首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex three-way t(8;18;16)(p11;q21;p13) was detected in a 15-month-old patient with acute myeloid leukemia (AML). The patient had typical clinical manifestation and bone marrow features of AML subtype M5b associated with t(8;16)(p11;p13). Therefore, we believe that the t(8;18;16) is a new variant of t(8;16) related to AML M4/M5. We also review other t(8;16)(p11;p13) variants reported in the literature.  相似文献   

2.
Acquired chromosome abnormalities in patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are among the most valuable determinants of diagnosis and prognosis. In search of new recurrent balanced translocations, we reviewed the Cancer and Leukemia Group B (CALGB) cytogenetics database containing pretreatment and relapse karyotypes of 4,701 adults with AML and 565 with MDS who were treated on CALGB trials. We identified all cases with balanced structural rearrangements occurring as a sole abnormality or in addition to one other abnormality, excluded abnormalities known to be recurrent, and then reviewed the literature to determine whether any of what we considered unique, previously unknown abnormalities had been reported. As a result, we identified seven new recurrent balanced translocations in AML or MDS: t(7;11)(q22;p15.5), t(10;11)(q23;p15), t(2;12)(p13;p13), t(12;17)(p13;q12), t(2;3)(p21;p21), t(5;21)(q31;q22), and t(8;14)(q24.1;q32.2), and additionally, t(10;12)(p11;q15), a new translocation in AML previously reported in a case of acute lymphoblastic leukemia. Herein, we report hematologic and clinical characteristics and treatment outcomes of patients with these newly recognized recurrent translocations. We also report 52 unique balanced translocations, together with the clinical data of patients harboring them, which to our knowledge have not been previously published. We hope that once the awareness of their existence is increased, some of these translocations may become recognized as novel recurring abnormalities. Identification of additional cases with both the new recurrent and the unique balanced translocations will enable determination of their prognostic significance and help to provide insights into the mechanisms of disease pathogenesis in patients with these rare abnormalities. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Quantitative acute leukemia cytogenetics.   总被引:3,自引:0,他引:3  
Using literature data on cytogenetic abnormalities in 3,612 cases of acute myeloid leukemia (AML) and 1,551-cases of acute lymphocytic leukemia (ALL), we have attempted to quantify the information value of finding the typical ALL- and AML-associated chromosome aberrations. Sensitivity, specificity, and predictive value of finding or not finding a given aberration were calculated for several diagnostic scenarios: for the differential diagnosis between ALL and AML when the patient is known to have acute leukemia, for the differential diagnosis among AML FAB subtypes in a patient with known AML, and for the differential diagnosis between ALL FAB subtypes in a patient with known ALL. The specificities were generally high, close to 1. The highest sensitivities in AML were found for +8, t(15;17)(q22;q11), t(8;21)(q22;q22), and -7 (all greater than 0.1), and in ALL for t(9;22)(q34;q11), t(4;11)(q21;q23), and +21 (again all greater than 0.1). In the AML subtypes, the highest sensitivities were 0.89 for t(15;17)(q22;q11) in M3, followed by 0.40 for t(8;21)(q22;q22) in M2, 0.30 for inv(16)(p13q22)/del(16)(q22)/t(16;16)(p13;q22) in M4, and 0.16 for t(9;11)(p21;q23) in M5. In the ALL subtypes, the highest sensitivities were 0.71 and 0.11 for t(8;14)(q24;q32) and t(8;22)(q24;q11), respectively, in L3, 0.23 for t(9;22)(q34;q11) in L2, and 0.18 and 0.13 for +21 and t(4;11)(q21;q23), respectively, in L1. The highest (1.0) positive predictive values in the AML versus ALL comparison were found for t(1;3)(p36;q21), inv(3)(q21q26), t(6;9)(p23;q34), t(7;11)(p15;p15), t(8;16)(p11;p13), t(8;21)(q22;q22), t(15;17)(q22;q11), and, as sole anomalies, for +4, +9, and +11. In the reverse comparison, ALL versus AML, positive predictive values of 1.0 were found for t(1;14)(p32-34;q11), dup(I)(q12-21q31-32), t(2;8)(p12;q24), t(8;14)(q24;q32), t/dic(9;12)(p11-12;p11-13), t(10;14)(q24;q11), and t(11;14)(p13;q11). Among the AML subgroups, the highest predictive values were: 1.0 for M3 if t(15;17), 0.91 for M2 if t(8;21), 0.86 for M4 if inv/del(16)/t(16;16), and 0.82 for M5 if t(9;11). Among the ALL subtypes, positive predictive values of greater than 0.8 were reached only for the L3-associated aberrations t(2;8) (1.0), t(8;14) (0.95), t(8;22) (0.87), and dup(I) (0.80). The highest negative predictive values were in AML 0.98 that the disease is not M3 if t(15;17) is not found, and in ALL 0.96 that the patient does not have L3 if a t(8;14) is not detected.  相似文献   

