首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of prostaglandin E(2) (PGE(2)), a potent inhibitor of fibroblast function, are decreased in the lungs of patients with pulmonary fibrosis, which has been shown to be because of limited expression of cyclooxygenase-2 (COX-2). To further investigate the relative importance of COX-2 and PGE(2) in the development of fibrosis we have used a selective COX-2 inhibitor and COX-2-deficient ((-/-) and (+/-)) mice in studies of bleomycin-induced lung fibrosis. We demonstrate in wild-type mice that bleomycin-induced lung PGE(2) production is predominantly COX-2 mediated. Furthermore, COX-2(+/-) mice show limited induction of PGE(2) and an enhanced fibrotic response with increased lung collagen content compared with wild-type mice after bleomycin injury (P < 0.001). In contrast, COX-2(-/-) mice show increased levels of lung PGE(2), compared with wild-type mice after injury (P < 0.05), because of compensatory up-regulation of COX-1, which appears to be associated with macrophage/monocytes but not fibroblasts derived from these mice. COX-2(-/-) mice show an enhanced and persistent inflammatory response to bleomycin, however the fibrotic response to injury was unaltered compared with wild-type animals. These data provide further direct evidence for the importance of up-regulating COX-2 and PGE(2) expression in protecting against the development of fibrosis after lung injury.  相似文献   

2.
Aspiration of gastric acid commonly injures airway epithelium and, if severe, can lead to respiratory failure from acute respiratory distress syndrome. Recently, we identified cyclooxygenase-2 (COX-2)-derived prostaglandin E(2) (PGE(2)) and lipoxin A(4) (LXA(4)) as pivotal mediators in vivo for resolution of acid-initiated acute lung injury. To examine protective mechanisms for these mediators in the airway, we developed an in vitro model of acid injury by transiently exposing well-differentiated normal human bronchial epithelial cells to hydrochloric acid. Transmission electron microscopy revealed selective injury to superficial epithelial cells with disruption of cell attachments and cell shedding. The morphological features of injury were substantially resolved within 6 hours. Acid triggered and early marked increases in COX-2 expression and PGE(2) production, and acid-induced PGE(2) significantly increased epithelial LXA(4) receptor (ALX) expression. LXA(4) is generated in vivo during acute lung injury, and we observed that nanomolar quantities increased basal epithelial cell proliferation and potently blocked acid-triggered interleukin-6 release and neutrophil transmigration across well-differentiated normal human bronchial epithelial cells. Expression of recombinant human ALX in A549 airway epithelial cells uncovered ALX-dependent inhibition of cytokine release by LXA(4). Together, these findings indicate that injured bronchial epithelial cells up-regulate ALX in a COX-2-dependent manner to promote LXA(4)-mediated resolution of airway inflammation.  相似文献   

3.
4.
目的:探究机动车尾气(MVE)长期暴露引起大鼠慢性阻塞性肺疾病(COPD)发生时,气道上皮细胞中环加氧酶2(COX-2)/前列腺素E2(PGE2)/E-前列腺素类激素(EP)受体信号通路成员的表达变化。方法:(1)动物实验:健康雄性SD纯系大鼠(SPF级)16只,随机分为2组:MVE暴露组(n=8)和空白对照(CTL)组(n=8)。采用MVE暴露6个月的方法建立COPD大鼠模型。造模结束后,使用Buxco小动物有创肺功能仪检测大鼠肺功能;肺组织切片行HE染色并评估肺组织病理变化;ELISA法检测大鼠支气管肺泡灌洗液(BALF)中炎症因子白细胞介素6(IL-6)、肿瘤坏死因子α(TNF-α)和PGE2的水平,评估大鼠肺部炎症情况;采用免疫荧光及Western blot法检测肺组织COX-2及EP受体蛋白水平;提取肺组织核蛋白,Western blot检测MVE对肺组织NF-κB核转位的影响。(2)细胞实验:采用MVE细颗粒物(PM2.5)标准品刺激人正常支气管上皮细胞BEAS-2B。ELISA法检测细胞培养液中PGE  相似文献   

