首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Classic chemotherapy his little or no specificity for cancer cells, normally resulting in low accumulation at the tumor region (inefficacy), and in severe side effects (toxicity). This challenge has resulted in the development of several deliver strategies for chemotherapy agents to improve their concentration at the tumor site, simultaneously increasing their anticancer efficacy, while reducing the associated adverse systemic effects. In this work, the potential of drug delivery strategies involving the use of nanocarriers for controlling the biodistribution of antitumor drugs is deeply revised: passive targeting (through the enhanced permeability and retention effect, EPR effect) and active targeting (including stimuli-sensitive carriers and ligand-mediated delivery). Special attention will be also focussed on the recent approaches for overcoming multi-drug resistence. Finally, a general view of the problem of "nanotoxicity" in cancer treatment is also given.  相似文献   

2.
Cancer chemotherapy is not always effective. Difficulties in drug delivery to the tumor, drug toxicity to normal tissues, and drug stability in the body contribute to this problem. Polymeric materials provide an alternate means for delivering chemotherapeutic agents. When anticancer drugs are encapsulated in polymers, they can be protected from degradation. Implanted polymeric pellets or injected microspheres localize therapy to specific anatomic sites, providing a continuous sustained release of anticancer drugs while minimizing systemic exposure. In certain cases, polymeric microspheres delivered intravascularly can be targeted to specific organs or tumors. This article reviews the principles of chemotherapy using polymer implants and injectable microspheres, and summarizes recent preclinical and clinical studies of this new technology for treating cancer.  相似文献   

3.
4.
Cancer treatment regimens often include multiple anticancer agents targeting different cellular mechanisms in delicate balance with associated toxicity. Drug delivery systems offer a unique tool in the treatment of cancer, and applications in the local treatment of cancer have demonstrated utility in providing sustained high local concentrations at the tumor site while minimizing systemic drug levels. Treatment options for local cancer therapy are focused on indications where targeted activity may result in improved patient outcomes such as increased local control and decreased metastatic potential. Targeted therapies may also enhance response to combination anticancer regimens. OncoGel™, a controlled-release depot formulation of paclitaxel in ReGel™, has been evaluated in numerous nonclinical studies. Results from these studies demonstrated OncoGel's ability to physically target paclitaxel to the tumor site with very little reaching the circulation, resulting in an acceptable safety profile with dose-limiting toxicities being local in nature. In addition, OncoGel demonstrated efficacy as a stand-alone treatment and synergistic activity in combination therapies. Clinical studies in superficially-palpable tumors and esophageal carcinoma confirmed local paclitaxel release from OncoGel in patients. OncoGel's ability to improve current treatment options for esophageal and brain cancers is being further evaluated.  相似文献   

5.
Chemotherapy plays a significant role both as primary and as supportive care for lung cancer treatment. The majority of currently available anticancer agents are administrated intravenously, causing side effects due to the systemic drug distribution. Alternatively, the bioavailability of orally administrated anticancer agents is usually compromised by the first-pass metabolism. Pulmonary administration may be a potential route for anticancer drug delivery to treat lung tumors, due to its site specific delivery, avoidance of first-pass metabolism, possibility of fewer side effects, and improved comfort for cancer patients using a needle-free delivery device. However, to attain an effective inhalational delivery, there is a requirement to design a formulation with appropriate aerodynamic properties with well-suited excipients. This review article explores work to date related to the formulations developed for pulmonary delivery of small molecule antineoplastic agents to treat primary and metastatic lung carcinomas. Ultimately, it highlights the importance of formulation design to define the role of inhalational chemotherapy.  相似文献   

6.
Cancer is the second leading cause of death in the US. Currently, protocols for cancer treatment include surgery to remove diseased and suspect tissues, focused radiation, systemic chemotherapy, immunotherapy and their combinations. With conventional chemotherapy, it is almost impossible to deliver anticancer drugs specifically to the tumor cells without damaging healthy organs or tissues. Over the past several decades, efforts have been made to improve drug delivery technologies that target anticancer drugs specifically to tumor cells. It has been known for over four decades that the lymphatics are the first site of metastasis for most solid cancers; however, few efforts have been made to localize chemotherapies to lymphatic tissues. Trials of several systemic targeted drug delivery systems based on nanoparticles containing chemotherapeutic agents (e.g., liposomal doxorubicin) have shown similar antitumor activity but better patient tolerance compared with conventional formulations. Animal studies have demonstrated that nanoparticles made of natural or synthetic polymers and liposomal carriers have higher accumulation in the lymph nodes and surrounding lymphatics compared to conventional intravenous therapies. This combination has the potential to both reduce nonspecific organ toxicities and increase the chemotherapeutic dose to the most likely sites of locoregional cancer metastasis.  相似文献   

