首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serum bactericidal activity of ciprofloxacin against strains of Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa for which MICs are similar (0.4 microgram/ml) was assessed with serum ultrafiltrates from five healthy volunteers receiving ciprofloxacin at 400 mg intravenously every 8 h. In addition, human serum was supplemented with ciprofloxacin to achieve a mean steady-state concentration (Css) that might be achieved in patients with renal failure, with total clearances of 3 to 4 liters/h (elimination rate constant, 0.08 h-1). The area under the inhibitory titer curve from 0 to 24 h (AUIC24) and the area under the bactericidal titer curve from 0 to 24 h (AUBC24) were both measured and predicted as the area under the concentration-time curve from 0 to 24 h (AUC24)/MIC and AUC24/MBC, respectively. We previously demonstrated that a breakpoint AUC24/MIC of 125 for ciprofloxacin had a significantly higher probability of treatment success than lower values, with 250 to 500 being optimal. Volunteer sera (mean Css, 1.55 to 2.48 micrograms/ml) achieved AUC24/MICs of 90 to 145. Supplemented serum (mean Css, 6.00 to 7.42 micrograms/ml) achieved AUC24/MICs of 350 to 450. Correlation coefficients for measured and predicted values of AUC24/MIC and AUC24/MBC were 0.826 and 0.941, respectively. The mean percent errors were not significantly different from zero for either AUIC24 or AUBC24 values (P > 0.1, P > 0.4). Time-kill curve studies were performed with low (1.55 to 2.48 micrograms/ml), intermediate (6.00 to 7.42 micrograms/ml), and high (15 to 25 micrograms/ml) concentrations of ciprofloxacin for the three organisms. At low concentrations (3 to 6 times the MIC) AUC24/MICs were <125 for two of five volunteers and the killing rates were considerably more rapid for P. aeruginosa than for S. pneumoniae or S.aureus. Intermediate concentrations (15 to 18 times the MIC) achieved optimal AUC24/MICs, and the killing rates were similar for the three organisms. A paradoxical decrease in the killing rate was seen at high concentrations (35 to 60 times the MIC). At clinically achievable concentrations, ciprofloxacin killed P. aeruginosa more rapidly than it did either S. pneumoniae or S. aureus.  相似文献   

2.
The purpose of this investigation was to evaluate the steady-state pharmacokinetics, pharmacodynamics, and safety of intravenous levofloxacin at 750 mg administered once daily combined with three different dosages of intravenous metronidazole (500 mg every 8 h [q8h], 1,000 mg q24h, and 1,500 mg q24h). Eighteen healthy adult subjects received all three combinations in a randomized, crossover fashion. Serial blood and urine samples were collected on the third day of each study period. The 24-h areas under the inhibitory (AUIC(0-24)) and bactericidal (AUBC(0-24)) curves of these three combination regimens were determined against clinical isolates of Bacteroides fragilis, Bacteroides thetaiotaomicron, Peptostreptococcus asaccharolyticus, and Escherichia coli. The mean concentrations of levofloxacin were not different between study periods and were similar to those previously published. The mean (+/- standard deviation) areas under the metronidazole plasma concentration-time curve (AUC(0-24)) for 1,500-mg q24h (338 +/- 105 mg.h/liter) and 500-mg q8h (356 +/- 68 mg.h/liter) regimens were not different (P > 0.05), but both were significantly higher than the 1,000-mg q24h AUC(0-24) (P < 0.05, 227 +/- 57 mg.h/liter). Mean (+/- standard deviation) total body clearance and renal clearance values were similar among the 500-mg q8h, 1,000-mg q24, and 1,500-mg q24h regimens (62 +/- 7, 67 +/- 13, and 67 +/- 14 and 11 +/- 3, 12 +/- 2, and 12 +/- 5 ml/min/1.73 m2, respectively). Levofloxacin at 750 mg q24h plus metronidazole at 500 mg q8h or 1,500 mg q24h resulted in similar AUIC(0-24) and AUBC(0-24) values with one exception: the AUIC(0-24) for the 1,500-mg q24h regimen against B. thetaiotamicron was significantly higher (P < 0.05) than those of the other regimens. Overall, the combination of levofloxacin at 750 mg once daily and metronidazole at 500 mg q8h or 1,500 mg q24h appeared to have greater AUIC(0-24) and AUBC(0-24) values than did the 1,000-mg q24h regimen. All combination regimens of levofloxacin and metronidazole were well tolerated, and no serious drug-related adverse effects were reported. The pharmacokinetic, safety, and pharmacodynamic data from our study suggest that a once-daily regimen of intravenous levofloxacin at 750 mg and metronidazole at 1,500 mg warrants further clinical investigation.  相似文献   

