首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, concomitant use of self-microemulsifying drug delivery systems (SMEDDS) and a novel third-generation P-gp inhibitor, GF120918 (elacridar), for the effective transport of taxanes (paclitaxel and docetaxel) across an in?vitro model of the intestinal epithelium and uptake into tumor cells were investigated. On the basis of solubility studies and ternary phase diagrams, different SMEDDS formulations of taxanes were prepared and characterized. In caco-2 cell permeation study, paclitaxel-loaded SMEDDS along with GF120918 showed a four-fold increase in apparent permeability, while docetaxel-loaded SMEDDS in combination with GF120918 showed a nine-fold increase in permeability, as compared to plain drug solution. Cell uptake studies on A549 cells were performed with microemulsions formed from both SMEDDS formulations loaded with rhodamine 123 dye and showed good uptake than plain dye solution. Confocal laser scanning microscopic images further confirmed the higher uptake of both SMEDDS formulations in the presence of GF120918.  相似文献   

2.
Purpose. The extent of intestinal absorption of MDR1 P-glycoprotein (P-gp) substrate drugs may be affected by interindividual differences in the expression level of P-gp, and/or by simultaneously administered P-gp substrates/inhibitors. The purpose of the present study is to examine whether the extent to which the intestinal absorption is affected by P-gp can be predicted from in vitro experiments. Methods. The in situ intestinal perfusion experiments were performed for 12 compounds in mdr1a/1b (–/–) and normal mice to determine the permeability-surface area (PS) product. Thus determined intestinal P-gp function was compared with the in vitro P-gp function, which was determined by comparing the transcellular transport across human P-gp expressing and parental LLC-PK1 monolayers. Results. In situ experimental results revealed that the extent to which the intestinal absorption is affected by P-gp was in the following order; quinidine > ritonavir > loperamide, verapamil, daunomycin > digoxin, cyclosporin A > dexamethasone, and vinblastine. A significant correlation was observed between P-gp function determined in the intestinal perfusion and that in LLC-PK1 monolayers. Conclusion. The in vitro transcellular transport across P-gp expressing monolayers may be used to predict the extent to which the intestinal absorption is affected by P-gp.  相似文献   

3.
Purpose. The effects of structural modifications on the membrane permeability of angiotensin II (Ang II) receptor antagonists and the usefulness of in vitro and in situ intestinal absorption models in predicting in vivo absorption or bioavailability were investigated. Methods. Intestinal permeability was determined in vitro using Caco-2 cell monolayers and in situ using a perfused rat intestine method. Several physicochemical parameters were either measured or computed, and correlated with intestinal permeation. Results. Permeation coefficients (Pa) across Caco-2 cell monolayers correlated well with both in situ absorption rate constants (ka) and in vivo bioavailability or % absorption. For these Ang II antagonists, Pa values larger than 3 × 10–6 cm sec–1 and in situ ka values of 2 × 10–4 min–1 cm–1 or above were associated with good in vivo absorption. Structural modifications at the R5 position, where a COOH group was substituted with either a CHO or CH2OH group, enhanced the permeability of the Ang II receptor antagonists up to 100-fold. There were good correlations between permeability and log P(octanol/buffer), log PHPLCcharge, solvation/desolvation energy and assigned hydrogen bonding potential. Conclusions. The correlations obtained in this study indicate that both the Caco-2 cell model and the in situ perfused rat intestine could be used to predict intestinal absorption in vivo. Structural modifications of the Ang II antagonists had a significant impact on the intestinal permeability. Charge, solvation energy, and hydrogen bonding are predominant determinants of intestinal permeability and oral bioavailability of these compounds.  相似文献   

