首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dendritic cells (DC) change their phenotype and functional properties during maturation. CD83 cell surface expression is induced on mature DC (mDC). In this study, we investigated intracellular CD83 localization and transport in human monocyte-derived DC. The enhanced level of CD83 cell surface expression in mDC resulted predominantly from increased protein synthesis, and in addition from regulated intracellular transport of CD83 protein. An internal pool of CD83 protein is present in immature DC (iDC). Although CD83 protein in iDC and in mDC was localized in the Golgi compartment and in recycling endosomes, only in mature cells did CD83 co-localize with MHC class II molecules in endocytic vesicles. CD83 cell surface expression on iDC was induced by inhibition of endocytosis. This result could be explained by CD83 cycling between endosomes and the cell surface in iDC. The mDC also rapidly internalized membrane-bound CD83 protein. Furthermore, a thiol protease inhibitor and specific cathepsin inhibitors impaired CD83 up-regulation in DC, indicating a role of endosomal proteases in the maturation-induced exposure of CD83 on the plasma membrane.  相似文献   

2.
Dendritic cell (DC) maturation is characterized by the gain or loss of immunological functions and by expression of distinctive surface receptors. CD38 is an ectoenzyme that catalyzes the synthesis of cyclic ADP ribose (a potent second messenger for Ca(2+) release), as well as a receptor that initiates transmembrane signaling upon engagement with its counter-receptor CD31 or with agonistic monoclonal antibodies. Since CD38 is expressed by resting monocytes, we aimed to monitor CD38 expression during the differentiation of human monocyte-derived DC (MDDC) and to investigate the possibility that CD38 plays a functional role during DC maturation. CD38 is down-modulated during differentiation into immature MDDC and expressed again upon maturation. The extent of CD38 expression is dependent on the stimulus adopted (LPS > IFN-gamma > CD40 cross-linking). Although weak, IFN-gamma consistently induces DC maturation. De novo-synthesized CD38 is enzymatically active, and its expression in mature (m) MDDC is dependent on NF-kappa B activity. However, CD38 is not merely a maturation marker but also mediates signaling in mMDDC, where it maintains its functions as a receptor. Activation via agonistic anti-CD38 mAb induces up-regulation of CD83 expression and IL-12 secretion, whereas disruption of CD38/CD31 interaction inhibits CD83 expression, IL-12 secretion and MDDC-induced allogeneic T cell proliferation.  相似文献   

3.
Although thyroglobulin (Tg) would be expected to act as a tumor-associated antigen that might be exploitable by immunotherapy against thyroid cancers, it remains unclear how to effectively enhance the immune response to Tg in human since it is a self-component glycoprotein. We therefore tested whether and how human peripheral blood (PB) monocyte-derived dendritic cells (DCs) pulsed with human (h)Tg would induce activation of hTg-specific T cells. We found that immature DCs (iDCs) exhibited a higher endocytic capacity for fluorescein isothiocyanate-conjugated hTg than did mature DCs (mDCs). Although freshly isolated T cells responded poorly to mDCs, hTg-primed T cells responded much more strongly to hTg pulsed mDCs, which selectively induced IFN-gamma-secreting T cells. These results suggest that hTg-pulsed mDCs enhance the responses of Tg-specific T cells, raising the possibility that vaccination with hTg-pulsed mDCs may be an effective approach as immunotherapy to potentiate thyroid cancer specific therapy.  相似文献   

4.
Dendritic cells (DC) are powerful inducers of primary T-cell responses, but their role in secondary responses has not been extensively analysed. Here, we address the role of two DC subsets derived from human CD16(+) (16(+) mDC) or CD16(-) (16(-) mDC) monocytes on the reactivation of memory responses. CD4(+) CD45RA(-) memory T cells were obtained from adult blood donors, and central (T(CM)) and effector (T(EM)) memory T cells were isolated by fluorescence-activated cell sorting with anti-CCR7 antibodies. The 16(+) mDC and 16(-) mDC were cocultured with autologous lymphocytes, either unpulsed or loaded with purified protein derivatives of Mycobacterium tuberculosis (PPD) or tetanus toxoid (TT), and were analysed for up to 8 days. Over a range of doses, 16(+) mDC drove stronger T-cell proliferative responses against both antigens. Overall, antigen-specific memory cells tended to acquire a phenotype of T(EM) at later time-points in the culture, whereas cells that had completed fewer cycles of division were similar to T(CM). The 16(+) mDC induced higher rates of proliferation on both T(CM) and T(EM) lymphocytes than 16(-) mDC. This phenomenon was not related to the ability of both DC to induce CD25 expression on T cells, to lower secretion of interleukin-2, or to raise production of interleukin-10 during T-cell/16(-) mDC cocultures. The induction of T(CM) effector capacity in terms of interferon-gamma production was faster and more pronounced with 16(+) mDC, whereas both DC had similar abilities with T(EM). In conclusion, these data might reveal new potentials in vaccination protocols with 16(+) mDC aimed at inducing strong responses on central memory T cells.  相似文献   