5.
Prostanoids generated by COX-2 are involved in the regulation of inflammation but their exact role in the innate immune response has not been defined. We investigated whether COX-2 is involved in host defense against Pseudomonas aeruginosa pneumonia. In vitro studies, in a macrophage cell line, showed that cytotoxic strain of P aeruginosa (PA103) induced significant COX-2 protein expression and enzymatic function. In vivo data showed that infection with PA103 increased COX-2 protein production in whole lung tissue compared to mice that were infected with mutant bacteria that lack ExoU (DeltaU) or ExoU and ExoT (DeltaUT). COX-2(-/-) mice had accentuated clearance of cytotoxic P. aeruginosa from the lungs. We further tested the effects of COX-2 products such as prostaglandin E(2) on the function of phagocytic cells. Our studies indicate that prostaglandin E(2) may be involved through interacting with the EP2 receptors in modulating the host response because treatment of macrophages with prostaglandin E(2) suppressed production of reactive oxygen species. Furthermore there was enhanced bacterial clearance in EP2 receptor(-/-) mice compared to the wild-type controls. Thus it is possible that inhibition of COX-2 or EP2 receptors could be an effective adjunctive treatment for severe or resistant P. aeruginosa pneumonia.  相似文献   

6.
The cyclooxygenase (COX)-2 enzyme has been implicated as an important mediator of pulmonary fibrosis. In this study, the lung fibrotic responses were investigated in COX-1 or COX-2-deficient (-/-) mice following vanadium pentoxide (V(2)O(5)) exposure. Lung histology was normal in saline-instilled wild-type and COX-deficient mice. COX-2(-/-), but not COX-1(-/-) or wild-type mice, exhibited severe inflammatory responses by 3 days following V(2)O(5) exposure and developed pulmonary fibrosis 2 weeks post-V(2)O(5) exposure. Western blot analysis and immunohistochemistry showed that COX-1 protein was present in type 2 epithelial cells, bronchial epithelial cells, and airway smooth muscle cells of saline or V(2)O(5)-exposed wild-type and COX-2(-/-) mice. COX-2 protein was present in Clara cells of wild-type and COX-1(-/-) terminal bronchioles and was strongly induced 24 hours after V(2)O(5) exposure. Prostaglandin (PG) E(2) levels in the bronchoalveolar lavage (BAL) fluid from wild-type and COX-1(-/-) mice were significantly up-regulated by V(2)O(5) exposure within 24 hours, whereas PGE(2) was not up-regulated in COX-2(-/-) BAL fluid. Tumor necrosis factor-alpha was elevated in the BAL fluid from all genotypes after V(2)O(5) exposure, but was significantly and chronically elevated in the BAL fluid from COX-2(-/-) mice above wild-type or COX-1(-/-) mice. These findings indicate that the COX-2 enzyme is protective against pulmonary fibrogenesis, and we suggest that COX-2 generation of PGE(2) is an important factor in resolving inflammation.  相似文献   

7.
The inflammatory mediator prostaglandin E(2) (PGE(2)) is implicated in the pathogenesis of chronic inflammatory diseases including periodontitis; it is synthesized by cyclooxygenases (COX) and the prostaglandin E synthases mPGES-1, mPGES-2, and cPGES. The distribution of PGES in gingival tissue of patients with periodontitis and the contribution of these enzymes to inflammation-induced PGE(2) synthesis in different cell types was investigated. In gingival biopsies, positive staining for PGES was observed in fibroblasts and endothelial, smooth muscle, epithelial, and immune cells. To further explore the contribution of PGES to inflammation-induced PGE(2) production, in vitro cell culture experiments were performed using fibroblasts and endothelial, smooth muscle, and mast cells. All cell types expressed PGES and COX-2, resulting in basal levels of PGE(2) synthesis. In response to tumor necrosis factor (TNF-α), IL-1β, and cocultured lymphocytes, however, mPGES-1 and COX-2 protein expression increased in fibroblasts and smooth muscle cells, accompanied by increased PGE(2), whereas mPGES-2 and cPGES were unaffected. In endothelial cells, TNF-α increased PGE(2) production only via COX-2 expression, whereas in mast cells the cytokines did not affect PGE(2) enzyme expression or PGE(2) production. Furthermore, PGE(2) production was diminished in gingival fibroblasts derived from mPGES-1 knockout mice, compared with wild-type fibroblasts. These results suggest that fibroblasts and smooth muscle cells are important sources of mPGES-1, which may contribute to increased PGE(2) production in the inflammatory condition periodontitis.  相似文献   