3.
Adequate concentrations of beta-lactam antibiotics in cerebrospinal fluid (CSF) are difficult to achieve for meningitis caused by drug-resistant Streptococcus pneumoniae. Ceftriaxone in dosages of 150 or 400 mg/kg of body weight per day, given in one or two doses, was used for the treatment of experimental highly cephalosporin-resistant (MIC and MBC, 4 microg/ml) pneumococcal meningitis. The bacterial killing rate (delta log10 CFU per milliliter per hour) and pharmacokinetic indices, including percentage of time the antibiotic concentration exceeded the MBC during a 24-h period (T>MBC), CSF peak concentration above the MBC, and area under the concentration-time curve from 0 to 24 h above MBC, were measured and correlated. By multiple stepwise regression, only T>MBC independently predicted the bacterial killing rate. There was a direct linear correlation between T>MBC in CSF and the bacterial killing rate during the first 24 h of therapy (r = 0.87; P = 0.004). Sterilization of CSF was achieved only when the T>MBC was 95 to 100%. In the first 24 h, the 200-mg/kg/12-h regimen, compared with the 400-mg/kg/24-h regimen, was associated with a greater T>MBC (87% +/- 10% versus 60% +/- 22%; P = 0.03) and greater bacterial killing rate (0.2 +/- 0.04 versus 0.13 +/- 0.07; P = 0.003), confirming that ceftriaxone exhibits time-dependent bactericidal activity. After 24 h, the T>MBC and the CSF sterilization rates were similar whether ceftriaxone was given once or twice daily.  相似文献   

4.
Ten patients were treated with conventional dosing (CD) and continuous-infusion (CI) vancomycin therapy in this prospective, randomized, crossover study. Patients were randomized to receive either CD or CI therapy for 2 consecutive days and then crossed over to receive the opposite regimen for 2 days. CD therapy consisted of 1 g of vancomycin every 12 h. CI therapy consisted of a 500-mg loading dose followed by 2 g infused over 24 h. Ten serum samples were obtained on the second day of each therapy for pharmacokinetic and pharmacodynamic analyses. Two clinical isolates of Staphylococcus aureus, one methicillin sensitive (MSSA 1199) and one methicillin resistant (MRSA 494), were chosen for pharmacodynamic evaluation of both regimens. The patient demographics (means +/- standard deviations [SD]) were as follows: sex, six males, four females; age, 36 +/- 11 years; and serum creatinine, 0.72 +/- 0.18 mg/dl. Mean pharmacokinetic parameters +/- SD for CD therapy were as follows: elimination rate constant, 0.16 +/- 0.07 h-1; half-life, 5.6 +/- 3.5 h; volume of distribution, 33.7 +/- 25 liters, 0.5 +/- 0.2 liters/kg; maximum concentration in serum, 53.4 +/- 19.3 micrograms/ml; and minimum concentration, 8.4 +/- 5.9 micrograms/ml. The steady-state concentration for CI was 20.2 +/- 11.1 micrograms/ml. Overall, both regimens resulted in the MIC being exceeded 100% of the time. The mean CD trough serum bactericidal titer (SBT) was 1:8, and the average CI SBTs were 1:16 for both isolates. Even though there was no statistically significant difference between CD trough and CI SBTs, the CI SBTs remained > 1:8 for 100% of the time versus 60% of the time for CD therapy. During CI therapy, 20 and 40% of the patients maintained SBTs of > 1:32 throughout the dosing interval for MSSA 1199 and MRSA 494, respectively. During CD therapy, however, only 10% of patients maintained SBTs of > 1:32 during the entire dosing interval for both isolates. The mean areas under the bactericidal titer-time curve (AUBC24s) +/- SD for MSSA 1199 were 528 +/- 263 for CD therapy and 547 +/- 390 for CI therapy. The mean AUBC24s +/- SD against MRSA 494 were 531 +/- 247 for CD and 548 +/- 293 for CI therapy. Similar to the AUBC24, the mean area under the concentration-time curve for a 24-h dosing interval divided by the MIC (AUC/MIC24) ratios +/- SD were 550.0 +/- 265.7 for CD and 552.6 +/- 373.4 for CI therapy, respectively. No statistically significant differences were found between any of the pharmacodynamic parameters for CD and CI therapy. In addition, no adverse effects with either CD or CI therapy were observed during the study. We conclude that CI and CD vancomycin therapy demonstrated equivalent pharmacodynamic activities. Although CI therapy was more likely to result in SBTs that remained above 1:8 for the entire regimen, the clinical impact of this result is unknown. Serum drug concentration variability was observed with both treatment regimens but to a lesser extent with CI administration. CI administration of vancomycin should be further evaluated to determine the clinical utility of this method of administration.  相似文献   

