首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410?nm and 68?nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin.  相似文献   

2.
This paper describes the production and characterization of polyacrylic polymer (Eudragit® RL, RS and NE) microparticles by spray drying method. Microparticles were designed for ophthalmic administration of acyclovir. Microparticle morphology was characterized by optical and electron microscopy. The release kinetics of the drug from microspheres were determined by a dialysis method. The spray drying method described allows the production of microparticles with acceptable encapsulation efficiency and appropriate dimensional characteristics for ophthalmic administration. Release profile data indicate that acyclovir is released from microparticles in a controlled manner. In addition the release pattern of the drug is influenced by the type of Eudragit® used for microparticle production. Moreover the plaque reduction efficiency of acyclovir containing microparticles (except for RS/NE microspheres) is comparable to that displayed by the free drug. Finally our results suggest that acyclovir containing microparticles could represent an interesting system for the release of this antiviral drug at the eye site.  相似文献   

3.
The present study aimed to develop the sustained-release oral dosage form of pelubiprofen (PEL) by using the blended mixture of 3-aminopropyl functionalized-magnesium phyllosilicate (aminoclay) and pH-independent polymers. The sustained-release solid dispersion (SRSD) was prepared by the solvent evaporation method and the optimal composition of SRSD was determined as the weight ratio of drug: Eudragit® RL PO: Eudragit® RS PO of 1:1:2 in the presence of 1% of aminoclay (SRSD(F6)). The dissolution profiles of SRSD(F6) were examined at different pHs and in the simulated intestinal fluids. The drug release from SRSD(F6) was limited at pH 1.2 and gradually increased at pH 6.8, resulting in the best fit to Higuchi equation. The sustained drug release from SRSD(F6) was also maintained in simulated intestinal fluid at fasted-state (FaSSIF) and fed-state (FeSSIF). The structural characteristics of SRSD(F6) were examined by using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR), indicating the change of drug crystallinity to an amorphous form. After oral administration in rats, SRSD(F6) exhibited the prolonged drug exposure in plasma. For both PEL and PEL-transOH (active metabolite), once a day dosing of SRSD(F6) achieved oral exposure (AUC) comparable to those from the multiple dosing (3 times a day) of untreated drug. In addition, the in vivo absorption of SRSD(F6) was well-correlated with the in vitro dissolution data, establishing a good level A in vitro/in vivo correlation. These results suggest that SRSD(F6) should be promising for the sustained-release of PEL, thereby reducing the dosing frequency.  相似文献   

4.
Celecoxib, a selective COX-2 inhibitor, primarily used in treatment of osteoarthritis, rheumatoid arthritis and acute pain was encapsulated in microparticles composed of various polyesters, polymethacrylates or cellulose derivatives used alone or blended. The influence of polymers on microparticle mean diameter, encapsulation efficiency and in vitro and in vivo celecoxib release was investigated. Microparticles were in the size range 11–37?µm. Encapsulation efficiency was optimal due to poor aqueous solubility of celecoxib. Considering in vitro release, microparticles could be divided into drug delivery systems with fast and slow release profiles. Microparticles prepared with poly-ε-caprolactone, Eudragit® RS and low viscosity ethylcellulose, together with physical mixture of celecoxib with lactose and Celebrex®, were tested in vivo. Relative bioavailability of celecoxib was below 20% in all cases and was probably the consequence of a slow in vivo release of celecoxib from microparticles or low wettability in the case of Celebrex® and physical mixture.  相似文献   

5.
The main objective of this study was to design positively charged Levofloxacin Hemihydrate (Levo-h)-loaded nanoparticles with improved entrapment efficiency and antibacterial activity. PLGA alone or in combinations with Eudragit® RLPO or RS30D with or without positively charged inducing agent; 1,2-dioleoyl-3-trimethylammonium-propane, chloride salt (DOTAP); were used for preparation of nanoparticles. Blending between PLGA and Eudragit® RLPO or RS30D with inclusion of DOTAP caused a marked increase in entrapment efficiency and switched zeta potential from negative to positive. Nanoparticle formulations; NR3 (Levo-h:PLGA:Eudragit® RLPO; 1:1:1 w/w with DOTAP) and NS3 (Levo-h:PLGA:Eudragit® RS30D; 1:1:1 w/w with DOTAP) that possess high positive zeta potential (59.3?±?7.5 and 55.1?±?8.2?mV, respectively) and Efficient Levo-h entrapment (89.54?±?1.5 and 77.65?±?1.8%, respectively) were selected for further examinations; in vitro release, physical stability and microbiological study. NR3 and NS3 showed significant sustained release of Levo-h. NR3 and NS3 exhibited good stability after storage at room temperature. Microbiological assay showed strengthened antibacterial activity of NR3 against both types of gram-negative bacteria (E. coli, Ps. aeruginosa) and of NS3 against Ps. aeruginosa compared to free Levo-h solution. NR3 and NS3 appear to be promising oral delivery system for Levo-h.  相似文献   