8.
Previous studies have shown that prostaglandin E(2) (PGE(2)) release by splenic F4/80(+) cyclooxygenase (COX)-2(+) macrophages (M?) isolated from mice, treated with mycobacterial components, plays a major role in the regulation of immune responses. However, splenic M?, isolated from untreated mice and treated in vitro with lipopolysaccharide and interferon-gamma, express COX-1 and COX-2 within 1 day but release only minimal amounts of PGE(2) following elicitation with calcium ionophore A23187. For further characterization of in vivo requirements for development of PGE(2)-releasing M? (PGE(2)-M?), C57Bl/6 [wild-type (WT)], and interleukin (IL)-10-deficient (IL-10(-/-)) mice were treated intraperitoneally with heat-killed Mycobacterium bovis bacillus Calmette-Guerin (HK-BCG). One day following injection, COX-2 was induced in splenic M? of both mouse strains. However, PGE(2) biosynthesis by these M? was not increased. Thus, expression of COX-2 is not sufficient to induce PGE(2) production in vivo or in vitro. In sharp contrast, 14 days after HK-BCG treatment, PGE(2) release by COX-2(+) splenic M? increased as much as sevenfold, and a greater increase was seen in IL-10(-/-) cells than in WT cells. To further determine whether the 14-day splenic PGE(2)-M? could be derived from bone marrow precursors, we established a chimera in which bone marrow cells were transfused from green fluorescent protein (GFP)-transgenic donors to WT mice. Donors and recipients were treated with HK-BCG simultaneously, and marrow transfusion was performed on Days 1 and 2. On Day 14 after BCG treatment, a significant number of spleen cells coexpressed COX-2 and GFP, indicating that bone marrow-derived COX-2(+) M? may be responsible for the increased PGE(2) production.  相似文献   

9.
Alveolar epithelial cells (AECs) may influence neighboring fibroblasts by the elaboration of prostaglandin E(2) (PGE(2)). This prostanoid can be synthesized via "constitutive" cyclooxygenase (COX)-1 and "inducible" COX-2 enzyme isoforms. We compared AECs isolated from wild-type (WT), COX-1 knockout (KO), and COX-2 KO mice to determine the contribution of COX isoforms to AEC PGE(2) synthesis and capacity for suppression of fibroblast proliferation in co-cultures. WT AECs constitutively expressed both COX-1 and COX-2 isoforms by immunoblot analysis. COX-1 KO cells and WT cells comparably augmented PGE(2) synthesis following incubation with lipopolysaccharide or interleukin-1, whereas COX-2 KO cells were unable to do so. Surprisingly, however, constitutive generation of PGE(2) was also dramatically reduced only in COX-2 KO cells. When co-cultured with WT murine lung fibroblasts, AECs from WT and COX-1 KO animals suppressed serum-induced fibroblast proliferation, whereas COX-2-deficient AECs caused a modest enhancement in fibroblast proliferation. These results indicate that PGE(2) synthetic capacity in AECs is predominantly COX-2-dependent under both basal and stimulated conditions. They also demonstrate conclusively that AECs can modulate fibroblast function by the elaboration of suppressive prostanoids. These alterations in AEC phenotype likely contribute to the propensity for pulmonary fibrosis observed in COX-2-deficient mice.  相似文献   

10.
BACKGROUND: Asthma is characterized by chronic inflammation of the airway with the presence of Th2 cytokines. Airway remodeling in asthma is closely related to clinical manifestations. Lung myofibroblasts play a critical role in the airway remodeling and Th2 cytokines may modulate their behavior. We examined the effect of two major Th2 cytokines, IL-4 and IL-13, on differentiation of lung fibroblasts to myofibroblasts. We hypothesized that these cytokines would stimulate fibroblast proliferation in association with decreased prostaglandin E(2) (PGE(2)). METHODS: Lung fibroblasts were incubated with IL-4 and IL-13 with or without Th1 cytokine interferon-gamma (IFN-gamma) in vitro. Differentiation of lung fibroblasts to myofibroblasts was characterized by the expression of alpha-smooth muscle actin (alpha-SMA) as well as a morphological and immunohistochemical analysis. Fibroblast proliferation stimulated by IL-4 and IL-13 was assessed with the MTT assay. We also investigated the effect of these cytokines on cyclooxygenase (COX) gene expression and PGE(2) production. RESULTS: IL-4 and IL-13 increased alpha-SMA expression and myofibroblastic differentiation. This effect was attenuated by IFN-gamma and dexamethasone failed to have an influence on differentiation. IL-4 and IL-13 stimulated fibroblast proliferation. These cytokines downregulated the expression of both COX-1 and COX-2 genes and decreased the production of PGE(2). CONCLUSIONS: IL-4 and IL-13 induce differentiation of fibroblasts to myofibroblasts and this response is attenuated by IFN-gamma. IL-4 and IL-13 stimulate fibroblast proliferation and this effect is at least partly due to suppressed COX gene expressions and subsequently decreased PGE(2) production. These findings suggest that IL-4 and IL-13 directly act on lung fibroblast to induce a fibrogenic response.  相似文献   