5.
Dendritic cells (DC) are known to be the most potent APC and to stimulate antigen-specific T cell responses. Recently it was reported that murine DC were also capable of modulating the innate immunity by stimulating NK cells through cell-to-cell contact. In the present study, we examined whether human DC could affect NK activity. Both monocyte-derived and CD83(+) blood DC were tested. The addition of DC to cultures of CD56(+) cells resulted in the significant dose-dependent enhancement of the killing activity against various NK-sensitive targets. The resultant activity was comparable to that induced by optimal concentrations of various cytokines, including IL-2, IL-12, IL-15 and IFN-gamma. Interestingly, DC enhanced the cytotoxicity of CD3(-)CD56(+) NK cells, but not that of CD3(+)CD56(+) T cells. Experiments using transwells clearly demonstrated that the enhancement of NK activity by DC was mediated by soluble factors produced by DC. The culture supernatants of DC also stimulated NK activity. The treatment of both DC and their supernatants with anti-human IL-12 or IL-18 antibodies did not block the enhancement of NK cell-mediated cytolysis by DC, indicating that other factor(s) produced by DC were responsible for the enhancement of NK activity. These results suggest that human myeloid DC can modulate innate immunity by enhancing NK activity.  相似文献   

6.
PROBLEM: Dendritic cells (DCs) play an important role in antigen presentation and immunoregulation. Modifications of the immune response during pregnancy require the participation of DC. The aim of this study was to follow-up the changes of DCs in human decidua and their correlations to progesterone (Pg) concentrations. METHODS OF STUDY: Blood leukocytes were isolated from human decidua and analyzed by flow cytometry for the expression of HLA-DR and CD83 markers. Blood monocytes were cultured to differentiate and mature to DCs in the presence of Pg, estradiol or testosterone and analyzed by flow cytometry. RESULTS: The percentage of mature DCs is increased in human decidua during the 1st trimester. When Pg is added to DCs cultured in vitro the percentage of cells expressing both markers increased in specific and dose-dependent manner. CONCLUSIONS: Pg increases the numbers of monocytic DCs locally and it may be speculated that these cells help the Th1/Th2 switching in pregnancy.  相似文献   

7.
Dendritic cells (DCs) play an important role in innate and adaptive immune responses. In addition to their phagocytic activity, DCs present foreign antigens to na?ve T cells and regulate the development of adaptive immune responses. Upon contact with DCs, activated T cells produce large quantities of cytokines such as interferon-gamma (IFN-gamma) and interleukin (IL)-21, which have important immunoregulatory functions. Here, we have analyzed the effect of IL-21 and IFN-gamma on lipopolysaccharide (LPS)-induced maturation and cytokine production of human monocyte-derived DCs. IL-21 and IFN-gamma receptor genes were expressed in high levels in immature DCs. Pretreatment of immature DCs with IL-21 inhibited LPS-stimulated DC maturation and expression of CD86 and human leukocyte antigen class II (HLAII). IL-21 pretreatment also dramatically reduced LPS-stimulated production of tumor necrosis factor alpha, IL-12, CC chemokine ligand 5 (CCL5), and CXC chemokine ligand 10 (CXCL10) but not that of CXCL8. In contrast, IFN-gamma had a positive feedback effect on immature DCs, and it enhanced LPS-induced DC maturation and the production of cytokines. IL-21 weakly induced the expression Toll-like receptor 4 (TLR4) and translation initiation region (TIR) domain-containing adaptor protein (TIRAP) genes, whereas the expression of TIR domain-containing adaptor-inducing IFN-beta (TRIF), myeloid differentiation (MyD88) 88 factor, or TRIF-related adaptor molecule (TRAM) genes remained unchanged. However, IL-21 strongly stimulated the expression of suppressor of cytokine signaling (SOCS)-1 and SOCS-3 genes. SOCS are known to suppress DC functions and interfere with TLR4 signaling. Our results demonstrate that IL-21, a cytokine produced by activated T cells, can directly inhibit the activation and cytokine production of myeloid DCs, providing a negative feedback loop between DCs and T lymphocytes.  相似文献   

