首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
背景:假体松动是造成人工关节置换失败和翻修的主要原因之一。材料表面处理能够促进假体和骨组织界面的骨整合,提高假体的稳定性。 目的:研究纳米化表面钛合金(Ti6A14V)內植物在动物体内的骨整合情况。 方法:基于严重塑性变形原理制备纳米化表面钛合金。在比格犬股骨髁间植入普通表面、羟基磷灰石表面和纳米化表面钛合金内植物,置入后3个月取材,处死前行影像学观察,处死后取带有内植物的股骨髁制作不脱钙骨组织磨片,行Van Gieson苦味酸一品红染色,观察内植物和骨组织界面组织学情况,并进行骨动力学参数计算。同时行推出实验,比较不同表面内植物和骨组织界面生物力学情况。 结果与结论:影像学检查,见内植物和骨组织结合良好;界面组织学可见羟基磷灰石表面和纳米化表面钛合金与骨界面有大量成熟骨小梁直接结合,两者界面骨结合率相似(P > 0.05),但都优于普通表面钛合金(P < 0.01);推出实验显示羟基磷灰石表面和纳米化表面钛合金內植物和骨组织的结合力相似(P > 0.05),但都优于普通表面钛合金(P < 0.001)。提示严重塑性变形原理制备的纳米化表面钛合金和羟基磷灰石表面钛合金一样具有成骨诱导活性,能够促进骨整合,具有良好的临床应用前景。  相似文献   

2.
Corrosion resistance and biocompatibility of 60 specimens of titanium nickelide with modified surfaces implanted into spongy bone were studied in rabbit experiments. Specimens modified by molybdenum ions exhibited high inertness and favorable tissue reaction. No accumulation of nickel and titanium ions in animal organs was detected. __________ Translated from Byulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 145, No. 6, pp. 707–713, June, 2008  相似文献   

3.
背景:各种纯钛种植体表面微弧氧化涂层效果不尽相同。 目的:观察3种不同微弧氧化涂层种植体钛片对小鼠成骨细胞的细胞增殖、碱性磷酸酶活性和β1-integrin的基因表达水平的影响。 方法:采用国际常用小鼠成骨细胞系(MC3T3-E1),3种不同涂层钛片作为影响因素,纯钛作为对照,采用MTT法和电镜法观察细胞附着和细胞增殖,PNPP法测定碱性磷酸酶的活性,RT-PCR法检测β1-integrin在小鼠成骨细胞中的表达。 结果与结论:MTT值、碱性磷酸酶值、β1-integrin的基因表达水平和电镜观察均显示含钙、磷、镁、锌元素的二氧化钛涂层钛片生物相容性最好,含钙磷盐的二氧化钛涂层钛片次之,二氧化钛涂层钛片最差。小鼠成骨细胞在其多孔,含有钙、磷、镁、锌元素表面的黏附及增殖最优。  相似文献   

4.
微弧氧化是用于增强钛植入体的生物相容性和抗菌性的有效表面处理技术。在钛植入体表面制备生物活性元素组成的多孔涂层,是微弧氧化技术最具吸引力的特征。本研究主要介绍了微弧氧化的基本原理,阐述了该方法的技术优势,并总结了几种微弧氧化涂层的国内外研究进展;对含钙磷、银、铜、锌、硅的微弧氧化涂层,重点关注了对该类型涂层的骨整合性、抗菌性以及毒性的研究报道,旨在为研究者提供较为全面的视角,评估微弧氧化在骨科钛植入体上的应用进展,为后续临床研究提供参考。  相似文献   

5.
目的研究Ti.6A1—4V合金表面微弧氧化(MAO)涂层的表面形貌及理化性能。方法将Ti-6A1-4V合金置于含0.02mol/Lβ-甘油磷酸二钠盐及0.2mol/L乙酸钙的电解液中进行MAO处理后,通过扫描电子显微镜(SEM)观察涂层表面形貌及截面形貌;X线能谱分析(EDX)检测涂层表面钙磷比;X射线衍射分析(XRD)检测涂层晶相构成;纳米压痕试验测量涂层的微弹性模量及微硬度。结果经MAO处理后,钛合金表面形成粗糙多孔的氧化膜;XRD显示涂层主要由锐钛矿相TiO2、金红石相Ti02和羟基磷灰石(HAP)构成;EDX及纳米压痕试验测得膜层的钙磷比为1.64,弹性模量和微硬度分别为(32.07±7.07)GPa和(1.49±0.68)GPa。结论通过MAO技术可制备出具备良好理化性能的含HAP的涂层。  相似文献   