4.
In an attempt to establish an in vitro/in situ correlation of intestinal permeability data, the permeability coefficients (P app) for a series of model peptides, which were determined using an in situ perfused rat ileum model, were compared to the permeability coefficients (P mono) determined using an in vitro cell culture model (Caco-2). The model peptides, which were all blocked on the N-terminal (acetyl, Ac) and the C-terminal (amide, NH2) ends, consisted of D-phenylalanine (F) residues (e.g., AcFNH2, AcFFNH2, AcFFFNH2). To alter the degree of hydrogen bonding potential, the nitrogens of the amide bonds were sequentially methylated [e.g., AcFF(Me)FNH2, AcF(Me)F(Me)FNH2, Ac(Me)F(Me)F(Me)FNH2, Ac-(Me)F(Me)F(Me)FNH(Me)]. These peptides were shown not to be metabolized in the in situ perfused rat ileum system. The results of the transport experiments showed that there were poor correlations between the apparent permeability coefficients (P app) determined in an in situ perfused rat ileum model and the octanol–water partition coefficients (r = 0.60) or the hydrogen bonding numbers (r = 0.63) of these peptides. However, good correlations were observed between the in situ P app values for these peptides and their partition coefficients in heptane–ethylene glycol (r = 0.96) and the differences in their partition coefficients between octanol–water and isooctane–water (r = 0.86). These results suggest that lipophilicity may not be the major factor in determining the intestinal permeability of these peptides and that hydrogen bonding potential may be a major contributing factor. A good correlation (r = 0.94) was also observed between the P app values determined for these peptides in the in situ perfused ileum model and those P mono values determined in the in vitro cell culture model (Caco-2) (Conradi et al., Pharm. Res. 8:1453–1460, 1991). These results suggest that the permeability values determined in the Caco-2 cell culture model may be a good predictor of the intestinal permeability of peptides.  相似文献   

5.
A mixed lipid-mixed surfactant self-microemulsifying drug delivery system (SMEDDS) was developed to exploit the health benefits of resveratrol, a Biopharmaceutical Classification System Class 2 natural polyphenol, subject to extensive intestinal presystemic metabolism. SMEDDS with a mixed lipid phase (castor oil/Capmul MCM 1:1) and a mixed surfactant phase (Kolliphor EL/Kolliphor RH 40 1:1) was developed and evaluated for its self-emulsifying properties and in vitro dispersion. The impact of SMEDDS on the permeability properties of resveratrol and its metabolite fluxes through the rat intestine and Caco-2 cells was monitored. The inhibitory effect of selected SMEDDS components on the efflux transporters multidrug resistance-associated protein and P-gp as well as cytotoxicity was assessed on Caco-2 cells. The formulation allowed for high resveratrol loading (122.5 mg/g SMEDDS), excellent self-emulsifying properties, and very rapid release. When formulated in SMEDDS, resveratrol metabolite efflux significantly declined. The formulation (SMEDDS without incorporated resveratrol) and its individual components did not compromise in vitro cell vitality and integrity. Mixed lipid-mixed surfactant SMEDDS is a prospective formulation to improve resveratrol biopharmaceutical, pharmacokinetic, and toxicological properties, leading the way to resveratrol use not only as a supplement but also as a pharmacological drug. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3491–3500, 2014  相似文献   

6.
The aim of this study was to develop a formulation to improve the oral absorption of baicalin (BA) by combining a phospholipid complex (PC) and self-emulsifying microemulsion drug delivery system (SMEDDS), termed BA–PC–SMEDDS. BA–PC was prepared by a solvent evaporation method and evaluated by complexation percentage (CP). The physicochemical properties of BA–PC were determined. The synergistic effect of PC and SMEDDS on permeation of BA was studied in vitro with Caco-2 cells and in situ with a single pass intestinal perfusion model. The improved bioavailability of BA in BA–PC–SMEDDS was confirmed in an in vivo rat model. The CP of BA–PC reached 100% when the molar ratio of drug to phospholipid (PP) was ≥1:1. The solubility of BA–PC increased in both water and octanol, and the log Po/w of BA–PC was increased significantly. BA–PC–SMEDDS could be dispersed more evenly in water, compared to BA and BA–PC. Both the Caco-2 cell uptake and single-pass intestinal perfusion models illustrated that transport of BA in BA–PC was lower than that of free BA, while improved significantly in BA–PC–SMEDDS. The relative bioavailability of BA–PC(1:2)–SMEDDS was 220.37%. The combination system of PC and SMEDDS had a synergistic effect on improving the oral absorption of BA.KEY WORDS: Baicalin, SMEDDS, Phospholipid complex, Caco-2 cell, Single-pass intestinal perfusion, Bioavailability  相似文献   

7.