5.
Since beta-lactam antibiotics have concentration-independent killing, bacterial eradication is a function of the time the serum drug concentration remains above the drug's MIC (T > MIC). We compared the serum bactericidal titers (SBTs) of ceftazidime given by continuous infusion (CI) or by intermittent bolus dosing (BD) against two clinical isolates each of Pseudomonas aeruginosa and Escherichia coli to determine if CI would allow lower daily dosing while still providing equal bactericidal activity compared with BD. This was an open-labeled, randomized, steady-state, four-way crossover study with 12 healthy volunteers. The ceftazidime regimens were 1 g every 8 h (q8h) BD, 1 g q12h BD, 3 g over 24 h CI, and 2 g over 24 h CI. The areas under the bactericidal curves were calculated by the trapezoidal rule using the reciprocal of the SBT. For all organisms the areas under the bactericidal curves for intermittent versus the CI regimens were the same for equal doses (P > 0.05). For both strains of E. coli all four regimens provided SBTs of > or = 1:2 over the dosing interval and 100% T > MIC. The 1-g q8h BD and q12h BD regimens provided T > MIC of 82 and 52%, respectively, for both P. aeruginosa isolates (MICs, 4 micrograms/ml). In comparison, the 2- and 3-g CI regimens always maintained SBTs of > or = 1:2 and T > MIC over the 24-h period as serum drug concentrations were 12.8 +/- 3.0 and 18.2 +/- 4.5 micrograms/ml, respectively. CI optimizes the pharmacodynamic and pharmacoeconomic profile of ceftazidime by providing adequate antibacterial activity over the 24-h dosing period with a reduction in the total daily dose of the antimicrobial agent.  相似文献   

6.
Serum bactericidal activity against a penicillin-susceptible strain and a penicillin-resistant strain of Streptococcus pneumoniae (amoxicillin and cefotaxime MICs, 0.001 and 1 microg/ml, respectively, and MBCs, 0.01 and 2 microg/ml, respectively) was measured in 12 healthy volunteers who each received an oral 875-mg dose of amoxicillin and an intramuscular 1-g dose of cefotaxime in a crossover fashion. The areas under the bactericidal activity-time curves for the two strains were found to be similar for both antibiotics despite the significantly higher (P < 0.002) AUC/MIC and peak level/MIC values for cefotaxime.  相似文献   

7.
The purpose of this study was to evaluate the cerebrospinal fluid (CSF) pharmacodynamics of a new fluoroquinolone, gatifloxacin (AM-1155), in experimental pneumococcal meningitis. The penetration of gatifloxacin into CSF, calculated as the percentage of the area under the concentration-time curve (AUC) in CSF over the AUC in blood, was 46 to 56%. Gatifloxacin showed linear pharmacokinetics in CSF, and 1 h after intravenous dosages of 7.5, 15, or 30 mg/kg of body weight, peak CSF concentrations were 0.46 ± 0.08 (mean ± standard deviation), 0.94 ± 0.16, and 1.84 ± 0.5 μg/ml, respectively. The elimination half-life of gatifloxacin in CSF was 3.8 to 5.6 h (compared with 2.7 to 3.2 h in blood). There was a significant interrelationship among the highest measured values of gatifloxacin in blood and CSF/minimal bactericidal concentration (Cpeak/MBC), the time antibiotic concentrations exceeded the MBC (T > MBC), and AUC/MBC (r = 0.94); in single-dose experiments, each correlated significantly with the bacterial killing rate. Divided-dose regimens, resulting in greater T > MBC values but lower Cpeak/MBC ratios, were more effective in terms of bacterial clearance compared with corresponding single-dose regimens. Gatifloxacin therapy was as effective as currently recommended regimens (e.g., a combination of ceftriaxone and vancomycin) against this highly cephalosporin-resistant pneumococcal strain. The bactericidal activity of gatifloxacin in CSF was closely related to the AUC/MBC ratio, but maximal activity was achieved only when drug concentrations exceeded the MBC for the entire dosing interval.  相似文献   

8.
A novel, in vitro, pharmacodynamic comparison of single and divided daily dosing regimens of aminoglycosides is described. Experiments were conducted to evaluate the impact of gentamicin and tobramycin concentration on the time required for the MICs for five Pseudomonas aeruginosa strains to revert to their original values (MIC reversion time [MRT]) following single and multiple 2-h aminoglycoside exposures to 8 and 24 mg/liter. Single 2-h aminoglycoside exposures to 8 mg/liter produced culture MRTs (gentamicin, 21.5 +/- 4.0 h; tobramycin, 22.3 +/- 2.8 h) that were significantly (P < 0.05) shorter than those measured following identical exposures to 24 mg/liter (gentamicin, 28.9 +/- 3.8 h; tobramycin, 26.8 +/- 3.1 h). However, three sequential 2-h exposures to 8 mg/liter, one exposure every 8 h, produced MRTs following the third exposure (gentamicin, 68.1 +/- 5.2 h; tobramycin, 77.8 +/- 7.8 h) that were significantly longer (P < 0.005) than those determined following three 2-h exposures to 24 mg/liter, one exposure every 24 h (gentamicin, 36.1 +/- 3.0 h; tobramycin, 34.5 +/- 3.0 h). In addition, the once-daily exposure regimen to 24 mg/liter consistently produced cultures with significantly (P < 0.005) higher aminoglycoside concentration/MIC ratios compared with those for cultures reexposed to 8 mg/liter once every 8 h. These data support the concept of once-daily aminoglycoside dosing.  相似文献   