7.
Intratumoral injection of anticancer drugs directly delivers chemotherapeutics to the tumor region, offering an alternative strategy for cancer treatment. However, most hydrophilic drugs spread quickly from the injection site into systemic circulation, leading to inferior antitumor activity and adverse effects in patients. Therefore, we developed novel reversed lipid-based nanoparticles (RLBN) as a nanoscale drug carrier. RLBNs differ from traditional nanoscale drug carriers in that they possess a reversed structure consisting of a polar core and lipophilic periphery, leading to excellent solubility and stability in hydrophobic liquids; therefore, hydrophilic drugs can be entrapped in RLBNs and dispersed in oil. In vivo studies in tumor-bearing Balb/c nude mice indicated remarkable antitumor activity of RLBN-DOX after a single injection, with effective tumor growth inhibition for at least 17?days; the inhibition rate was ~80%. These results can be attributed to the long-term retention and sustained drug release of RLBN-DOX in the tumor region. In contrast, intratumoral injection of free DOX showed weaker antitumor activity than RLBN-DOX did, with the tumor size doubling by day 11 and tripling by day 17. Further, the initial burst of drug released from free DOX could produce detrimental systemic effects, such as weight loss. Histological analyses by TUNEL staining showed apoptosis after treatment with RLBN-DOX, whereas tumor cell viability was high in the free DOX group. Current results indicate that RLBNs show sustained delivery of hydrophilic agents to local areas resulting in therapeutic efficacy, and they may be a promising drug delivery system suitable for intratumoral chemotherapy.  相似文献   

8.
It is a fact that chemotherapy agents have little specificity for cancer cells, this leading to low concentrations into the tumor interstititum and severe side effects on healthy tissues. The formulation of lipid-based nanomedicines against cancer has been hypothesized to improve drug localization into the tumor tissue and to increase the anticancer efficacy of concentional drugs, while minimizing their systemic adverse effects. In this review, special attention is devoted to the analysis of the state-of-the-art in the development of lipid-based drug carriers against cancer. Specifically, the most significant in vitro and in vivo results on the use of niosomes, liposomes, and solid lipid nanoparticles are revised. It is concluded that biodistribution profiles of chemotherapy agents can be controlled by their loading to such nanoplatforms. Lipid-based nanomedicines offer an interesting approach to the delivery of anticancer drugs to brain tumors, and to reverse multi-drug resistance of cancer cells. Finally, a deep evaluation of the applicability of drug delivery strategies in the formulation of lipid-based nanoplatforms is carried out. They involve active drug targeting (including ligand-mediated delivery, and stimuli-sensitive carriers), and passive drug targeting (through the enhanced permeability and retention effect) to tumors.  相似文献   

9.
A new drug delivery system comprizing activated carbon particles adsorbing anticancer agents has been developed in order to enhance anticancer efficacy on local lesions and to reduce systemic toxicity. The system is designed to release the adsorbed anticancer agent slowly at a designated concentration level at the local site, and to allow the agent to remain for a long time at the local site, with affinity for the lymphatic system and the surface of cancer cells. Through this process, anticancer efficacy is enhanced at the local lesion and systemic toxicity decreases. Because the size of the particles influences the distribution of the agent, size is selected according to both targeted organs, i.e. lymphatic metastases, carcinomatous peritonitis, and administration methods, i.e. intramural, intracavitary, intrabronchial, or intratumoral administration.  相似文献   

10.
Abstract

Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli–responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli–responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.  相似文献   

11.
Cancer is an ever-increasing menace that needs to be curbed soon. Though chemotherapy is successful to some extent, the main drawbacks of chemotherapy is the limited accessibility of drugs to the tumor tissues requiring high doses, their intolerable toxicity, development of multiple drug resistance and their non-specific targeting. Nanoparticles (NPs), an evolution of nanotechnology, have the potential to successfully address these problems related to drug delivery and retention and are considered potential candidates to carry drugs to the desired site of therapeutic action. In this review, we give an overview of the use of clinically applicable NPs mainly for cancer therapy. We also focus on the different types of nanoscale polymer carriers used for the delivery of chemotherapeutic agents and the mechanisms that facilitate their targeted delivery to tumor cells.  相似文献   