4.
Granulocytic sarcomas (GS) are tumor masses of immature myeloid cells presenting at an extramedullary site, mainly the skin, bone, and lymph node. They are often associated with acute myeloid leukemia (AML) with monoblastic or myelomonocytic differentiation, including either AML M2 with t(8;21)(q22;q22) or AML M4Eo with inv(16)(p13q22). We present a case diagnosed with GS associated with AML M4 that presented a normal karyotype with conventional cytogenetic analysis. Although the myeloblasts did not show the inv(16)(p13q22) (CBFB/MYH11), a gain of multiple copies of the CBFB gene was detected with fluorescence in situ hybridization analysis. To our knowledge, no cases with this rare genetic anomaly have been previously described.  相似文献   

5.
The t(2;11)(p21;q23) is a rare recurrent aberration observed in myelodysplastic syndrome (MDS) and acute myeloblastic leukemia (AML). It has been suggested that t(2;11) is specifically associated with a deletion of the long arm of chromosome 5 (5q). A 63-year-old man was initially diagnosed as AML with del(5)(q23q32) as a sole abnormality. At relapse, t(2;11;17)(p21;q23;q11) in association with del(5q) appeared in 14 of 20 cells by G-banding. Spectral karyotyping confirmed three derivative chromosomes, der(11)t(2;11), der(17)t(11;17), and der(2)t(2;17). Fluorescence in situ hybridization analysis with a probe for MLL demonstrated that the breakpoint at 11q23 was telomeric to the MLL gene. Nine of 10 reported cases with t(2;11) and del(5q) had MDS including 5q- syndrome and four of them evolved to AML, as observed in the present case. Our results indicated that t(2;11;17) was a secondary genetic change, which appeared during disease progression after del(5q) was observed. Furthermore, considering another reported case, the MLL gene seems to be not involved in the pathogenesis of MDS/AML with t(2;11) and del(5q).  相似文献   

6.
A case of acute myelocytic leukemia (AML) M5 subtype (French-American-British classification), in a 13-year-old girl showed the abnormal karyotype 46,XX,t(11;17)(q23;q21) in all bone marrow cells analyzed. Rearrangements involving 11q23 are frequent in cases of AML M5 and often involve the MLL gene. Nevertheless, t(11;17)(q23;q21) is very rare in this type of leukemia. In acute promyelocytic leukemia, the RARalpha gene, located at 17q21, is involved in almost all cases. Fluorescence in situ hybridization studies revealed a deletion of the C-terminal part of the MLL gene and a translocation of the RARalpha gene on the derivative chromosome 11, proximal to the remaining part of the MLL gene. However, hybridization with the LSI RARA dual color break-apart rearrangement probe showed that the RARalpha gene was not rearranged in this translocation. This is the first study reporting a t(11;17)(q23;q21) with a deletion distal to MLL gene exon 6 in a case of AML M5. Furthermore, this is the second study that strongly suggests the implication of a gene proximal and close to the RARalpha locus in a case of AML M5. According to these results, the discovery of new fusion partner genes of MLL and the precise characterization of t(11;17) will be important for the understanding of neoplastic cell differentiation in AML M5.  相似文献   

7.
8.
9.
We describe a case of an acute myelogenous leukemia (AML) associated with t(1;11) (q23;p15), which is a novel simple variant translocation of t(7;11)(p15;p15). The patient was a Japanese man who had a history of non-Hodgkin lymphoma (NHL) and received MACOP-B combination chemotherapy. Fifteen months after the completion of the treatment, the patient developed AML (M2), which was regarded as a therapy-related leukemia. Cytogenetic study of bone marrow cells showed t(1;11). Although he achieved complete remission by combination chemotherapy, a relapse of NHL and gastric cancer were revealed in the course of the consolidation chemotherapy for AML. The NHL was considered a histological conversion from follicular lymphoma because lymphoma cells carried t(14;18) (q32;q21) and were strongly positive for BCL2 protein. Translocation (1;11), together with AML having t(7;11) or inv(11) involving 11p15, shows that 11p15 is a common acceptor site of these chromosome aberrations and suggests the significance of the NUP98 gene located in 11p15 in therapy-related leukemia.  相似文献   