8.
Lock K  Zhang J  Lu J  Lee SH  Crocker PR 《Immunobiology》2004,209(1-2):199-207
Siglecs are sialic acid binding Ig-like lectins mostly expressed in the haemopoietic and immune systems. Amongst the 11 human siglecs, there are eight proteins highly related to CD33 which have biochemical features of inhibitory receptors, containing two conserved tyrosine-based inhibitory motifs. Five of these (CD33/siglec-3, -5, -7, -9 and -10) are expressed on circulating monocytes. Here we show that monocytes cultured to differentiate into macrophages using either GM-CSF or M-CSF retained expression of these siglecs and their levels were unaffected following stimulation with LPS. In comparison, monocyte-derived dendritic cells down-modulated siglec-7 and -9 following maturation with LPS. Plasmacytoid dendritic cells in human blood expressed siglec-5 only. On monocytes, siglec-5 was shown to mediate rapid uptake of anti-siglec-5 (Fab)2 fragments into early endosomes. This suggests, in addition to inhibitory signalling, a potential role in endocytosis for siglec-5 and the other CD33-related siglecs. Our results show that siglecs are differentially expressed on mononuclear phagocytes and dendritic cells and that some can be modulated by stimuli that promote maturation and differentiation.  相似文献   

9.
To clarify the functional consequences of adenine nucleotides action on human monocyte-derived dendritic cells (DC), we have systematically compared the effects of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), an ATP analog active on the P2Y(11) receptor, on the responses to three DC stimuli, TNF-alpha, LPS, sCD40L, tested at various concentrations, using two different IL-12 assays. We observed that ATPgammaS potentiated the IL-12p40 release induced by TNF-alpha, but also by lipopolysaccharides (LPS) and soluble CD40 ligand (sCD40L). This potentiation was observed as long as the IL-12p40 concentration under agonist stimulation remained below a threshold value close to 10 ng/ml; inhibition was observed above this value. The combinations ATPgammaS-TNF-alpha and ATPgammaS-sCD40L were unable to induce detectable bioactive IL-12p70 production and at concentrations of LPS that induced a significant stimulation of IL-12p70, the effect of ATPgammaS was purely inhibitory. Our results also show that ATPgammaS synergized with LPS and sCD40L, but not TNF-alpha, to stimulate IL-10 production. In conclusion, we have clarified the discrepancies in the literature concerning the action of adenine nucleotides on DC and our study supports the concept that, like prostaglandin E(2) and other agents increasing cyclic AMP, they favor either a Th2 response or tolerance.  相似文献   

10.
Antigen-loaded dendritic cells (DCs) provide key regulatory signals to T cells during a developing antitumor response. In addition to providing costimulation, mature DC provides cytokine and chemokine signals that can define the T1 vs T2 nature of the antitumor T-cell response as well as whether T cells engage in direct interactions with tumor cells. In serum-free culture conditions that hasten the differentiation of monocytes into mature DCs, certain agents, such as CD40L, accelerate phenotypic maturation (e.g., CD83 and costimulatory molecule expression) without influencing the acquisition of Dc1/Dc2 characteristics. In contrast, exposure to serum-free medium and interferon-gamma (IFN-gamma) rapidly influences CD83+ DCs to secrete high levels of IL-12, IL-6, and MIP-1beta, and promotes Dcl differentiation. In contrast, CD83+ DCs matured in serum-free medium in the absence of IFN-gamma, or in the presence of calcium signaling agents, prostaglandin-E2, or IFN-alpha, produce no IL-12, scant IL-6, and prodigious IL-8, MDC, and TARC, and promote Dc2 differentiation. T cells sensitized via IL-12-secreting, peptide-pulsed DCs secrete cytokines when subsequently exposed to relevant peptide-pulsed antigen-presenting cells (APCs) or to HLA-compatible tumor cells endogenously expressing the peptide. In contrast, T cells sensitized via IL-12 nonsecreting DC were limited to antigenic reactivation through APC contact rather than tumor cell contact. Therefore, the development of antitumor responses can be dramatically influenced not only by costimulation, but also by the cytokine and chemokine production of DCs, which must be considered in the development of cancer vaccines.  相似文献   