6.
In the past, several modifications of specific surface properties such as topography, structure, chemistry, surface charge, and wettability have been investigated to predictably improve the osseointegration of titanium implants. The aim of the present review was to evaluate, based on the currently available evidence, the impact of hydrophilic surface modifications of titanium for dental implants. A surface treatment was performed to produce hydroxylated/hydrated titanium surfaces with identical microstructure to either acid-etched, or sand-blasted, large grit and acid-etched substrates, but with hydrophilic character. Preliminary in vitro studies have indicated that the specific properties noted for hydrophilic titanium surfaces have a significant influence on cell differentiation and growth factor production. Animal experiments have pointed out that hydrophilic surfaces improve early stages of soft tissue and hard tissue integration of either nonsubmerged or submerged titanium implants. This data was also corroborated by the results from preliminary clinical studies. In conclusion, the present review has pointed to a potential of hydrophilic surface modifications to support tissue integration of titanium dental implants.  相似文献   

7.
背景:微弧氧化技术可改善钛或钛合金的表面特征。 目的:研究纯钛表面微弧氧化涂层的表面性能及其对MC3T3-E1细胞早期黏附、增殖及成骨能力的影响。 方法:将46个直径10 mm、厚度2 mm圆盘状纯钛试件分为实验组和对照组。实验组置于含0.02 mol/Lβ-甘油磷酸二钠盐及0.2 mol/L乙酸钙的电解液中进行微弧氧化处理,对照组对试件进行机械抛光。扫描电子显微镜观察试件表面形貌,X射线能谱分析检测涂层表面钙磷比,X射线衍射分析检测涂层晶相构成。将MC3T3-E1细胞接种在两组试件表面,1,2,4 h电镜下观察细胞形态,在2,4,7 d通过CCK-8方法检测细胞增殖,并于7,14 d检测碱性磷酸酶活性。 结果与结论:经微弧氧化处理后,钛表面形成粗糙多孔的钙磷涂层,微弧氧化涂层主要元素为Ca、P、O及Ti,微弧氧化膜层主要由氧化钛、钛酸钙、磷酸钙及偏磷酸钙构成。电镜观察显示1 h 微弧氧化涂层表面细胞已伸出伪足,4 h呈现较典型的细胞形态。细胞在微弧氧化处理钛表面4,7 d的细胞增殖和7,14 d的碱性磷酸酶活性高于对照组。表明微弧氧化技术生成的粗糙多孔钙磷涂层能显著促进MC3T3-E1细胞的早期黏附、增殖及成骨活性。  相似文献   

8.
Li LH  Kong YM  Kim HW  Kim YW  Kim HE  Heo SJ  Koak JY 《Biomaterials》2004,25(14):2867-2875
The surface of a titanium (Ti) implant was modified by micro-arc oxidation (MAO) treatment. A porous layer was formed on the Ti surface after the oxidation treatment. The phase and morphology of the oxide layer were dependent on the voltage applied during the oxidation treatment. With increasing voltage, the roughness and thickness of the film increased and the TiO(2) phase changed from anatase to rutile. During the MAO treatment, Ca and P ions were incorporated into the oxide layer. The in vitro cell responses of the specimen were also dependant on the oxidation conditions. With increasing voltage, the ALP activity increased, while the cell proliferation rate decreased. Preliminary in vivo tests of the MAO-treated specimens on rabbits showed a considerable improvement in their osseointegration capability as compared to the pure titanium implant.  相似文献   

9.
The aim of this study was to obtain more information about the bone reaction to titanium and hydroxyapatite (HA)-coated titanium implants during the first 3 months after implantation. Therefore, uncoated and coated implants were inserted into the tibia of rabbits for various implantation periods. The histological results demonstrated that although there were no marked differences in bony reaction at the cortical level to the different implant materials, HA-coating appeared to induce more bone formation in the medullary cavity. It was also noted, that 3 months after insertion loss of coating thickness had occurred.  相似文献   

10.
Titanium is widely used clinically, yet little is known regarding the effects of modifying its three-dimensional surface geometry at the nanoscale level. In this project we have explored the in vivo response in terms of nitric oxide scavenging and fibrotic capsule formation to nano-modified titanium implant surfaces. We compared titanium dioxide (TiO(2)) nanotubes with 100 nm diameters fabricated by electrochemical anodization with TiO(2) control surfaces. Significantly lower nitric oxide was observed for the nanostructured surface in solution, suggesting that nanotubes break down nitric oxide. To evaluate the soft tissue response in vivo TiO(2) nanotube and TiO(2) control implants were placed in the rat abdominal wall for 1 and 6 weeks. A reduced fibrotic capsule thickness was observed for the nanotube surfaces for both time points. Significantly lower nitric oxide activity, measured as the presence of nitrotyrosine (P<0.05), was observed on the nanotube surface after 1 week, indicating that the reactive nitrogen species interaction is of importance. The differences observed between the titanium surfaces may be due to the catalytic properties of TiO(2), which are increased by the nanotube structure. These findings may be significant for the interaction between titanium implants in soft tissue as well as bone tissue and provide a mechanism by which to improve future clinical implants.  相似文献   