Purpose

Several in vivo studies have found that the 5-HT1A PET radioligand 18F-MPPF is a substrate of rodent P-glycoprotein (P-gp). However, in vitro assays suggest that MPPF is not a substrate of human P-gp. We have now tested the influence of inhibiting P-gp on the brain kinetics of 18F-MPPF in mice and non-human primates.

Methods

We measured the peripheral kinetics (arterial input function, metabolism, free fraction in plasma (fP)) during 18F-MPPF brain PET scanning in baboons with or without cyclosporine A (CsA) infusion. We measured 3H-MPPF transport at the mouse BBB using in situ brain perfusion in P-gp/Bcrp deficient mice and after inhibiting P-gp with PSC833.

Results

There was an unexpected 1.9-fold increase in brain area under the curve in CsA-treated baboons (n?=?4), with no change in radiometabolite-corrected arterial input. However, total volume of distribution corrected for fP (VT/fP) remained unchanged. In situ brain perfusion showed that P-gp restricted the permeability of the mouse BBB to 3H-MPPF while Bcrp did not.

Conclusion

These and previous in vitro results suggest that P-gp may not influence the permeability of human BBB to 18F-MPPF. However, CsA treatment increased 18F-MPPF free fraction, which is responsible for a misleading, P-gp unrelated enhanced brain uptake.  相似文献   

8.
Guo F  Zhong H  He J  Xie B  Liu F  Xu H  Liu M  Xu C 《Archives of pharmacal research》2011,34(7):1113-1123
Dipyridamole shows poor and variable bioavailability after oral administration due to pHdependent solubility, low biomembrane permeability as well as being a substrate of P-glycoprotein. In order to improve the oral absorption of dipyridamole, a self-microemulsifying drug delivery system (SMEDDS) for dipyridamole was prepared and evaluated in vitro and in vivo. The optimum formulation was 18% oleic acid, 12% Labrafac lipophile WL 1349, 42% Solutol HS 15 and 28% isopropyl alcohol. It was found that the performance of self-microemulsification with the combination of oleic acid and Labrafac lipophile WL 1349 increased compared with just one oil. The results obtained from an in vitro dissolution assay indicated that dipyridamole in SMEDDS dissolved rapidly and completely in pH 6.8 aqueous media, while the commercial drug tablet was less soluble. An oral bioavailability study in rats showed that dipyridamole in the SMEDDS formulation had a 2.06-fold increased absorption compared with the simple drug suspension. It was evident that SMEDDS may be an effective approach to improve the oral absorption for drugs having pH-dependent solubility.  相似文献   

9.
Now there are few good oral preparations of puerarin used in cerebrovascular diseases because of its poor oral absorption caused by the low water solubility and the poor penetration into brain. In this study, three oral formulations of puerarin, nanocrystals suspension (NCS), inclusion compounds solution (ICS) and self-microemulsifying drug delivery system (SMEDDS) were prepared with borneol as an oral brain-targeting enhancer. A rat syngeneic in vitro model of the brain–blood barrier (BBB) was established to investigate effects of borneol on the permeability of puerarin across the BBB. The pharmacokinetics of puerarin in mice after oral administration was investigated by a high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) method. The in vitro BBB model study showed the permeability of puerarin was increased significantly (p?p?plasma) and in brain (AUCbrain) for SMEDDS were significantly higher than those for NCS (p?p?相似文献   

10.
The objective of this work was to suggest the biowaiver potential of biopharmaceutical classification system (BCS) Class II drugs in self-microemulsifying drug delivery systems (SMEDDS) which are known to increase the solubility, dissolution and oral absorption of water-insoluble drugs. Cyclosporine was selected as a representative BCS Class II drug. New generic candidate of cyclosporine SMEDDS (test) was applied for the study with brand SMEDDS (reference I) and cyclosporine self-emulsifying drug delivery systems (SEDDS, reference II). Solubility and dissolution of cyclosporine from SMEDDS were critically enhanced, which were the similar behaviors with BCS class I drug. The test showed the identical dissolution rate and the equivalent bioavailability (0.34, 0.42 and 0.68 of p values for AUC0→24h, Cmax and Tmax, respectively) with the reference I. Based on the results, level A in vitro-in vivo correlation (IVIVC) was established from these two SMEDDS formulations. This study serves as a good example for speculating the biowaiver extension potential of BCS Class II drugs specifically in solubilizing formulation such as SMEDDS.  相似文献   