6.
Abstract

The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone.  相似文献   

7.
Microparticles of poly(ε-caprolactone) and of its blend with Eudragit® S100 were prepared by emulsion/solvent evaporation technique to provide controlled release and gastro-resistance for an acid labile drug. This drug was sodium pantoprazole, a proton pump inhibitor. Both formulations were successfully prepared, but only the microparticles prepared with the blend were capable of stabilizing the drug in the acid medium. Furthermore, this formulation showed in vivo protection of stomachs against ulceration caused by ethanol in rats. These microparticles were tabletted, and the tablets demonstrated slower drug release and higher acid protection than the microparticles before tabletting.  相似文献   

8.
To investigate the anti-inflammatory impacts of piroxicam nanosuspension, in the current investigation, piroxicam:Eudragit®RS100 nanoformulations were used to control inflammatory symptoms in the rabbits with endotoxin-induced uveitis (EIU). The nanoparticles of piroxicam:Eudragit®RS100 was formulated using the solvent evaporation/extraction technique. The morphological and physicochemical characteristics of nanoparticles were studied using particle size analysis, X-ray crystallography, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Drug release profiles were examined by fitting the data to the most common kinetic models. Selected nanosuspensions were used to assess the anti-inflammatory impacts of piroxicam nanoparticles in the rabbits with EIU. The major symptoms of EIU (i.e. inflammation and leukocytes numbers in the aqueous humor) were examined. All the prepared piroxicam formulations using Eudragit®RS100 resulted in a nano-range size particles and displayed spherical smooth morphology with positively charged surface, however, the formulated particles of drug alone using same methodology failed to manifest such characteristics. The Eudragit®RS100 containing nanoparticles displayed lower crystallinity than piroxicam with no chemical interactions between the drug and polymer molecules. Kinetically, the release profiles of piroxicam from nanoparticles appeared to fit best with the Weibull model and diffusion was the superior phenomenon. The in vivo examinations revealed that the inflammation can be inhibited by the drug:polymer nanosuspension more significantly than the microsuspension of drug alone in the rabbits with EIU. Upon these findings, we propose that the piroxicam:Eudragit®RS100 nanosuspensions may be considered as an improved ocular delivery system for locally inhibition of inflammation.  相似文献   

9.
LK-423 is a phthalimido-desmuramyl-dipeptide derivative with immunomodulating activity. In the present study the therapeutic efficacy of a colon-specific drug delivery system–LK-423 microcapsules–was examined in the 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced ulcerative colitis model in rats. The colon-specific delivery of the drug using microcapsules relies on the combination of pH (outer gastroresistant coating), time (inner retard coating of Eudragit® RS and RL) and enzyme (pectin core) controlled drug release mechanisms. The optimal in vitro dissolution profile for LK-423 delivery to the colon of rats was obtained after coating newly developed LK-423 loaded pectin cores with 20% w/w of retard coating with a Eudragit® RS/RL ratio of 8.5/1.5 and 30% w/w of enteric coating. Orally administered LK-423 microcapsules were therapeutically more beneficial in treating TNBS-induced ulcerative colitis in rats than orally or rectally administered LK-423 in the form of suspension. Clinical activity scores and colon weight to length ratio were insignificantly lower and the macroscopically estimated degree of healing was significantly greater. On the histological level, the administration of LK-423 microcapsules resulted in most physiological regeneration of intestinal mucosa, indicated by regular architecture of all mucosal tissue components, what is probably related to local drug delivery near the site of inflammation achieved using microcapsules. These results demonstrate that LK-23 colon delivery microcapsules enhance the therapeutic efficacy of the drug and therefore appear to be a useful approach for treating various inflammatory diseases in the large intestine.  相似文献   

10.
《Drug delivery》2013,20(3):408-417
Abstract

The aim of this study was to investigate the potential of pioglitazone hydrochloride as a promising anticancer agent and then to design and evaluate the colon-targeted delivery system. The role of pioglitazone hydrochloride as a promising anticancer agent was evaluated by in vitro cell line studies and in vivo 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. In order to deliver the drug at site of action, i.e. colon, drug embedded in matrices containing a release retarding polymer (HPMC K4M) and a polysaccharide (locust bean gum) were prepared. These matrix systems were further enteric coated with Eudragit®S100 to minimize the premature drug release in the upper segments of the GIT. In vitro dissolution studies were performed in absence and presence of rat caecal contents on selected batches and samples were analyzed using a validated RP-HPLC method. Hence, the studies led to the conclusion that successful site-specific delivery systems of pioglitazone hydrochloride were developed to improve its therapeutic efficacy in the management of colorectal cancer.  相似文献   