9.
When piperacillin/tazobactam has been used to treat hospitalized patients with serious infections, including nosocomial pneumonia caused by Pseudomonas aeruginosa, it has usually been dosed at 3.375 g q4h to provide serum concentrations above commonly encountered organisms' MICs (T > MIC) for at least 40-50% of the dosing interval. Pharmacodynamic principles suggest that a similar efficacy can be realized with extended dosing intervals when a larger dose (e.g. 4.5 g q6h) is administered, which was the objective of this study. Twelve healthy volunteers, 29.4 +/- 8.9 years of age, were enrolled in this multiple-dose, open-labeled, randomized, two-period crossover study. Blood samples were collected after the third dose and concentrations of piperacillin/tazobactam were determined with a validated HPLC method. Pharmacokinetic profiles were determined by noncompartment analysis. T > MIC of piperacillin was calculated for a range of MIC values. Piperacillin/tazobactam was well tolerated in 11 subjects who completed both regimens. The C(max), T(1/2), K, and AUC of P were significantly different according to a paired t test (p < 0.05) between two study regimens. Significant differences (p < 0.05) in tazobactam regimens were noted for C(max), and AUC. The piperacillin/tazobactam regimen of 4.5 g q6h achieved a 44% T > MIC for MIC values of < or = 16 microg/ml, while the 3.375-gram q4h regimen achieved 42% T > MIC, for MIC values of < or = 32 microg/ml. Dosage regimens for treating serious infections can be extended safely and effectively to 4.5 g q6h and obtain at least 40-50% T > MIC in the coverage of pathogens implicated with serious infections, including P. aeruginosa.  相似文献   

10.
To compare the antipseudomonal efficacy of doripenem and imipenem as well as their abilities to restrict the enrichment of resistant Pseudomonas aeruginosa, multiple-dosing regimens of each drug were simulated at comparable values of the cumulative percentages of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (T(>MIC)) and ratios of the 24-hour area under the curve (AUC(24)) to the MIC. Three clinical isolates of ciprofloxacin-resistant P. aeruginosa (MIC of doripenem, 1 μg/ml; MICs of imipenem, 1, 2, and 2 μg/ml) were exposed to thrice-daily doripenem or imipenem for 3 days at AUC(24)/MIC ratios of from 50 to 170 h (doripenem) and from 30 to 140 h (imipenem). The antimicrobial effects for susceptible and resistant subpopulations of bacteria were expressed by the areas between control growth and time-kill curves (I(E)s) and areas under the bacterial mutant concentration curves (AUBC(M)s), respectively. With each antibiotic, the I(E) and AUBC(M) versus log AUC(24)/MIC relationships were bacterial strain independent. At similar AUC(24)/MIC ratios, doripenem was slightly less efficient than imipenem against susceptible and resistant subpopulations of bacteria. However, doripenem appeared to be somewhat more efficient than imipenem at clinically achievable AUC(24)s related to the means of the MICs for the three studied strains and had higher antimutant potentials for two of the three strains.  相似文献   

11.
For methicillin-resistant Staphylococcus aureus (MRSA) infections, data suggest that the clinical response is significantly better if the total vancomycin area under the concentration-time curve (AUC)/MIC ratio is ≥400. While the AUC/MIC ratio is the accepted pharmacokinetic/pharmacodynamic (PK/PD) index for vancomycin, this target has been achieved using multiple daily doses. We are unaware of a systematically designed dose fractionation study to compare the bactericidal activity of once-daily administration to that of traditional twice-daily administration. A dose fractionation study was performed with vancomycin in an in vitro hollow-fiber infection model against an MRSA USA300 strain (MIC of 0.75 μg/ml) using an inoculum of ~10(6) CFU/ml. The three vancomycin regimens evaluated for 168 h were 2 g every 24 h (q24h) as a 1-h infusion, 1 g q12h as a 1-h infusion, and 2 g q24h as a continuous infusion. Free steady-state concentrations (assuming 45% binding) for a total daily AUC/MIC ratio of ≥400 were simulated for all regimens. A validated liquid chromatography-tandem mass spectrometry method was used to determine vancomycin concentrations. Although once-daily and twice-daily dosage regimens exhibited total trough concentrations of <15 μg/ml, all regimens achieved similar bactericidal activities between 24 and 168 h and suppressed the amplification of nonsusceptible subpopulations. No colonies were found on agar plates with 3× MIC for any of the treatment arms. Overall, the results suggest that once-daily vancomycin administration is feasible from a PK/PD perspective and merits further inquiry in the clinical arena.  相似文献   