10.
We describe a 41-year-old man with CD7-positive acute myeloid leukemia (AML-M0) with trilineage-myelodysplasia. Chromosome analysis of the bone marrow cells showed 46.XY.t(2;4;12) (p21;q12;p13). Cytological and clinical features of our case were quite similar to those of AML with t(4;12)(q11-12;p13). The karyotypic interpretation was confirmed by fluorescence in situ hybridization (FISH) by using the whole-chromosome painting probes specific for chromosomes 2, 4, and 12. FISH analysis with the use of the YAC 936e2 probe, which covers the TEL gene, did not show the split signal, suggesting that a gene other than TEL was involved in the leukemogenesis of the present case. Our case with AML with t(2;4;12)(p21;q12;p13) appears to be the first case of a variant type of AML with t(4;12) (q11-12;p13).  相似文献   

11.
The t(3;21)(q26.2;q22) translocation is rare in cases of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). We studied 17 patients with MDS/AML associated with t(3;21) and compared them with 17 patients with MDS associated with inv(3) (q21q26.2)/t(3;3)(q21;q26.2), because these entities share 3q26 locus abnormalities. The t(3;21) group included 9 men and 8 women, with a median age of 62 years (range, 13-81 years). One case was de novo AML and 16 cases were therapy-related, including 12 MDS (blasts, <15%) and 4 AML (blasts, 33%-50%). All patients had multilineage dysplasia, whereas none had thrombocytosis. Additional cytogenetic aberrations were identified in 12 cases, including -7/7q (n = 9) and a complex karyotype (n = 7). All patients died, with 1- and 2-year survival rates of 35% and 6%, respectively. Although multilineage dysplasia and frequent association with -7/7q were similar in both groups, MDS/AML cases associated with t(3;21) have a higher frequency of therapy-related disease and shorter survival times, suggesting that they are distinct from MDS/AML cases associated with inv(3)/t(3;3).  相似文献   

12.
Balanced chromosome rearrangements are the hallmark of therapy-related leukemia that develops in patients treated with topoisomerase II inhibitors. Many of these rearrangements involve recurrent chromosomal sites and associated genes (11q23/MLL, 21q22.3/AML1, and 11p15/NUP98), which can interact with a variety of partner genes. One such rearrangement is the rare t(1;11)(q23;p15), which involves juxtaposition of the homeobox gene PMX1 (PRRX1) and NUP98. We report on an additional patient with t(1;11) who presented with myelodysplastic syndrome (MDS) subsequent to treatment for a pleomorphic liposarcoma. With time, the patient's disorder progressed to acute myelomonocytic leukemia with cytogenetic evidence of clonal evolution. To our knowledge, this is the first report of a patient presenting with a myelodysplastic syndrome with isolated t(1;11) (q23;p15), which evolved into therapy-related acute myeloid leukemia (t-AML). This patient is the third reported with this cytogenetic rearrangement and t-AML, and is compared with the other two reports of t(1;11)(q23;p15).  相似文献   

13.
A second case of acute myeloid leukemia (AML) with a t(2;4)(p23;q25) as the sole anomaly is reported. Our case had a de novo AML (M2); the case previously described had AML (M2) post-MDS. It is suggested that t(2;4)(p23;q25) is a new, recurrent, but rare anomaly in AML.  相似文献   

14.
Variant forms of the classic translocation t(8;21) are uncommon and account approximately 3% of all t(8;21)(q22;q22) in acute myeloid leukemia (AML) patients. These forms involve chromosomes 8, 21, and other chromosomes. Here we report a Tunisian patient with a complex rearrangement t(21;8;1)(q22;q22;q32) revealed by conventional chromosomal study at diagnosis. Fluorescence in situ hybridization study revealed the presence of the AML1-ETO chimeric gene on the derivative chromosome 8. To the best of our knowledge, this is the second case of t(21;8;1) of AML-M2 reported in the literature with the involvement of the same breakpoint at 1q32. This illustrates that this complex translocation is rarely encountered in AML and reinforces the fact that this region may harbour a critical gene candidate that may play an important role in the pathogenesis of AML. More cases are needed to elucidate its clinical features and prognosis.  相似文献   