11.
The intestinal permeability of mitragynine was investigated in situ using a single pass intestinal perfusion (SPIP) absorption model, in small intestine of rat using mitragynine in the absence/presence of the permeability markers, P-gp and/or CYP3A4 inhibitors. Mitragynine demonstrated high intestinal permeability (Peff of 1.11 × 10?4 cm/s) that is in the range of highly permeable drugs such as propranolol (Peff of 1.27 × 10?4 cm/s) indicating that it readily crosses the intestine. The addition of azithromycin (P-glycoprotein inhibitor) and ciprofloxacin (CYP3A4 inhibitor) or combination of both has no effect on intestinal permeability of mitragynine across the rat small intestine.  相似文献   

12.
Abstract

1.?Although valuable in vitro models exist to study drug elimination from the systemic circulation, more integrated models may improve mechanistic insight in a biorelevant setting.

2.?This study aimed to explore (1) intestinal and biliary excretion of the HIV protease inhibitor darunavir and its impact on systemic disposition and (2) to evaluate to what extent findings in an in situ excretion model in rat can be captured by individual in vitro models.

3.?Contemporary in vitro models were applied to study intestinal and hepatobiliary disposition of darunavir and data were compared with findings in the in situ excretion model.

4.?Both in situ and in vitro experiments demonstrated significant metabolism of darunavir, which could be strongly inhibited by the P450 inhibitor 1-aminobenzotriazole. Using the P-gp inhibitor zosuquidar, P-gp mediated excretion of darunavir from blood towards gastrointestinal lumen was evidenced and this was confirmed by transport studies in Caco-2 cells. Moreover, involvement of P-gp in the biliary excretion of darunavir was also demonstrated in situ.

5.?In general, in situ findings corresponded well with in vitro data. The in situ excretion model offers the possibility to gain mechanistic insight in intestinal and hepatobiliary excretion processes and, at the same time, evaluate their impact on the systemic disposition of a compound.  相似文献   

13.
As the most prevalent route of delivery, oral administration has the challenge of potentially low bioavailability in part because P-glycoprotein (P-gp) in the intestinal tract affects absorption. Therefore, absorption enhancers or P-gp inhibitors are strategies to solve this problem. The aim of the present study was to investigate the effects of borneol on transportation of colchicine and rhodamine123, two P-gp substrates, in rats. In vitro transportation was assessed with a diffusion chamber system with isolated rat intestines. Different concentrations of borneol (10, 40 and 80 μg/mL) were prepared in solutions with two P-gp substrates compared with blank solutions. The in vivo effects on colchicine were assessed by a pharmacokinetic study. Borneol enhanced the absorptive transport of two P-gp substrates, which was relevant to the concentration. A pharmacokinetic study showed that in the presence of borneol, a significant increase in Cmax and AUC0→8 of colchicine occurred when compared to colchicine alone. The study showed that borneol affected two P-gp substrates in the intestine, possibly by inhibiting the effects of P-gp and enhancing intestinal absorption of drugs. Therefore, borneol could be developed as a P-gp inhibitor and absorptive enhancer.  相似文献   

14.
Huperzine A (Hup-A) is a poorly water-soluble drug with low oral bioavailability. A self-microemulsifying drug delivery system (SMEDDS) was used to enhance the oral bioavailability and lymphatic uptake and transport of Hup-A. A single-pass intestinal perfusion (SPIP) technique and a chylomicron flow-blocking approach were used to study its intestinal absorption, mesenteric lymph node distribution and intestinal lymphatic uptake. The value of the area under the plasma concentration–time curve (AUC) of Hup-A SMEDDS was significantly higher than that of a Hup-A suspension (P<0.01). The absorption rate constant (Ka) and the apparent permeability coefficient (Papp) for Hup-A in different parts of the intestine suggested a passive transport mechanism, and the values of Ka and Papp of Hup-A SMEDDS in the ileum were much higher than those in other intestinal segments. The determination of Hup-A concentration in mesenteric lymph nodes can be used to explain the intestinal lymphatic absorption of Hup-A SMEDDS. For Hup-A SMEDDS, the values of AUC and maximum plasma concentration (Cmax) of the blocking model were significantly lower than those of the control model (P<0.05). The proportion of lymphatic transport of Hup-A SMEDDS and Hup-A suspension were about 40% and 5%, respectively, suggesting that SMEDDS can significantly improve the intestinal lymphatic uptake and transport of Hup-A.  相似文献   