11.
In the current study, the influence of plasticizer level on drug release was investigated for solid dosage forms prepared by hot-melt extrusion and film coating. The properties of two highly water-soluble compounds, diltiazem hydrochloride (DTZ) and chlorpheniramine maleate (CPM), and a poorly water-soluble drug, indomethacin (IDM), were investigated in the melt extrudates containing either Eudragit® RSPO or Eudragit® RD 100 and triethyl citrate (TEC) as the plasticizer. In addition, pellets containing DTZ were film coated with Eudragit® RS 30D and varying levels of TEC using a fluidized bed coating unit. Differential scanning calorimetry (DSC) demonstrated that both CPM and IDM exhibited a plasticization effect on the acrylic polymers, whereas no plasticizing effect by DTZ on Eudragit® RSPO was observed. Thermogravimetric analysis (TGA) was used to investigate the thermal stability of the DTZ, Eudragit® RSPO and TEC at 140 °C, the maximum temperature used in the hot-melt extrusion process. The chemical stability of DTZ and IDM in the extrudate following hot-melt processing was determined by high pressure liquid chromatography (HPLC). Drug release rates of both DTZ and CPM from hot-melt extrudates increased with an increase in the TEC level in the formulations, while the release rate of DTZ from the Eudragit® RS 30D–coated pellets decreased with an increase in TEC in the coating dispersion. This phenomenon was due to the formation of a reservoir polymeric structure as a result of the thermal stress and shear stress involved in the hot-melt extrusion process regardless of the TEC level. In contrast, coalescence of the polymer particles in the film coating process was enhanced with higher levels of TEC, as demonstrated by scanning electron microscopy (SEM). The addition of TEC (0% to 8%) in the IDM hot-melt extrudate formulation had no influence on the drug release rate as the drug release rate was controlled by drug diffusion through the inside of the polymeric materials rather than between the polymer particles.  相似文献   

12.
《Drug delivery》2013,20(6):837-848
Abstract

Effective oral insulin delivery has remained a challenge to the pharmaceutical industry. This study was designed to evaluate the effect of magnesium stearate on the properties of insulin-loaded Eudragit® RL 100 entrapped mucoadhesive microspheres. Microspheres containing Eudragit® RL 100, insulin, and varying concentrations of magnesium stearate (agglomeration-preventing agent) were prepared by emulsification-coacervation method and characterized with respect to differential scanning calorimetry (DSC), morphology, particle size, loading efficiency, mucoadhesive and micromeritics properties. The in vitro release of insulin from the microspheres was performed in simulated intestinal fluid (SIF, pH 7.2) while the in vivo hypoglycemic effect was investigated by monitoring the plasma glucose level of the alloxan-induced diabetic rats after oral administration. Stable, spherical, brownish, mucoadhesive, discrete and free flowing insulin-loaded microspheres were formed. While the average particle size and mucoadhesiveness of the microspheres increased with an increase in the proportion of magnesium stearate, loading efficiency generally decreased. After 12?h, microspheres prepared with Eudragit® RL 100: magnesium stearate ratios of 15:1, 15:2, 15:3 and 15:4 released 68.20?±?1.57, 79.40?±?1.52, 76.60?±?1.93 and 70.00?±?1.00 (%) of insulin, respectively. Reduction in the blood glucose level for the subcutaneously (sc) administered insulin was significantly (p?≤?0.05) higher than for most of the formulations. However, the blood glucose reduction effect produced by the orally administered insulin-loaded microspheres prepared with four parts of magnesium stearate and fifteen parts of Eudragit® RL 100 after 12?h was equal to that produced by subcutaneously administered insulin solution. The results of this study can suggest that this carrier system could be an alternative for the delivery of insulin.  相似文献   