12.
Seventy-four acutely ill patients were treated with intravenous ciprofloxacin at dosages ranging between 200 mg every 12 h and 400 mg every 8 h. A population pharmacokinetic-pharmacodynamic analysis relating drug exposure (and other factors) to infectious outcome was performed. Plasma samples were obtained and assayed for ciprofloxacin by high-performance liquid chromatography. Samples from patients were frequently cultured so that the day of bacterial eradication could be determined. The pharmacokinetic data were fitted by iterative two-stage analysis, assuming a linear two-compartment model. Logistic regression was used to model ciprofloxacin exposure (and other potential covariates) versus the probabilities of achieving clinical and microbiologic cures. The same variables were also modelled versus the time to bacterial eradication by proportional hazards regression. The independent variables considered were dose, site of infection, infecting organism and the MIC for it, percent time above the MIC, peak, peak/MIC ratio, trough, trough/MIC ratio, 24-h area under the concentration-time curve (AUC), AUC/MIC ratio (AUIC), presence of other active antibacterial agents, and patient characteristics. The most important predictor for all three measures of ciprofloxacin pharmacodynamics was the AUIC. A 24-h AUIC of 125 SIT-1.h (inverse serum inhibitory titer integrated over time) was found to be a significant breakpoint for probabilities of both clinical and microbiologic cures. At an AUIC below 125 (19 patients), the percent probabilities of clinical and microbiologic cures were 42 and 26%, respectively. At an AUIC above 125 (45 patients), the probabilities were 80% (P < 0.005) and 82% (P < 0.001), respectively. There were two significant breakpoints in the time-to-bacterial-eradication data. At an AUIC below 125 (21 patients), the median time to eradication exceeded 32 days; at an AUIC of 125 to 250 (15 patients), time to eradication was 6.6 days: and at AUIC above 250 (28 patients), the median time to eradication was 1.9 days (groups differed; P < 0.005). These findings, when combined with pharmacokinetic data reported in the companion article, provide the rationale and tools needed for targeting the dosage of intravenous ciprofloxacin to individual patients' pharmacokinetics and their bacterial pathogens' susceptibilities. An a priori dosing algorithm (based on MIC, patient creatine clearance and weight, and the clinician-specified AUIC target) was developed. This approach was shown, retrospectively, to be more precise than current guidelines, and it can be used to achieve more rapid bacteriologic and clinical responses to ciprofloxacin, as a consequence of targeting the AUIC.  相似文献   

13.
Garenoxacin is a new des-F(6)-quinolone with broad-spectrum activity against both gram-positive cocci and gram-negative bacilli. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of garenoxacin and determine which pharmacokinetic-pharmacodynamic (PK-PD) parameter best correlated with efficacy. Serum drug levels following three fourfold-escalating single-dose levels of garenoxacin were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were determined after doses of 16 and 64 mg/kg of body weight. Mice had 10(6.5) to 10(6.7) CFU of Streptococcus pneumoniae strain ATCC 10813 or Staphylococcus aureus strain ATCC 33591 per thigh when they were treated for 24 h with garenoxacin at a dose of 4 to 128 mg/kg/day fractionated for 3-, 6-, 12-, and 24-hour dosing regimens. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the measurement of CFU/thigh at 24 h. Pharmacokinetic studies yielded peak/dose values of 0.2 to 0.3, area under the concentration-time curve (AUC)/dose values of 0.1 to 0.5, and half-lives of 0.7 to 1.6 h. Garenoxacin produced in vivo PAEs of 1.4 to 8.2 h with S. pneumoniae ATCC 10813, 7.6 to >12.4 h with S. aureus ATCC 25923, and 0 to 1.5 h with Klebsiella pneumoniae ATCC 43816. The 24-h AUC/MIC ratio was the PK-PD parameter that best correlated with efficacy (R2=71 to 90% for the two organisms compared with 43 to 56% for the peak/MIC ratio and 47 to 75% for percent time above the MIC [% T>MIC]). In subsequent studies we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC ratio needed for efficacy of garenoxacin varied among pathogens (including resistant strains). Mice had 10(5.9) to 10(7.2) CFU of 6 strains of S. aureus (2 methicillin resistant), 11 strains of S. pneumoniae (5 penicillin susceptible, 1 penicillin intermediate, and 5 penicillin resistant, and of the resistant strains, 3 were also ciprofloxacin resistant), and 4 gram-negative strains per thigh when treated for 24 h with 1 to 64 mg of garenoxacin per kg every 12 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a net bacteriostatic effect over 24 h. MICs ranged from 0.008 to 4 microg/ml. The free drug 24-h AUC/MIC ratios for each static dose (2.8 to 128 mg/kg/day) varied from 8.2 to 145. The mean 24-h AUC/MIC ratios +/- standard deviations for S. pneumoniae, S. aureus, and gram-negative strains were 33 +/- 18, 81 +/- 37, and 33 +/- 30, respectively. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC ratio required for efficacy.  相似文献   