11.
BACKGROUND: Influenza virus (IV) infection causes airway inflammation; however, it has not been determined whether IV infection could catabolize arachidonic acid cascade in airway epithelial cells. In addition, the responsible intracellular signalling molecules that catabolize arachidonic acid cascade have not been determined. OBJECTIVE: In the present study, to clarify these issues, we examined the cyclooxygenase (COX) expression, cytosolic phospholipase A2 (cPLA2) phosphorylation and prostaglandin E2 (PGE2) release in human bronchial epithelial cells (BEC) upon IV infection, and the role of mitogen-activated protein kinase (MAPK) including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-NH2-terminal kinase (JNK) in catabolizing arachidonic acid cascade in BEC. METHODS: COX-2 expression, phosphorylation of cPLA2 and phosphorylation of ERK, JNK and p38 MAPK were determined by Western blot. The concentrations of PGE2 were determined by ELISA. PD 98059 as a specific inhibitor of MAPK kinase-1 (MEK-1), an up-stream kinase of ERK, SB 203580 as a specific inhibitor of p38 MAPK and CEP-11004 as a specific inhibitor of JNK cascade were used to investigate the role of ERK, p38 MAPK and JNK in catabolizing arachidonic acid cascade in BEC. RESULTS: The results showed that (1) IV infection increases COX-2 expression, cPLA2 phosphorylation and PGE2 release, (2) ERK, p38 MAPK and JNK were phosphorylated, (3) CEP-11004 and PD 98059 predominantly attenuated COX-2 expression and cPLA2 phosphorylation, respectively, (4) SB 203580 did not remarkably affect COX-2 expression and cPLA2 phosphorylation, and (5) each inhibitor dose-dependently attenuated PGE2 release by various extents. CONCLUSION: These results indicate that IV infection activates three distinct MAPKs, ERK, p38 MAPK and JNK, to participate to various extents in the induction of PGE2 synthesis from arachidonic acid in BEC.  相似文献   

12.
Salmonella pathogenicity island 2 (SPI-2) is required for intramacrophage survival and systemic infection in mice. We have recently reported that Salmonella enterica causes activation of the protein kinase A (PKA) signaling pathway in a manner dependent on SPI-2, resulting in the upregulation of interleukin-10 expression in macrophages (K. Uchiya et al., Infect. Immun. 72:1964-1973, 2004). We show in the present study the involvement of SPI-2 in a signal transduction pathway that induces the expression of cyclooxygenase 2 (COX-2), an inducible enzyme involved in the synthesis of prostanoids. High levels of prostaglandin E(2) (PGE(2)) and prostacyclin (PGI(2)), which are known to activate the PKA signaling pathway via their receptors, were induced in J774 macrophages infected with wild-type Salmonella compared to a strain carrying a mutation in the spiC gene, located within SPI-2. The increased production of both prostanoids was dependent on COX-2. COX-2 expression was dose dependently blocked by treatment with a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway, and the phosphorylation level of ERK1/2 was higher in macrophages infected with wild-type Salmonella compared to the spiC mutant. Taken together, these results indicate that Salmonella causes an SPI-2-dependent ERK1/2 activation that leads to increased COX-2 expression, resulting in the upregulation of PGE(2) and PGI(2) production in macrophages. A COX-2 inhibitor inhibited not only Salmonella-induced activation of the PKA signaling pathway but also growth of wild-type Salmonella within macrophages, suggesting that Salmonella utilizes the COX-2 pathway to survive within macrophages and that the mechanism involves activation of the PKA signaling pathway.  相似文献   