13.
The main objective of this study was to prepare salmon calcitonin (sCT)-loaded Eudragit®RSPO, Eudragit®L100 and Eudragit®-poly(lactic-co-glycolic acid) blend nanoparticles for in vitro and in vivo evaluation as an oral drug delivery system. The prepared nanoparticles ranged in size from 179.7 to 308.9?nm with a polydispersity index between 0.051 and 2.75, and had surface charges ? ?11 to +6?mV. Efficient sCT encapsulation and release was observed with all the nanoparticle formulations. The polymer type was an important factor that influenced the release characteristics and the in vivo hypocalcemic effect. Nanoparticle formulations were also prepared with sodium taurodeoxycholate (NaTDC) and characterized. No statistically significant difference was noted between the hypocalcemic effect of any of the nanoparticle formulations with and without NaTDC (p?>?0.05). The use of Eudragit®RSPO nanoparticles appears to be a potential approach for the oral delivery of sCT.  相似文献   

14.
In this study, we developed pH-triggered surface charge-reversal lipid nanoparticles (LNPs), loaded with budesonide, which could precisely deliver the drug to inflamed colon segments for the treatment of ulcerative colitis. Polyethyleneimine (PEI) was used to render LNPs cationic (PEI-LNPs), and Eudragit® S100 (ES) was coated on PEI-LNPs to obtain pH-triggered charge-reversal LNPs (ES-PEI-LNPs). ES coating avoided a burst drug release under acidic conditions mimicking the stomach and early small intestine environments and showed a sustained release in the colon. The surface charge of ES-PEI-LNPs switched from negative to positive under colonic conditions owing to pH-triggered removal of the ES coating. Bioimaging of the mouse gastrointestinal tract and confocal analysis of colon tissues revealed that ES-PEI-LNPs selectively accumulated in an inflamed colon. Furthermore, ES-PEI-LNPs mitigated experimental colitis in mice. These results suggest that the pH-triggered charge-reversal LNPs could be a promising drug carrier for ulcerative colitis therapy and other colon-targeted treatments.  相似文献   

15.
Two different techniques, the quasi-emulsion solvent diffusion method and spray drying that provide polar and nonpolar preparation environments, were used to prepare microspheres from Eudragit RS100® (RS) (acrylic/methacrylic copolymer) incorporating the nonsteroidal anti-inflammatory drug diflunisal. The effects of pH on the preparation medium and drug/polymer ratio on production yield and drug incorporation, as well as on the in vitro drug release at pH 1.2 and 6.8 from tabletted microparticles, were evaluated. The drug-polymer interactions and the effect of diflunisal incorporation in the polymer matrix on drug crystallinity have been evaluated by using differential scanning calorimetry, IR and ultraviolet spectroscopy, x-ray diffraction, and microscopy analysis. A preliminary biological assay confirmed that diflunisal maintains its analgesic activity after intraperitoneal administration to rats.  相似文献   

16.
Dermal therapeutic systems (DTS) are self-adhesive patches that consist of a flexible backing layer and an adhesive controlled release matrix layer containing the drug. They are formulated to obtain a controlled release of drugs in order to treat topical skin pathologies. As permeability to water vapour is an important characteristic for DTS, the aim of this work was to develop systems with different predictable water vapour permeabilities (WVP), to be selected according to the therapeutic needs of the treated disease, and with good adhesive properties. In the present study, the WVP of 12 materials, usable as backing layers, were tested. In order to prepare DTS, the artificial silk was selected as a backing layer as it has good water vapour permeability, compatibility with the coating process and cohesion with the matrices. Two adhesive hydrophilic copolymers of dimethylaminoethyl methacrylate and neutral methacrylic esters (Plastoid® E 35 M–Plastoid® E 35 L) mixed with a non-adhesive hydrophobic copolymer of ethylacrylate and methylmethacrylate, supplied in suspension in two different concentrations (Eudragit® NE 30 D–Eudragit® NE 40 D), were used to prepare four series of DTS. Water vapour permeability and adhesion properties of the prepared DTS were evaluated. Adding 10–30% w/w of Eudragit® NE to Plastoid® E 35 permits the formulation of patches with higher water vapour permeability and good adhesive properties.  相似文献   

17.
Spherical crystallization technique combines crystallization and agglomeration directly to generate spherical crystals with improved micromeretic properties, thus obviating need for further processing by granulation and agglomeration. The present study was focused on spherical crystallization of an antihelmentic drug – Mebendazole (MBZ) – using spherical agglomeration technique. Apart from being poorly water-soluble, MBZ exhibits poor flow and compressibility owing to its needle shaped crystal habit and electrostatic charge. Spherical agglomeration was carried out in the presence of different bridging liquids (hexane, octanol, toluene, dichloromethane) and polymers (polyethylene glycol, cross-povidone, starch, cross carmellose sodium, hydroxyl propyl methyl cellulose (HPMC), hydroxyl propyl cellulose (HPC), ethyl cellulose (EC), Eudragit®S100, Eudragit®RLPO, Eudragit®RD100, Eudragit®E), by employing different crystallization conditions such as variation of polymer type, polymer concentration, and rate of stirring. The final parameters were optimized to obtain crystals with an aspect ratio in the range of 1–2 compared to a value of 12 for untreated MBZ. These agglomerates retained form C of MBZ, and exhibited good flow properties, high bulk density and improved compressibility. Lower elastic:plastic energy (EE/PE) ratio for spherical crystals generated in the presence of Eudragit®-S100 and Hydroxypropylcellulose (HPC) indicated better compressibilty of spherical crystals.  相似文献   