11.
A thin hydroxyapatite (HA) layer was coated on a microarc oxidized titanium (MAO-Ti) substrate by means of the sol-gel method. The microarc oxidation (anodizing) enhanced the biocompatibility of the Ti, and the bioactivity was improved further by the sol-gel HA coating on the anodized Ti. The HA sol was aged fully to obtain a stable and phase-pure HA, and the sol concentration was varied to alter the coating thickness. Through the sol-gel HA coating, the Ca and P concentrations in the coating layer increased significantly. However, the porous morphology and roughness of the MAO-Ti was altered very little by the sol-gel treatment. The proliferation and alkaline phosphatase (ALP) activity of the osteoblast-like cells on the MAO/HA sol-gel-treated Ti were significantly higher than those on the MAO-Ti without the HA sol-gel treatment.  相似文献   

12.
Interface analysis of titanium and zirconium bone implants   总被引:1,自引:0,他引:1  
A thin layer of titanium or zirconium was evaporated onto the surface of a plastic implant which was then inserted in the rabbit tibial metaphysis for six months. The implants and surrounding bone were cut out en bloc and sectioned for phase contrast microscopy, scanning- and transmission-electron microscopy. The intact bone-to-metal interface in the case of titanium revealed a fibrous tissue-free boundary zone with a 200-400 A thick proteoglycan coat immediately adjacent to the titanium oxide. Thereafter collagen filaments were seen and, at approximately 1000 A from the interface, collagen bundles. The tissues surrounding the zirconium-coated implant consisted of a 300-500 A thick proteoglycan layer, followed by a zone with collagen filaments and collagen bundles, not closer to the zirconium oxide than a few thousand A.  相似文献   

13.
Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone.  相似文献   

14.
The functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a split-mouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.  相似文献   

15.
Immobilization of bisphosphonates on surface modified titanium   总被引:5,自引:0,他引:5  
Yoshinari M  Oda Y  Ueki H  Yokose S 《Biomaterials》2001,22(7):709-715
The efficiency of surface modifications on the immobilization of bisphosphonates on titanium was investigated with Ca-ion implantation and thin hydroxyapatite coatings. The ALP activity of osteoblastic cells and the inhibitory effects on the initial adherence of P. gingivalis were also evaluated using bisphosphonate-immobilized titanium. X-ray photoelectron spectroscopy analysis suggested that titanium surfaces modified with Ca-ion implantation and thin hydroxyapatite coatings caused the immobilization of bisphosphonate on titanium plates. The ALP activity of osteoblastic cells cultured on plates immobilized with bisphosphonate was almost the same as that of cells cultured on titanium plates, indicating that the bisphosphonate-immobilization showed no toxic effect on osteoblastic cells, and that it provides a favorable micro-environment with osteogenetic ability. Data of the adherence of oral bacteria showed that a bisphosphonate-immobilized titanium surface inhibited the initial adherence of P. gingivalis. These results indicate that the immobilization of bisphosphonates on titanium modified with Ca-ion implantation and thin hydroxyapatite coatings are useful for dental implants.  相似文献   

16.
Stabilization of the broken bone is achieved using biocompatible materials. Since histology is still considered the gold standard technique for the assessment of bone formation around metallic implants, this report investigated the titanium implant integration in the accidentally broken bone in rabbits. The experimental protocol was reviewed and approved by the Ethical Committee of the Faculty of Medicine and Pharmacy Oradea, Romania. Holes were drilled in the diaphysis of the femur, and titanium implants were inserted in the created bone defect. In two subjects, fractures occurred on days two and three after the metallic alloy implantation. The other two rabbits presented no fractures following the surgical procedure. The rabbits were euthanized and the bones (with metallic implants) were harvested for histopathological investigation. Following decalcification, the bone samples were processed using the standard paraffin technique and stained by Goldner’s trichrome procedure. In subjects with a perfect immobilization of the titanium implants, the osseointegration occurred with minimal callus formation (i.e. primary cortical healing). In rabbits with bone fractures, the callus was more exuberant. A progressive replacement of the granulation tissue with hyaline cartilage and woven bone occurred soon after. The former aspects suggested an indirect metaplasia in the created callus. In all subjects, no inflammatory cells were identified in the created callus. The bone regeneration occurred either by primary cortical healing (in perfectly immobilized titanium implants) or by a process similar to the endochondral ossification (in poorly immobilized titanium implants following accidental post-implantation bones fracture).  相似文献   

