, the rate of polymer degradation increased with microsphere size, possibly the result of a more acidic interior caused by increased accumulation of hydrolyzed polymer products in larger particles. Finally, larger microspheres developed a more porous interior structure during the drug release. Conclusions. Microsphere size affects drug release not only through changes in diffusion rates but also through secondary effects including drug distribution in the particle, polymer degradation rate, and microsphere erosion rates.  相似文献   

15.
Bilayered oromucosal film preparations (buccal films) offer a promising way to enable drug administration via the oral cavity. Adding a non-soluble or slowly eroding/dissolving backing layer to a mucoadhesive drug-loaded layer enables unidirectional drug delivery.The aim of this study was to investigate different approaches to the manufacture of bilayered films and to examine their properties by applying different characterization methods including an optimized experimental setup for the study of drug release from bilayered films. A solvent suitability study was performed screening over 15 polymers with respect to their feasibility for viscous film formation for film preparation by solvent casting method. Two methods (double-casting and pasting) were found as suitable methods for bilayered film manufacturing. Results from drug release experiments indicated that slowly eroding hypromellose backing layer films revealed the best shielding of the drug-loaded layer to enable unidirectional drug release. In summary, manufacturing of bilayered films using the described methods was feasible. Furthermore, the use of an optimized experimental setup for drug dissolution studies enabled monitoring of drug release without delays in sampling.  相似文献   

16.
5-Fluorouracil (5-FU), a hydrosoluble anti-neoplastic drug, was encapsulated in microspheres of poly(D,L-lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) polymers using the spray-drying technique, in order to obtain small size microspheres with a significant drug entrapment efficiency. Drug-loaded microspheres included between 47?±?11 and 67?±?12?µg 5-FU?mg?1 microspheres and the percentage of entrapment efficiency was between 52?±?12 and 74?±?13. Microspheres were of small size (average diameter: 0.9?±?0.4–1.4?±?0.8?µm microspheres without drug; 1.1?±?0.5–1.7?±?0.9?µm 5-FU-loaded microspheres) and their surface was smooth and slightly porous, some hollows or deformations were observed in microspheres prepared from polymers with larger Tg. A fractionation process of the raw polymer during the formation of microspheres was observed as an increase of the average molecular weight and also of Tg of the polymer of the microspheres. The presence of 5-FU did not modify the Tg values of the microspheres. Significant interactions between the drug and each one of the polymers did not take place and total release of the included drug was observed in all cases. The time needed for the total drug release (28–129?h) was in the order PLA?>?PLGA 75/25?>?PLGA 50/50. A burst effect (17–20%) was observed during the first hour and then a period of constant release rate (3.52?±?0.82–1.46?±?0.26?µg 5-FU?h?1 per milligram of microspheres) up to 8 or 13?h, depending on the polymer, was obtained.  相似文献   

17.
目的:研究尼索地平微球在家兔体内的释药行为。方法:建立检测体内尼索地平血药浓度的高效液相色谱法,研究家兔肌注自制微球后的血药浓度经时变化情况。结果:微球在第1天有明显的突释效应,此后18 d内每天的血药浓度维持在4 μg·L~(-1)左右,波动范围较小。结论:微球在体内有良好的控释作用。  相似文献   

18.
In this study, betamethasone disodium phosphate-loaded microparticles were fabricated for sustained release using poly(lactide-co-glycolide) (PLGA) by spray drying and emulsion solvent evaporation/extraction techniques. Encapsulation efficiencies ranged from 59–80% using a water-in-oil-in-oil (W/O/O) double emulsion technique and more than 90% for a spray-drying method were obtained. This was a significant improvement compared to fabrication by a water-in-oil-in-water (W/O/W) double emulsion process, which had an encapsulation efficiency of less than 15%. Multiple-phase and biphasic release profiles were observed for microparticles of PLGA 50/50 and PLGA of higher lactide contents, respectively. The PLGA 50/50 hollow microparticles fabricated using the W/O/O double emulsion technique provided a sustained release of betamethasone disodium phosphate over 3 weeks.  相似文献   

19.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 ~ 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

20.
《Drug delivery》2013,20(5):344-352
The purpose of the present research was to develop bioadhesive buccal tablets for Felodipine (FDP) and Pioglitazone (PIO), low bioavailability drugs, in a combined dosage form for the management of diabetes and hypertension. Buccal tablets were prepared by direct compression method using bioadhesive polymers hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, and carbopol, alone or in combination of two polymers, and were evaluated for physicochemical properties, swelling index, in vitro bioadhesion, in vivo residence time, in vitro drug release, and ex vivo permeation through porcine buccal membrane. Formulation (PF6) showed peak detachment force (3.12 N), work of adhesion (0.72 mJ), swelling index (196%), erosion (10.8%), in vivo residence time of 280?min, in vitro drug release (99.65% and 98.96% in 6?h for FDP and PIO, respectively) with higuchi model release profile and permeated 66.1 and 64.6 % with a flux of 0.118 and 0.331?mg/h/cm2 of FDP and PIO through porcine buccal membrane. The bioavailability study for optimized formulation (PF6) in pigs showed 2.05- and 2.13-times statistically significant (p?<?0.05) improvement in bioavailability for FDP and PIO, respectively, after administration of buccal tablets compared to oral suspension. The ex vivo–in vivo correlation was found to have a biphasic pattern and followed type A correlation. The stability of the PF6 was studied and no significant changes were detected in drug content and in vitro release and ex vivo permeation through porcine buccal membrane after 6 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号