14.
The objective of this study was to determine the steady-state plasma and intrapulmonary pharmacokinetic parameters of orally administered cethromycin in healthy volunteers. The study design included administering 150 or 300 mg of cethromycin once daily to 25 or 35 healthy adult subjects, respectively, for a total of five doses. Standardized and timed bronchoalveolar lavage (BAL) was performed after the last dose. Blood was obtained for drug assay prior to the first and last dose, at multiple time points following the last dose, and at the time of BAL. Cethromycin was measured in plasma, BAL, and alveolar cell (AC) by using a combined high-performance liquid chromatography-mass spectrometric technique. Plasma, epithelial lining fluid (ELF), and AC pharmacokinetics were derived by noncompartmental methods. C(max)/90% minimum inhibitory concentration (MIC(90)) ratios, area under the concentration-time curve (AUC)/MIC(90) ratios, intrapulmonary drug exposure ratios, and percent time above MIC(90) during the dosing interval (%T > MIC(90)) were calculated for recently reported respiratory pathogens. The kinetics were nonlinear, i.e., not proportional to dose. In the 150-mg-dose group, the C(max) (mean +/- standard deviations), AUC(0-24), and half-life for plasma were 0.181 +/- 0.084 microg/ml, 0.902 +/- 0.469 microg. h/ml, and 4.85 +/- 1.10 h, respectively; for ELF the values were 0.9 +/- 0.2 microg/ml, 11.4 microg. h/ml, and 6.43 h, respectively; for AC the values were 12.7 +/- 6.4 microg/ml, 160.8 microg. h/ml, and 10.0 h, respectively. In the 300-mg-dose group, the C(max) (mean +/- standard deviations), AUC(0-24), and half-life for plasma were 0.500 +/- 0.168 microg/ml, 3.067 +/- 1.205 microg. h/ml, and 4.94 +/- 0.66 h, respectively; for ELF the values were 2.7 +/- 2.0 microg/ml, 24.15 microg. h/ml, and 5.26 h, respectively; for AC the values were 55.4 +/- 38.7 microg/ml, 636.2 microg. h/ml, and 11.6 h, respectively. We concluded that the C(max)/MIC(90) ratios, AUC/MIC(90) ratios, %T > MIC(90) values, and extended plasma and intrapulmonary half-lives provide a pharmacokinetic rationale for once-daily administration and are favorable for the treatment of cethromycin-susceptible pulmonary infections.  相似文献   

15.
Doripenem is a new broad-spectrum carbapenem with activity against a range of gram-negative pathogens, including nonfermenting bacteria such as Pseudomonas aeruginosa. The objective of this study was to evaluate simulated human exposures to doripenem using a neutropenic murine thigh infection model against 24 clinical P. aeruginosa isolates with a wide range of MICs. Dosing regimens in mice were designed to approximate the free time above MIC (fT>MIC) observed with 500 mg doripenem every 8 h given as either a 1-h or 4-h intravenous infusion in humans. Maximal antibacterial killing was associated with doripenem exposures of > or =40% fT>MIC; bacteriostatic effects were noted at approximately 20% fT>MIC. The simulated 1-h infusion provided bactericidal effects for isolates with MICs of < or =2 microg/ml, while variable killing was noted for isolates with MICs of 4 to 8 microg/ml and regrowth for isolates with an MIC of 16 microg/ml. The 4-h infusion regimen displayed similar killing for isolates with MICs of < or =2 microg/ml and enhanced activity for two of the four isolates with an MIC of 4 microg/ml. Given that the 4-h regimen yields negligible fT>MIC for MICs of > or =8 microg/ml, regrowth was generally observed. Simulated doses of 500 mg doripenem every 8 h infused over 1 h demonstrated antibacterial killing for P. aeruginosa isolates with MICs of 0.125 to 8 microg/ml. Exposures of > or =40% fT>MIC resulted in the most pronounced bactericidal effects, while killing was variable for 20 to 30% fT>MIC. Infusing doses over 4 h enhanced efficacy against selected pseudomonal isolates with an MIC of 4 microg/ml.  相似文献   

16.
The purpose of this experiment was to evaluate the pharmacokinetics and serum bactericidal titers (SBTs) of daptomycin alone and in combination with gentamicin against strains of Staphylococcus aureus and enterococci to determine if there might be any benefit to the addition of the aminoglycoside. A multiple-dose, randomized crossover study was performed in 11 healthy volunteers to evaluate the steady-state pharmacokinetic profile of 6 mg/kg of body weight daptomycin once daily with or without 1 mg/kg gentamicin every 8 h. SBTs were determined against clinical isolates of nosocomial (MRSA 494) and community-acquired (CA-MRSA 44) methicillin-resistant S. aureus, vancomycin-susceptible Enterococcus faecalis (VSEF 49452), vancomycin-resistant Enterococcus faecium (VREF 80), and quality control strains of methicillin-susceptible S. aureus (ATCC 29213) and vancomycin-susceptible E. faecalis (ATCC 29212). Enhancement of bactericidal activity was evaluated by calculating and comparing the areas under the bactericidal curve (AUBC) for each dosing regimen against each isolate. The area under the concentration-time curve from 0 to 24 h and clearance for daptomycin alone were 645 +/- 91 microg.h/ml and 9.47 +/- 1.4 mg/h/kg, respectively, compared with 642 +/- 69 microg.h/ml and 9.45 +/- 1.0 mg/h/kg for daptomycin plus gentamicin. Daptomycin alone displayed sustained bactericidal activity against five of the six isolates over the entire 24-h dosing interval; bactericidal activity was maintained for 8 h against VREF 80. Mean AUBCs for daptomycin alone ranged from 935 to 1,263 and 36 to 238 against staphylococcal and enterococcal isolates, respectively, compared with 902 to 972 and 34 to 213 against staphylococci and enterococci when coadministered with gentamicin. The results of this study suggest that the addition of gentamicin does not alter the pharmacokinetic profile or enhance the bactericidal activity of daptomycin against staphylococcal or enterococcal isolates.  相似文献   