18.
The aim of the present study was to investigate the influence of Eudragit® E PO on the drug release mechanism of Eudragit® L 100-55 film coatings applied to theophylline tablets by a dry powder coating technique. The process was entirely liquid-free. Calculation of the Flory-Huggins interaction parameter based on solubility parameters suggested immiscibility of the two copolymers. MDSC thermograms were characterized by two glass transitions for the investigated Eudragit® E PO/Eudragit® L 100-55 ratios and confirmed incomplete miscibility of the copolymers at processing conditions. FT-IR analysis was employed to study binding interactions of the polymers. Due to the higher affinity of the plasticizer, triethyl citrate, for Eudragit® E PO compared to Eudragit® L 100-55, redistribution of the plasticizer was observed during the curing phase of the process. Plasticizer migration also affected the initial phase of drug release from powder-coated theophylline tablets that were stored for four weeks. Drug release from powder-coated tablets was dependent on the polymer blend ratio, coating thickness, and the pH of the dissolution medium. A broad range of pH dependent theophylline release profiles were obtained as a function of the polymer blend ratio. The particle size of the coating powder influenced the microstructure of the film coating.  相似文献   

19.
In this study, novel biodegradable physically cross-linked hydrogel microparticles were developed and evaluated in-vitro as potential carriers for inhalation therapy. These hydrogel microparticles were prepared to be respirable (desired aerodynamic size) when dry and also designed to avoid the macrophage uptake (attain large swollen size once deposited in lung). The swellable microparticles, prepared using cryomilling, were based on Pluronic® F-108 in combination with PEG grafted onto both chitosan (Cs) and its N-phthaloyl derivative (NPHCs). Polymers synthesized in the study were characterized using EA, FTIR, 2D-XRD and DSC. Morphology, particle size, density, biodegradation and moisture content of the microparticles were quantified. Swelling characteristics for both drug-free and drug-loaded microparticles showed excellent size increases (between 700–1300%) and the release profiles indicated sustained release could be achieved for up to 20 days. The respirable microparticles showed drug loading efficiency up to 92%. The enzymatic degradation of developed microparticles started within the first hour and only ~10% weights were remaining after 10 days. In conclusion, these respirable microparticles demonstrated promising in-vitro performance for potential sustained release vectors in pulmonary drug delivery.  相似文献   

20.
To reduce the drug plasma concentration fluctuation without being destroyed by gastric fluid, novel Esomeprazole magnesium modified-release pellets (EMZ-MRPs) with suitable in vitro release profiles and good in vitro and in vivo correlation (IVIVC) were developed. Fluid-bed was used to obtain EMZ-loaded pellets by spraying drug suspension onto blank sugar pellets. The drug-loaded pellets were subsequently coated with Eudragit® RS30D/RL30D (ERS/ERL) aqueous dispersion to achieve sustained-release (SR) characteristics. Furthermore, the SR pellets were coated with Eudragit® L30D-55 (EL-55) aqueous dispersion to achieve enteric properties. Besides, isolated coating film was necessary between drug layer and SR layer, as well as SR and enteric-coated layer to protect from their possible reaction. The resulting pellets were filled into the hard gelatin capsules for in vitro release processing and single-dose pharmacokinetic study in rats. The optimal formulation achieved good SR feature both in vitro and in vivo with a relative bioavailability of 103.50%. A good IVIVC was characterized by a high coefficient of determination (r?=?0.9945) by deconvolution method. Compared to those of EMZ enteric-coated pellets (EMZ-ECPs, trade name NEXIUM), the in vivo study make known that the EMZ-MRPs with decreased maximum plasma concentration (Cmax), prolonged peak concentration time (Tmax) and mean residence time (MRT), and similar values both area under concentration–time curve from 0 to t (AUC0–t) and 0 to infinity (AUC0–∞). Collectively, these results manifested EMZ-MRPs had a satisfactory sustained-release behavior, a desired pharmacokinetic property, improved in vivo retention and decreased plasma drug concentration fluctuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号