15.
Ma L  Wei Y  Zhou Y  Ma X  Wu X 《Archives of pharmacal research》2011,34(11):1939-1943
The aim of this study was to investigate the effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin. Intestinal permeability of rifampicin with or without excipients was evaluated by an in situ single-pass perfusion method. A highperformance liquid chromatographic method was applied to study the pharmacokinetics of rifampicin with or without excipients. Labrasol or Pluronic F68 (0.1% and 0.05%, v/v), co-perfused with rifampicin (60 μg/mL), significantly increased in situ permeability. Similarly, verapamil (a typical P-gp inhibitor) also increased in situ permeability, but to a lesser extent. In vivo, the oral administration of rifampicin with or without Pluronic F68, Labrasol or verapamil resulted in statistically significant effect on t1/2 (4.83 to 7.75, 6.42 and 7.46 h) and total body clearance (0.46 to 0.26, 0.28, 0.24 L/h/kg). In addition, Pluronic F68, Labrasol and verapamil produced minor changes in AUC0−t, which improved 1.55-, 1.54-, and 1.73-fold in comparison to control group, respectively. These results showed that Labrasol and Pluronic F68 might inhibit the function of P-gp in the intestine, thereby increasing intestinal absorption and changing the pharmacokinetic parameters of rifampicin. Therefore, excipient selection is an important factor to consider in rational formulation design.  相似文献   

16.
目的 筛选西罗莫司自微乳给药系统处方,并制备微丸。方法 通过溶解度试验确定助乳化剂、油相和乳化剂的选择范围;采用三元相图法、星点设计和效应面法对该体系优化制备工艺及处方。采用挤出-滚圆法制备不同处方的西罗莫司自微乳化微丸。结果 西罗莫司自微乳微丸的最终处方为:西罗莫司0.4%、油酸聚乙二醇甘油酯9.3%、聚氧乙烯-35-蓖麻油15.9%、二乙二醇单乙基醚8.0%、微晶纤维素49.8%、乳糖13.3%、羧甲基淀粉钠3.3%。溶出度试验显示,西罗莫司固体自微乳微丸在水中的溶出度远大于市售西罗莫司片,在0.4%SDS溶液中,两制剂的溶出度相当。结论 自微乳化给药系统可用于提高西罗莫司的体外溶出度。  相似文献   

17.
Repeated acetaminophen (AP) administration modulates intestinal P-glycoprotein (P-gp) expression. Whether AP can modulate P-gp activity in a short-term fashion is unknown. We investigated the acute effect of AP on rat intestinal P-gp activity in vivo and in vitro. In everted intestinal sacs, AP inhibited serosal–mucosal transport of rhodamine 123 (R123), a prototypical P-gp substrate. R123 efflux plotted against R123 concentration adjusted well to a sigmoidal curve. Vmax decreased 50% in the presence of AP, with no modification in EC50, or slope, ruling out the possibility of inhibition to be competitive. Inhibition by AP was absent at 0°C, consistent with interference of the active transport of R123 by AP. Additionally, AP showed no effect on normal localization of P-gp at the apical membrane of the enterocyte and neither affected paracellular permeability. Consistent with absence of a competitive inhibition, two further strategies strongly suggested that AP is not a P-gp substrate. First, serosal–mucosal transport of AP was not affected by the classical P-gp inhibitors verapamil or Psc 833. Second, AP accumulation was not different between P-gp knock-down and wild-type HepG2 cells. In vivo intestinal absorption of digoxin, another substrate of P-gp, was assessed in the presence or absence of AP (100 μM). Portal digoxin concentration was increased by 214%, in average, by AP, as compared with digoxin alone. In conclusion, AP inhibited P-gp activity, increasing intestinal absorption of digoxin, a prototypical substrate. These results suggest that therapeutic efficacy of P-gp substrates can be altered if coadministered with AP.  相似文献   