15.
This report describes 2 cases of acute myeloid leukemia (AML), which based on the WHO classification would be classified as AML with an 11q23 (MLL) abnormality, but with contrasting morphologic and immunophenotypic profiles. One case had monocytic features (morphologically and immunophenotypically) with a t(11;17)(q23;q21), a previously identified variant translocation in acute promyelocytic leukemia (APL). The second case had morphologic and immunophenotypic features of APL associated with a t(11;17)(q23;q25). In both cases, fluorescence-in-situ hybridization (FISH) analysis demonstrated that the 11q23 breakpoint involved the MLL gene, but RARalpha was not involved in the 17q breakpoints. These cases illustrate the importance of FISH analysis to confirm the presence of a particular recurring rearrangement.  相似文献   

16.
The t(7;21)(p22;q22) resulting in RUNX1‐USP42 fusion, is a rare but recurrent cytogenetic abnormality associated with acute myeloid leukemia (AML) and myelodysplastic syndromes. The prognostic significance of this translocation has not been well established due to the limited number of patients. Herein, we report three pediatric AML patients with t(7;21)(p22;q22). All three patients presented with pancytopenia or leukopenia at diagnosis, accompanied by abnormal immunophenotypic expression of CD7 and CD56 on leukemic blasts. One patient had t(7;21)(p22;q22) as the sole abnormality, whereas the other two patients had additional numerical and structural aberrations including loss of 5q material. Fluorescence in situ hybridization analysis on interphase cells or sequential examination of metaphases showed the RUNX1 rearrangement and confirmed translocation 7;21. Genomic SNP microarray analysis, performed on DNA extracted from the bone marrow from the patient with isolated t(7;21)(p22;q22), showed a 32.2 Mb copy neutral loss of heterozygosity (cnLOH) within the short arm of chromosome 11. After 2‐4 cycles of chemotherapy, all three patients underwent allogeneic hematopoietic stem cell transplantation (HSCT). One patient died due to complications related to viral reactivation and graft‐versus‐host disease. The other two patients achieved complete remission after HSCT. Our data displayed the accompanying cytogenetic abnormalities including del(5q) and cnLOH of 11p, the frequent pathological features shared with other reported cases, and clinical outcome in pediatric AML patients with t(7;21)(p22;q22). The heterogeneity in AML harboring similar cytogenetic alterations may be attributed to additional uncovered genetic lesions.  相似文献   

17.
18.
5例伴有t(16;21)(p11;q22)急性白血病的临床和实验研究   总被引:5,自引:2,他引:5  
目的:报告5例伴有t(16;21)(p11;q22)的急性白血病和其中1例的染色体涂染分析。方法:骨髓细胞24h培养后按常规方法制备染色体,采用R显带技术进行染色体核型分析,并以16号和21号整条染色体涂染探针对其中1例患者进行染色体涂染检测。结果:5例均显示t(16;21)(p11;q22),占15年来进行染色体检查的急性非淋巴细胞白血病患者总数的0.3%(5/1448)。5例均无白血病细胞吞噬其他血细胞现象。1例患者的染色体涂染分析证实了16号和21号染色体之间发生了相互易位。结论:t(16;21)是急性非淋巴细胞白血病中1种少见的非随机的染色体易位,代表了1种独特的白血病亚型。染色体涂染技术是比常规核型分析更为可靠的检测该易位的手段。  相似文献   

19.
A case of acute myeloid leukemia (AML) with increased numbers of basophils and abnormal megakaryocytes was shown to have a t(3;6)(q21;p21) in the bone marrow cells. The morphology is described in detail and the case is discussed with reference to t(6;9)(p23;q34) and inv/ins(3)(q21q26) in AML. It is possible that increased numbers of basophils in AML may be associated with a translocation involving 6p21-6p23.  相似文献   

20.
The t(8;16)(p11;p13) is a recently described new chromosome rearrangement of acute nonlymphocytic leukemia (ANLL). It appears to be specifically associated with acute monoblastic (AML-M5) or unusual myelomonocytic leukemia with prominent erythrophagocytosis in the leukemic cells. A complex t(3;8;17)(q27;p11;q12) is reported in a case of acute monoblastic leukemia with erythrophagocytosis. Sixteen cases of this t(8;16) and two other variant translocations are reviewed. The pathogenetic mechanism of the variant translocations is discussed, suggesting that the der(8) is a consistent recombinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号