17.
BACKGROUND: Although intermittent bolus dosing is currently the standard of practice for many antimicrobial agents, beta-lactams exhibit time-dependent bacterial killing. Maximizing the time above the minimum inhibitory concentration (MIC) for a pathogen is the best pharmacodynamic predictor of efficacy. Use of a continuous infusion has been advocated for maximizing the time above the MIC compared with intermittent bolus dosing. OBJECTIVE: This study compared the pharmacokinetics and pharmacodynamics of piperacillin/tazobactam when administered as an intermittent bolus versus a continuous infusion against clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae. METHODS: Healthy volunteers were randomly assigned to receive piperacillin 3 g/ tazobactam 0.375 g q6h for 24 hours, piperacillin 6 g/tazobactam 0.75 g continuous infusion over 24 hours, and piperacillin 12 g/tazobactam 1.5 g continuous infusion over 24 hours. Five clinical isolates each of P aeruginosa and K pneumoniae were used for pharmacodynamic analyses. RESULTS: Eleven healthy subjects (7 men, 4 women; mean +/- SD age, 28 +/- 4.7 years) were enrolled. Mean steady-state serum concentrations of piperacillin were 16.0 +/- 5.0 and 37.2 +/- 6.8 microg/mL with piperacillin 6 and 12 g, respectively. Piperacillin/tazobactam 13.5 g continuous infusion (piperacillin 12 g/tazobactam 1.5 g) was significantly more likely to produce a serum inhibitory titer > or = 1:2 against P aeruginosa at 24 hours than either the 6.75 g continuous infusion (piperacillin 6 g/tazobactam 0.75 g) or 3.375 g q6h (piperacillin 3 g/ tazobactam 0.375 g). There were no statistical differences against K pneumoniae between regimens. The median area under the inhibitory activity-time curve (AUIC) for the 13.5 g continuous infusion was higher than that for 3.375 g q6h and the 6.75 g continuous infusion against both P aeruginosa and Kpneumoniae (P < or = 0.007, 13.5 g continuous infusion and 3.375 g q6h vs 6.75 g continuous infusion against K pneumoniae). The percentage of subjects with an AUIC > or = 125 was higher with both 3.375 g q6h and the 13.5 g continuous infusion than with the 6.75 g continuous infusion against P aeruginosa and K pneumoniae (both, P < 0.001 vs 6.75 g continuous infusion against K pneumoniae). CONCLUSIONS: Piperacillin 12 g/tazobactam 1.5 g continuous infusion consistently resulted in serum concentrations above the breakpoint for Enterobacteriaceae and many of the susceptible strains of P aeruginosa in this study in 11 healthy subjects. Randomized controlled clinical trials are warranted to determine the appropriate dose of piperacillin/tazobactam.  相似文献   

18.
A rabbit model of pneumococcal meningitis was used to examine the importance of bactericidal vs. bacteriostatic antimicrobial agents in the therapy of meningitis 112 animals were infected with one of two strains of type III Streptococcus pneumoniae. Both strains were exquisitely sensitive to ampicillin, minimum inhibitory concentration (MIC)/minimum bactericidal concentration (MBC)<0.125 μg/ml. The activity of chloramphenicol against the two strains varied: strain1—MIC 2 μg/ml, MBC 16 μg/ml; strain2—MIC 1 μg/ml, MBC 2 μg/ml. Animals were treated with either ampicillin or chloramphenicol in dosages that achieved a peak bactericidal effect in cerebrospinal fluid (CSF) for ampicillin against both strains. Two different dosages were used for chloramphenicol. The first dosage achieved a peak CSF concentration of 4.4±1.1 μg/ml that produced a bacteriostatic effect against strain1 and bactericidal effect against strain2. The second dosage achieved a bactericidal effect against both strains (mean peak CSF concentration 30.0 μg/ml). All animals were treated intramuscularly three times a day for 5 d. CSF was sampled daily and 3 d after discontinuation of therapy for quantitative bacterial cultures. Results demonstrate that only antimicrobial therapy that achieved a bactericidal effect in CSF was associated with cure. Over 90% of animals treated with one of the bactericidal regimens (i.e., animals in which the bacterial counts in CSF dropped >5 log10 colony-forming units [cfu]/ ml after 48 h) had sterile CSF after 5 d of treatment. On the other hand, the regimen that achieved bacteriostatic concentrations (CSF drug concentrations between the MIC and MBC) produced a drop of 2.4 log10 cfu/ml by 48 h; however, none of the animals that survived had sterile CSF after 5 d. These studies clearly demonstrate in a strictly controlled manner that maximally effective antimicrobial therapy of experimental pneumococcal meningitis depends on achieving a bactericidal effect in CSF.  相似文献   