11.
We have previously shown that human monocyte-derived dendritic cells (DC) express indoleamine 2,3-dioxygenase (IDO), as well as several other enzymes of the kynurenine pathway at the mRNA level upon maturation. The tolerogenic mechanisms of this pathway remain unclear. Here we show that LPS-treated DC metabolize tryptophan as far as quinolinate. We found that IDO contributes to LPS and TNF-alpha + poly(I:C)-induced DC maturation since IDO inhibition using two different inhibitors impairs DC maturation. IDO knock-down using short-hairpin RNA also led to diminished LPS-induced maturation. In line with these results, the tryptophan-derived catabolites 3-hydroxyanthranilic acid and 3-hydroxykynurenine increased maturation of LPS-treated DC. Concerning the molecular mechanisms of this effect, IDO acts as an intermediate pathway in LPS-induced production of reactive oxygen species and NF-kappaB activation, two processes that lead to DC maturation. Finally, we show that mature DC expand CD4(+)CD25(high) regulatory T cells in an IDO-dependent manner. In conclusion, we show that IDO constitutes an intermediate pathway in DC maturation leading to expansion of CD4(+)CD25(high) regulatory T cells.  相似文献   

12.
13.
Indole is produced from l-tryptophan by commensal bacteria and further metabolized to indoxyl 3-sulfate (I3S) in the liver. Physiologic concentrations of I3S are related to a lower risk to develop graft versus host disease in allogeneic stem cell transplanted patients pointing towards an immunoregulatory function of I3S. Here we investigated the impact of I3S on the maturation of human monocyte-derived dendritic cells (DCs). Even pathophysiologic concentrations of I3S did not affect viability of mature DCs, but I3S decreased the expression of co-stimulatory molecules such as CD80 and CD86 on mature DCs. Furthermore, I3S inhibited IL-12 and IL-6 secretion by mature DCs while IL-10 was significantly upregulated. Co-culture of I3S-treated mature DCs with allogeneic T cells revealed no alteration in T cell proliferation. However, interferon gamma and TNF production of T cells was suppressed. As I3S exerted no direct effect on T cells, the defect in T cell activation was mediated by I3S-treated mature DCs. Our study suggests an anti-inflammatory and tolerizing effect of I3S on human DCs.  相似文献   

14.
The primary aim of this study was to evaluate the role of natural killer (NK) cells on antigen-specific adaptive immune responses. After analysing the mechanism of impaired adaptive immune responses of NK-depleted mice, an immune interventional approach was developed to restore adaptive immunity in NK-depleted mice. NK cells were depleted from mice by administration of anti-asialo GM1 antibody (100 mul/mouse), twice, at an interval of 48 h. Hepatitis B surface antigen (HBsAg) was administered intraperitoneally to normal C57BL/6 mice (control mice) and NK-depleted mice. The levels of antibody to HBsAg (anti-HBs) in the sera and HBsAg-specific lymphocytes in the spleen were assessed. The functions of T lymphocytes, B lymphocytes and dendritic cells (DCs) were evaluated in vitro. HBsAg-pulsed DCs were prepared by culturing spleen DCs with HBsAg for 48 h and administered once to NK-depleted mice. The levels of anti-HBs in the sera and HBsAg-specific lymphocytes were significantly lower in NK-depleted mice compared with control mice (P < 0.05). The functions of T and B lymphocytes were similar between control mice and NK-depleted mice. However, the functions of spleen DC and liver DC were significantly lower in NK-depleted mice compared with control mice (P < 0.05). Administration of HBsAg-pulsed DCs, but not HBsAg, induced HBsAg-specific humoral and cellular immune responses in NK-depleted mice. Our study suggests that cross-talk between NK cells and DCs regulates the magnitude of adaptive immunity. In addition, antigen-pulsed immunogenic DCs represent potent immune modulator even if subjects with diminished innate immunity.  相似文献   

15.
16.
High-level IL-12 production by human dendritic cells requires two signals   总被引:20,自引:0,他引:20  
IL-12 is a key cytokine in the development of Th1 responses. IL-12 production by antigen-presenting cells (APC) can be induced by the interaction between CD40 on the APC and CD40 ligand (CD40L) expressed on T cells after activation. Our previous study indicated that in dendritic cells (DC), the only APC that can activate naive T(h) cells efficiently, the mere CD40 engagement is insufficient to induce IL-12 production. The aim of the present study was to dissect the conditions for efficient IL-12 production by DC further. Using populations of naive and memory Th cells, recombinant CD40L, neutralizing and blocking antibodies, and by determining IFN-gamma production and CD40L expression levels, we here show that T cell-induced IL-12 production by DC results from the action of two signals, mediated by CD40L and IFN- gamma, and that the inability of naive T(h) cells to induce IL-12 production resides in their inability to produce IFN-(gamma). Other factors than CD40L and IFN-gamma can provide the required signals for IL-12 production by DC, as either factor could be replaced by lipopolysaccharide (LPS). The two-signal requirement proved unique for the production of IL-12, since either CD40 engagement or LPS was sufficient for the efficient production of tumor necrosis factor-alpha, IL-8 and the p40 subunit of IL-12, and may be considered as a safety mechanism for optimal control of potentially harmful T(h)1 responses.   相似文献   

