首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
《Mucosal immunology》2012,5(6):681-690
Proinflammatory cytokines induce guanylate-binding protein 1 (GBP-1) protein expression in intestinal epithelial tissues. GBP-1 has been described as influencing a number of cellular processes important for epithelial homeostasis, including cell proliferation. However, many questions remain as to the role of GBP-1 in intestinal mucosal homeostasis. We therefore sought to investigate the function of proinflammatory cytokine-induced GBP-1 during intestinal epithelial cell proliferation. Through the use of complementary GBP-1 overexpression and small interfering RNA-mediated knockdown studies, we now show that GBP-1 acts to inhibit pro-mitogenic β-catenin/T cell factor (TCF) signaling. Interestingly, proinflammatory cytokine-induced GBP-1 was found to be a potent suppressor of β-catenin protein levels and β-catenin serine 552 phosphorylation. Neither glycogen synthase kinase 3β nor proteasomal inhibition alleviated GBP-1-mediated suppression of cell proliferation or β-catenin/TCF signaling, indicating a non-canonical mechanism of β-catenin inhibition. Together, these data show that cytokine-induced GBP-1 retards cell proliferation by forming a negative feedback loop that suppresses β-catenin/TCF signaling.  相似文献   

2.
Introduction: High interferon-γ (IFN-γ) expression in tumors has been reported to be a favorable prognostic marker. Continuous exposure of ovarian cancer cells to IFN-γ was previously shown to result in significant growth inhibition and apoptosis. Our goal in this study was to evaluate the effect of plasmid-mediated stable IFN-γ expression on the SKOV-3 human ovarian carcinoma cell line.

Methods: SKOV-3 cells were stably transfected with the pEGFP-IFN-γ plasmid. IFN-γ mRNA was detected by RT-PCR and IFN-γ protein expression was measured by ELISA. Proliferation and cell death in transfected SKOV-3 cells were measured by methyl-thiazolyl tetrazolium (MTT) assay and Hoechst 33258 staining, respectively and compared with untransfected and empty vector-transfected cells.

Results: pEGFP-IFN-γ SKOV-3 cells efficiently expressed and secreted IFN-γ. They exhibited significantly decreased cellular proliferation when compared with control untransfected or empty vector-transfected cells (P?<?0.05). The mode of cell death was primarily apoptosis.

Conclusions: Stable expression of IFN-γ significantly inhibits the proliferation of ovarian carcinoma cells and has the potential to be used in clinical applications to treat ovarian carcinoma in the future.  相似文献   

3.
4.
Extracellular matrix (ECM)–integrin stimulation can promote beta cell differentiation, proliferation and function. However, beta cells lose their insulin secretion function in response to glucose stimulation, and senesce when cultured with ECM proteins for a long time. Fibrin is a provisional ECM protein that is capable of maintaining beta cell function, yet the mechanisms by which this occurs is unknown. The present study examined how fibrin interacts with integrin receptors to promote beta cell cluster formation, proliferation and function. The rat insulinoma cell line, INS-1, was cultured on tissue-culture polystyrene, or with 2-D or 3-D fibrin gels for up to 4 weeks. Cells cultured with fibrin formed islet-like clusters and showed direct contacts with fibrin determined by scanning electron microscopy. Fibrin-cultured INS-1 cells also had significantly increased glucose-stimulated insulin secretion. A significant increase in integrin αvβ3 protein and phosphorylated FAK, Erk1/2 and Akt levels was observed in fibrin-cultured INS-1 cells, which was associated with significantly increased cell proliferation and decreased cell apoptosis. Integrin αvβ3 blockade affected INS-1 cell spreading on fibrin gels, and resulted in significantly decreased FAK phosphorylation and increased cleaved caspase-3 levels. These results show that fibrin promotes beta cell function, proliferation and survival via integrin αvβ3 interactions.  相似文献   

5.
eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 family and plays a critical role in translation initiation. Previous studies showed that it was involved in the development and progression of several tumors. However, the role of eIF3D in breast cancer and the underlying mechanism is still unclear. Therefore, this study set out to investigate the role of eIF3D in breast cancer. Our results demonstrated that eIF3D is up-regulated in breast cancer cells. Knockdown of eIF3D inhibited breast cancer cell proliferation and invasion. In addition, knockdown of eIF3D inhibited the expression of β-catenin, cyclin D1 and c-Myc in breast cancer cells. Taken together, our findings show that siRNA-eIF3D inhibits breast cancer cell proliferation and invasion through suppressing the Wnt/β-catenin signaling pathway. Therefore, eIF3D may be a good molecular target for the prevention and treatment of breast cancer.  相似文献   

6.
The overexpression of insulin-like growth factor receptor-I (IGF-IR) and the activation of its signaling pathways both play critical roles in the development and progression of gastric cancer. Dopamine (DA), a major enteric neurotransmitter, has been reported to have a wide variety of physiological functions in the gastrointestinal tract, including the stomach. We have previously reported that both DA and tyrosine hydroxylase, the rate-limiting enzyme required for the synthesis of DA, are lost in malignant gastric tissues. The effect of this loss of DA on IGF-IR-induced growth of gastric cancer has not yet been elucidated; we therefore investigated the role of DA, if any, on IGF-IR-induced proliferation of malignant gastric cells. There was a significant increase in the expression of phosphorylated IGF-IR and its downstream signaling molecule AKT in human malignant gastric tissues compared with normal nonmalignant tissues. Furthermore, to determine whether this loss of DA has any effect on the activation of IGF-IR signaling pathways in malignant gastric tumors, in vitro experiments were undertaken, using AGS gastric cancer cells. Our results demonstrated that DA acting through its D(2) receptor, inhibits IGF-I-induced proliferation of AGS cells by up-regulating KLF4, a negative regulator of the cell cycle through down regulation of IGF-IR and AKT phosphorylation. Our results suggest that DA is an important regulator of IGF-IR function in malignant gastric cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号