17.
The objective of this study was to evaluate the effect of different phospholipid coatings on osteoblast responses in vitro. Commercially available phospholipids [phosphatidylcholine (PC), phosphatidyl-serine (PS) and phosphatidylinositol (PI)] were converted to their Ca-PL-PO(4) and were coated on commercially pure titanium (Ti) grade 2 disks. Using uncoated Ti surfaces as controls, cell responses to phospholipid-coated surfaces were evaluated using the American Type Culture Collection (Manassas, VA, USA) CRL-1486 human embryonic palatal mesenchyme cells (HEPM), an osteoblast precursor cell line, over a 14-day period. Total protein synthesis and alkaline phosphatase specific activity at 0, 7, and 14 days were measured. It was observed that Ti surfaces coated with PS exhibited enhanced protein synthesis and alkaline phosphatase specific activity compared to other phospholipids and uncoated surfaces. These results indicate the possible usefulness of PS-coated Ti surfaces for inducing enhanced bone formation and are very encouraging for bone and dental implantology.  相似文献   

18.
Titanium-based implants are successfully used for various biomedical applications. However, in some cases, e.g. in dental implants, failures due to bacterial colonization are reported. Surface modification is a commonly proposed strategy to prevent infections. In this work, titanium oxide, naturally occurring on the surface of titanium, was modified by promoting the formation of a mixed titanium and zinc oxide, on the basis of the idea that zinc oxide on titanium surface may act as the zinc oxide used in pharmaceutical formulation for its lenitive and antibacterial effects. The present work shows that it is possible to form a mixed titanium and zinc oxide on titanium surfaces, as shown by Scanning Electron Microscopy and XPS analysis. To this end titanium was preactivated by UV on crystalline titanium oxide, both in the anatase form or in the co-presence of anatase and rutile. By performing antibacterial assays, we provide evidence of a significant reduction in the viability of five streptococcal oral strains on titanium oxide surfaces modified with zinc. In conclusion, this type of chemical modification of titanium oxide surfaces with zinc might be considered a new way to reduce the risk of bacterial colonization, increasing the lifetime of dental system applications.  相似文献   

19.
Surface analysis of failed oral titanium implants.   总被引:4,自引:0,他引:4  
The aim of the present study was to investigate the surface topography, composition, and oxide thickness of consecutively failed, oral Br?nemark implants in order to determine possible causes for failure. The failure criterion was lack of osseointegration manifested as implant mobility. Ten implants were retrieved before loading (early failures) and 12 during a period of function up to 8 years (late failures). At retrieval, early losses did not display any clinical sign of infection. All late failures were radiographically characterized by peri-implant radiolucency and did not show infectious signs with one exception. No implant seemed to be lost due to peri-implantitis (plaque-induced progressive marginal bone loss). Twelve implants were analyzed by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and depth profiling using a blind protocol. Two pristine fixtures, which underwent the same preparation as the failed implants, were used as controls. In the SEM, control samples were essentially free from macroscopic contamination, whereas failed implants contained varying amounts of tissue residues. AES showed that all surfaces consisted of Ti oxide and varying amounts of additional elements, with C dominating in most cases. Nitrogen and sometimes Na, Ca, P, Cl, S, and Si were detected. The Si contamination was most likely due to ion leaching from the glass vials used for storage. Depth profiles showed a typical oxide thickness of 5-8 nm for all samples. In conclusion, no significant changes in the oxide layer composition or thickness as a result of implantation were observed. The results do not indicate any material-related cause for the failures of these implants. Possible reasons for these failures were impaired healing, asymptomatic infection, and overload.  相似文献   

20.
Titanium is the most widely used material for dental implants. The natural formation, in presence of oxygen, of different oxide films (passivation films) is correlated to titanium implant biocompatibility, resistance to corrosion and is responsible for implant bacteriostatic action. Surface roughness is another surface property of Ti-implants that, affecting implant-to-bone contact, improves integration. In the present study data concerning composition, surface roughness and biocompatibility of Ghimas implants and mini-implants undergoing sandblasting with Calcium Magnesium Carbonate (CaMg(CO3)2) are reported. AFM, SEM/EDX, XRD analyses and morpho-functional tests (MTT and ALP) were performed. Cell actin cytoskeletal modification (fluorescence phalloidin staining) was also observed with confocal laser microscopy (CLSM). Data related to surface geometry and chemical properties, associated with evidence of high purity of all the tested materials (XRD and EDX), highlighted the elevated biocompatibility of tested implants and mini-implants. CLSM investigation confirmed osteoblast features of an active cell behavior able to fit cell to chemico-mechanical stimuli present at the bone/implant interface and suggests an effective implant/alveolar bone integration in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号