12.
13.
Cancer is an ever-increasing menace that needs to be curbed soon. Though chemotherapy is successful to some extent, the main drawbacks of chemotherapy is the limited accessibility of drugs to the tumor tissues requiring high doses, their intolerable toxicity, development of multiple drug resistance and their non-specific targeting. Nanoparticles (NPs), an evolution of nanotechnology, have the potential to successfully address these problems related to drug delivery and retention and are considered potential candidates to carry drugs to the desired site of therapeutic action. In this review, we give an overview of the use of clinically applicable NPs mainly for cancer therapy. We also focus on the different types of nanoscale polymer carriers used for the delivery of chemotherapeutic agents and the mechanisms that facilitate their targeted delivery to tumor cells.  相似文献   

14.
Despite several advancements in chemotherapy, the real therapy of cancer still remains a challenge. The development of new anti-cancer drugs for the treatment of cancer has not kept pace with the progress in cancer therapy, because of the nonspecific drug distribution resulting in low tumour concentrations and systemic toxicity. The main hindrance for the distribution of anti-cancer agents to the tumour site is the highly disorganized tumour vasculature, high blood viscosity in the tumour, and high interstitial pressure within the tumour tissue. Recently, several approaches such as drug modifications and development of new carrier systems for anti-cancer agents have been attempted to enhance their tumour reach. Approaches such as drug delivery through enhanced permeability and retention (EPR) effect have resulted in a significant improvement in concentration in tumours, while approaches such as drug-carrier implants and microparticles have resulted in improvement in local chemotherapy of cancer. This review discusses different strategies employed for the delivery of anti-cancer agents to tumours, such as through EPR effect, local chemotherapeutic approaches using drug delivery systems, and special strategies such as receptor-mediated delivery, pH-based carriers, application of ultrasound and delivery to resistant tumour cells and brain using nanoparticles.  相似文献   

15.
The efficacy of anticancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is overexpressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anticancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel. We found that the peptide-drug conjugate is dramatically more effective than paclitaxel alone at inhibiting tumor growth in a prostate cancer xenograft model, delivering significantly higher levels of drug to the tumor site. We believe these studies open the way to the development of a new class of therapeutic compounds that exploit the EphA2 receptor for drug delivery to cancer cells.  相似文献   

16.
Receptor-mediated tumor targeting has received major attention in the field of cancer drug delivery in the past few years. Receptors, as molecular target has opened new opportunities for cellular or intracellular targeting of drug loaded delivery systems conjugated with targeting moieties i.e. ligand. This receptor mediated targeting of cancer drug through nano carrier systems to cancerous tissue offer protection and improves the pharmacokinetics of various drugs and help to overcome the systemic toxicity and adverse effects that result from the non-selective nature of most current cancer therapeutic agents. The article reviews the scope of receptor mediated targeting of anticancer drug loaded in various nanocarriers and also summarize recent perspective and challenges in the field of nanocarrier-aided drug delivery and drug targeting for cancer therapy.  相似文献   

17.
The introduction of combination chemotherapeutic regimens for the treatment of childhood leukaemia in the 1960s provided the proof-of-principle that cytotoxic drugs were capable of curing cancer. However, in the four decades since this discovery, the majority of cancers still cannot be cured by chemotherapy. Clinical evidence supports the hypothesis of Goldie and Coldman that treating cancers with all the available effective agents simultaneously provides the greatest chance of eliciting a cure. Unfortunately, for traditional cytotoxic agents with narrow therapeutic indices, life-threatening toxicity precludes combination chemotherapy regimens employing multiple agents. This review discusses the concept of fixed dose combination chemotherapy with emphasis on capturing therapeutic efficacy described as synergistic as a basis for improving the effectiveness of combination chemotherapy. The use of lipid-based nanotechnologies, focusing on liposomes, as an enabling technology to facilitate the delivery of cytotoxic agents to the tumour site at concentrations and/or drug ratios judged to be synergistic will be discussed. It is envisaged that the development of this model system will be supported by cell-based screening technologies, pharmacokinetic and pharmacodynamic parameters and mathematical models describing therapeutic drug:drug interactions (the Median Effect Principle of Chou and Talalay). Experiments using preclinical models are presented to support the benefits of drug delivery systems as a foundation for fixed dose anticancer drug combinations. The ultimate goal of this research is to prepare a 'single vial' fixed dose combination product that encompasses both traditional cytotoxic agents and new molecularly targeted modalities with optimum therapeutic effects and acceptable toxicity.  相似文献   