18.
《Drug delivery》2013,20(6):740-747
Abstract

The main purpose of this work was to develop and evaluate a self-emulsifying drug delivery system (SEDDS) of piperine to enhance its solubility and bioavailability. The formulation was optimized by solubility test and ternary phase diagrams. Then physiochemical properties and in vitro release of SEDDS were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of SEDDS on the bioavailability and intestinal absorption of piperine. The optimized formulation was composed of ethyl oleate, Tween 80 and Transcutol P (3:5.5:1.5, w/w), with the level of the piperine reached 2.5% (w/w). The in vitro dissolution rates of piperine SEDDS were significantly higher than the self-prepared capsules. In vivo pharmacokinetic study showed Cmax1, Cmax2 and area under the curve of piperine after oral administration of SEDDS in rats were 3.8-, 7.2- and 5.2-fold higher than the self-prepared capsules, respectively, and the relative bioavailability of SEDDS was 625.74%. The in situ intestinal absorption study revealed that the effective permeability and the effective absorption rate values of piperine for SEDDS were significantly improved comparing to solutions (p?<?0.01). So SEDDS formulation could improve the oral bioavailability and intestinal absorption of piperine effectively.  相似文献   

19.
Purpose. Previous studies demonstrated that inhibition of P glycoprotein (P-gp) by Pluronic P85 (P85) block copolymer increases apical (AP) to basolateral (BL) transport of rhodamine 123 (R123) in the polarized monolayers of bovine brain microvessel endothelial cells (BBMEC) and Caco-2 cells. The present work examines the effects of P85 on the transport of fluorescein (Flu), doxorubicin (Dox), etoposide (Et), taxol (Tax), 3-azido-3-deoxythymidine (AZT), valproic acid (VPA) and loperamide (Lo) using BBMEC and Caco-2 monolayers as in vitro models of the blood brain barrier and intestinal epithelium respectively. Methods. Drug permeability studies were performed on the confluent BBMEC and Caco-2 cell monolayers mounted in Side-Bi-Side diffusion cells. Results. Exposure of the cells to P85 significantly enhanced AP to BL permeability coefficients of Flu, Tax, Dox and AZT in both cell models. Further, P85 enhanced AP to BL transport of Et, VPA and Lo in Caco-2 monolayers. No changes in the permeability coefficients of the paracellular marker mannitol were observed in the presence of the copolymer. Conclusions. P85 increases AP to BL permeability in BBMEC and Caco-2 monolayers with respect to a broad panel of structurally diverse compounds, that were previously shown to be affected by P-gp and/ or multidrug resistance associated protein (MRP) efflux systems. Broad specificity of the block copolymer effects with respect to drugs and efflux systems appears to be a valuable property in view of developing pharmaceutical formulations to increase drug accumulation in selected organs and overcome both acquired and intrinsic drug resistance that limits the effectiveness of many chemotherapeutic agents.  相似文献   

20.
Bioavailability of oral drugs can be limited by an intestinal excretion process mediated by P-glycoprotein (P-gp). Polyethylene glycol (PEG) is a known P-gp inhibitor. Dispersion of Famotidine (a P-gp substrate) within PEGylated nanoparticles (NPs) was used to improve its oral bioavailability. In this work, we evaluated the potential impact of NPs prepared from a grafted copolymer of polylactic acid and PEG on P-gp function by studying in vitro permeability of Famotidine across Caco-2 cells. Copolymers of PEG grafted on polylactic acid (PLA) backbone (PLA-g-PEG) were synthesised with 1?mol% and 5?mol% PEG vs. lactic acid monomer using PEG 750 and 2000?Da. The polymers were used to prepare Famotidine-loaded NPs and tested in vitro on Caco-2 cells. Significant decrease in basolateral-to-apical transport of Famotidine was observed when Famotidine was encapsulated in NPs prepared from PLA-g-PEG5%. NPs prepared from PLA-g-PEG5% are promising to improve oral bioavailability of P-gp substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号