17.
BACKGROUND: Dendritic cells (DCs) are able to induce human allergic T(H)1 responses as well as T(H)2 responses. OBJECTIVE: In this study, we examined the effect of antiinflammatory agents such as IL-10 and hydrocortisone (HC) on the accessory function of DCs and the resulting T-cell response, especially that of T(H)2 cells. METHODS: Naive and memory CD4(+) T cells from atopic donors were stimulated with autologous allergen-pulsed DCs generated from CD14(+) monocytes by culture with GM-CSF/IL-4 and fully matured with IL-1 beta, TNF-alpha, and PGE(2) in the presence or absence of IL-10 or HC. RESULTS: IL-10-treated DCs and, to a lesser extent, HC-treated DCs showed a decreased expression of MHC II molecules, the costimulatory molecule CD86, and the DC-specific marker CD83, as well as a strongly reduced IL-12 secretion. Consequently, T-cell proliferation was reduced after stimulation with IL-10- or HC-treated DCs alike. However, pretreatment of DCs with IL-10 inhibited the production of T(H)1 and T(H)2 cytokines by T cells, whereas HC-treated DCs inhibited production of IFN-gamma but induced an increased release of IL-4 and no change in IL-5. Both effects were long-lasting; cytokine production remained low (which was due not to enhanced apoptosis but to functional hyporesponsiveness) or even increased after restimulation with fully matured DCs. CONCLUSION: These data indicate that IL-10- or HC-treated DCs differ in their ability to influence human allergic T-cell responses. This has major implications for therapeutic strategies aiming at the downregulation of proallergic T(H)2 responses.  相似文献   

18.
Reis ES  Barbuto JA  Isaac L 《Immunobiology》2007,212(3):151-157
Complement and dendritic cells (DCs) are essential components of innate immunity. Both participate in local inflammation and moreover have roles in the initiation of the acquired immunity response and in the maintenance of tolerance. Recent studies have demonstrated the ability of DCs to synthesize C1q, C3, Factor I, Factor B and complement receptors 3 and 4. In this study, we demonstrate that human DCs are a source of other soluble complement proteins including C1q, C4b binding protein (C4BP), C7 and C8. Complement receptors (CR)1 and the CD18 chain (common for CR3 and CR4) were also present on DCs while CR2 was not detected.  相似文献   

19.
Il2 allelic variation in non-obese diabetic mice imparts marked resistance to type 1 diabetes. IL-2 is pivotal for the fitness and homeostasis of Foxp3(+) regulatory T (T(reg)) cells, and the Idd3(B6) locus augments IL-2 production by effector T cells, which in turn enhances the potency of T(reg) cell functions. Given the important role dendritic cells (DCs) play in T(reg) cell-mediated tolerance induction, we hypothesized that DCs from Idd3(B6) congenic mice contribute to increased T(reg) cell activity. Here, we observed that CD11c(+) DCs, harboring protective Idd3(B6) genes, are endowed with the capacity to secrete IL-2, enabling them to preferentially promote T(reg) cell functions in vitro and in vivo. Our results show that Il2 gene variation may imprint DCs to favor T-cell regulation of autoimmunity.  相似文献   

20.
Previous investigations have defined phenotypic differences between unprimed (naive) and antigen-primed (memory) T cells from human peripheral blood. We now report that memory T cells proliferate much more than naive cells when stimulated with anti-CD3 monoclonal antibody or pairs of anti-CD2 monoclonal antibodies. Enhanced responsiveness to receptor-mediated triggering is a novel mechanism for T cells which could facilitate memory cell response to specific antigen. Furthermore, when triggered via either CD2 or CD3, memory T cells produce substantial amounts of interferon gamma while naive cells produce virtually none; this suggests that differentiation from naive to memory state is accompanied by a stable change in regulation of the gene for interferon-gamma. We conclude that naive and memory T cells are dramatically different in function as well as phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号