18.
Due to a very poor specificity, many chemotherapy agents generate a low antitumor effect and important severe side effects. Poly(D,L-lactide-co-glycolide) (PLGA)-based nanomedicines are under investigation to assure a very efficient anticancer activity in chemotherapy. In this work, we analyze the major applications of this FDA-approved biodegradable polymer in the formulation of nanomedicines against cancer. Despite conventional PLGA colloids could be only used to target tumors located into the mononuclear phagocyte system (MPS), special strategies are under intensive research to enhance the accumulation of anticancer drugs into any given tumor site. These are passive targeting (through the enhanced permeability and retention effect, so-called EPR effect), drug delivery through stimuli-sensitive colloids, and ligand-mediated targeting. We further discuss unique approaches of PLGA colloids in oral chemotherapy, drug delivery to brain tumors, and multi-drug resistance of cancer cells.  相似文献   

19.
Over the past two decades cancer has ascended the causes of human death to be number one or two in many nations world wide. A major limitation inherent to most conventional anticancer chemotherapeutic agents is their lack of tumor selectivity. One way to achieve selective drug targeting to solid tumors is to exploit abnormalities of tumor vasculature, namely, hypervascularisation; aberrant vascular architecture; extensive production of vascular permeability factors stimulating extravasation within tumor tissues; and lack of lymphatic drainage. Maeda and his colleagues have extensively studied tumor vascular abnormalities in terms of active and selective delivery of anticancer drugs to tumor tissues, notably defining the enhanced permeability and retention effect (EPR effect) of macromolecular drugs in solid tumors. Due to their large molecular size, nanosized macromolecular anticancer drugs administered intravenously (i.v.) escape renal clearance. Often they can not penetrate the tight endothelial junctions of normal blood vessels, but they can extravasate in tumour vasculature and become trapped in the tumor vicinity. With time the tumor concentration will build up reaching several folds higher than that of the plasma due to lack of efficient lymphatic drainage in solid tumor; an ideal application for EPR-based selective anticancer drug delivery. Establishing this principle hastened development of various polymer conjugates and polymeric micelles as well as multifunctional nanoparticles for targeted cancer chemotherapy. Indeed this selective high local concentration of nanosized anticancer drugs in tumor tissues has proven superior in therapeutic effect with minimal side effects in both preclinical and clinical settings.

In this review the mechanisms and factors involved in the EPR effect, as well as the uniqueness of nanoscale drugs for tumor targeting through EPR effect, will be discussed in detail.  相似文献   

20.
Intraperitoneal chemotherapy confers limited clinical benefit as a result of the dose-limiting toxicity of anticancer drugs. We aimed to develop optimized liposomes for mitoxantrone (MTO) administration that provide high encapsulation efficiency and increase the therapeutic index. Cationic MTO was loaded onto anionic liposomes by electrostatic surface complexation. The anticancer activity was evaluated in a peritoneal carcinomatosis model. The retention of MTO at the tumor site was monitored by molecular imaging. MTO loading efficiencies by electrostatic complexation were >95% for all anionic liposomes but <5% for neutral liposomes. Among anionic liposomes, cardiolipin liposomes (CLs) exhibited the strongest binding affinity for MTO, the highest anticancer activity, and the lowest toxicity. MTO delivered by CLs showed prolonged retention at tumor sites. Unlike free MTO showing significant cardiotoxicity, MTO administered in CLs provided negligible cardiotoxicity. CL-mediated delivery may increase the therapeutic index of MTO chemotherapy by prolonged retention and reduced cardiotoxicity.From the Clinical EditorThe authors report the development of optimized liposomes for intraperitoneal mitoxantrone delivery that provides high encapsulation efficiency and increases the therapeutic index. Cardiolipin liposomes exhibited the strongest binding affinity for mitoxantrone, along with the highest anti-cancer activity and lowest toxicity, including negligible cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号