19.
The present study, using an in vitro model, assessed telithromycin pharmacodynamic activity at simulated clinically achievable free-drug concentrations in serum (S) and epithelial lining fluid (ELF) against efflux (mefE)-producing macrolide-resistant Streptococcus pneumoniae. Two macrolide-susceptible (PCR negative for both mefE and ermB) and 11 efflux-producing macrolide-resistant [PCR-positive for mefE and negative for ermB) S. pneumoniae strains with various telithromycin MICs (0.015 to 1 microg/ml) were tested. The steady-state pharmacokinetics of telithromycin were modeled, simulating a dosage of 800 mg orally once daily administered at time 0 and at 24 h (free-drug maximum concentration [C(max)] in serum, 0.7 microg/ml; half-life [t(1/2)], 10 h; free-drug C(max) in ELF, 6.0 microg/ml; t(1/2), 10 h). Starting inocula were 10(6) CFU/ml in Mueller-Hinton Broth with 2% lysed horse blood. Sampling at 0, 2, 4, 6, 12, 24, and 48 h assessed the extent of bacterial killing (decrease in log(10) CFU/ml versus initial inoculum). Free-telithromycin concentrations in serum achieved in the model were C(max) 0.9 +/- 0.08 microg/ml, area under the curve to MIC (AUC(0-24 h)) 6.4 +/- 1.5 microg . h/ml, and t(1/2) of 10.6 +/- 0.6 h. Telithromycin-free ELF concentrations achieved in the model were C(max) 6.6 +/- 0.8 microg/ml, AUC(0-24 h) 45.5 +/- 5.5 microg . h/ml, and t(1/2) of 10.5 +/- 1.7 h. Free-telithromycin S and ELF concentrations rapidly eradicated efflux-producing macrolide-resistant S. pneumoniae with telithromycin MICs up to and including 0.25 microg/ml and 1 microg/ml, respectively. Free-telithromycin S and ELF concentrations simulating C(max)/MIC > or = 3.5 and AUC(0-24 h)/MIC > or = 25 completely eradicated (> or =4 log(10) killing) macrolide-resistant S. pneumoniae at 24 and 48 h. Free-telithromycin concentrations in serum simulating C(max)/MIC > or = 1.8 and AUC(0-24 h)/MIC > or = 12.5 were bacteriostatic (0.1 to 0.2 log(10) killing) against macrolide-resistant S. pneumoniae at 24 and 48 h. In conclusion, free-telithromycin concentrations in serum and ELF simulating C(max)/MIC > or = 3.5 and AUC(0-24 h)/MIC > or = 25 completely eradicated (> or =4 log(10) killing) macrolide-resistant S. pneumoniae at 24 and 48 h.  相似文献   

20.
A two-compartment in vitro pharmacokinetic-pharmacodynamic model, with full computer-controlled devices, was used to accurately simulate human plasma pharmacokinetic profiles after multidose oral regimens of ciprofloxacin (750 mg every 12 h) and moxifloxacin (400 mg every 24 h) during 48 h. Pharmacodynamics of these drugs was investigated against three quinolone-susceptible strains of Stenotrophomonas maltophilia (MICs of ciprofloxacin and moxifloxacin of 0.5 to 2 and 0.0625 to 0.5 microg/ml, respectively). The first dose of ciprofloxacin and moxifloxacin reduced the bacterial count by 1 and 2 log CFU/ml, respectively, prior to a bacterial regrowth that reached the plateau value of the growth control curve at 13 to 24 h versus 24 to 36 h and persisted despite repeated administration of both drugs. The surviving bacterial cells were quinolone-resistant mutants (2 to 128 times the MIC) that exhibited cross-resistance to unrelated antibiotics. Their antibiotic resistance probably resulted from the overproduction of different multidrug resistance efflux system(s). C(max)/MIC and area under the concentration-time curve from 0 to 24 h (AUC(0-24))/MIC values were at least threefold higher for moxifloxacin than for ciprofloxacin. Moreover, integral parameters of ciprofloxacin and moxifloxacin, in particular the area under the killing and regrowth curve from 0 to 48 h (AUBC(0-48), 342.3 to 401.3 versus 295.2 to 378.7 h x log CFU/ml, respectively) and the area between the control growth curve and the killing and regrowth curve from 0 to 48 h (ABBC(0-48), 40.4 to 101.1 versus 72.9 to 144.7 h x log CFU/ml, respectively), demonstrated a better antibacterial effect of moxifloxacin than ciprofloxacin on S. maltophilia. However, selection of resistant mutants by both fluoroquinolones, although delayed with moxifloxacin, emphasizes the need to use maximal dosages and combined therapy in the treatment of systemic S. maltophilia infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号