13.
Prostaglandin E(2) (PGE(2)) inhibits fibroblast proliferation and collagen production. Its synthesis by fibroblasts is induced by profibrotic mediators including transforming growth factor (TGF)-beta(1). However, in patients with pulmonary fibrosis, PGE(2) levels are decreased. In this study we examined the effect of TGF-beta(1) on PGE(2) synthesis, proliferation, collagen production, and cyclooxygenase (COX) mRNA levels in fibroblasts derived from fibrotic and nonfibrotic human lung. In addition, we examined the effect of bleomycin-induced pulmonary fibrosis in COX-2-deficient mice. We demonstrate that basal and TGF-beta(1)-induced PGE(2) synthesis is limited in fibroblasts from fibrotic lung. Functionally, this correlates with a loss of the anti-proliferative response to TGF-beta(1). This failure to induce PGE(2) synthesis is because of an inability to up-regulate COX-2 mRNA levels in these fibroblasts. Furthermore, mice deficient in COX-2 exhibit an enhanced response to bleomycin. We conclude that a decreased capacity to up-regulate COX-2 expression and COX-2-derived PGE(2) synthesis in the presence of increasing levels of profibrotic mediators such as TGF-beta(1) may lead to unopposed fibroblast proliferation and collagen synthesis and contribute to the pathogenesis of pulmonary fibrosis.  相似文献   

14.
Enterotoxigenic Bacteroides fragilis produces an approximately 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in generating mucosal inflammation. Although it is well known that proinflammatory signals are expressed in BFT-stimulated intestinal epithelial cells, cell death processes have not been elucidated. BFT induced apoptosis in HT-29 cells, but the apoptosis was first apparent 36 h after stimulation. During the early period of BFT stimulation, expression of cellular inhibitor of apoptosis protein-2 (c-IAP2) increased, and inhibition of c-IAP2 augmented the apoptotic cell death. Inhibition of BFT-induced COX-2 expression decreased prostaglandin E(2) (PGE(2)) production, which led not only to a decrease of c-IAP2 activity but also to an enhancement of DNA fragmentation in the early period of BFT stimulation. Furthermore, apoptosis inhibition through PGE(2) and c-IAP2 was mainly regulated by a p38 mitogen-activated protein kinase (MAPK). These results suggest that the inhibition of apoptosis may be mediated by a sequential pathway, including MAPK, COX-2, PGE(2) and c-IAP2, in the early period of stimulation. The delay in the onset of epithelial cell apoptosis after enterotoxigenic B. fragilis infection may be important to the host since it can provides sufficient time for epithelial cells to generate signals for the activation of mucosal inflammation and it may increase the chances of bacterial colonization.  相似文献   

15.
The anti-tumour actions of cyclooxygenases (COX) are thought to be mediated by inhibition of prostaglandin E(2) (PGE(2)) synthesis. However, COX-2 inhibition also alters cellular production of other prostaglandins such as prostacyclin (PGI(2)). The latter action is believed to be important for the development of adverse cardio-vascular events. Microsomal PGES (mPGES-1) is an enzyme downstream to COX-2 and affects PGE(2) production only. It is possible that targeting mPGES-1 could decrease PGE(2) production without affecting PGI(2) production. In order to assess the potential of mPGES-1 as a target for therapy, we analysed its expression in breast cell lines and normal and malignant breast tissues. The expression of mPGES-1 and COX-2 was correlated in tumour cells and vascular endothelium, and with prognostic parameters in breast cancer. Although not detectable in normal epithelial cells, expression was noted in areas of fibrocystic change and in situ carcinoma. mPGES-1 expression was noted in 79% of breast cancer tissues. Its expression did not correlate with COX-2 overexpression or with prognostic markers of breast cancer. Endothelial cells did not show mPGES-1 expression. Upregulation of mPGES-1 is therefore frequent in pre-malignant and malignant breast disease. In this study, coordinate over-expression of COX-2 and mPGES-1 was not observed, particularly in the endothelial cells of blood vessels. Targeting mPGES-1 might prove to be an alternative therapeutic strategy to inhibit PGE2 production.  相似文献   

16.
BACKGROUND: Levels of COX-2 and downstream products, such as prostaglandin (PG) E2, are increased in inflammatory settings after stimulation by IL-1beta, LPS, and other innate factors. Although the TH2 cytokines IL-4 and IL-13 have been reported to decrease COX-2 levels in some cell types, neither the effect of these cytokines on other PGE2-related pathways nor their effect in primary human airway epithelial cells has been evaluated. OBJECTIVE: To determine the impact of IL-13 on PGE2 pathways in primary human airway epithelial cells. METHODS: Because PGE2 has anti-inflammatory, antifibrotic, and bronchodilating properties of relevance to asthma, the effect of IL-13 (10 ng/mL for 10 days) on PGE2 pathway elements in first-passage air-liquid interface epithelial cells from 8 endobronchial brushings (5 asthmatic subjects and 3 healthy subjects) was evaluated. mRNA and protein levels for COX-1 and COX-2, membrane-bound PGE synthase 1, 15-PG dehydrogenase, and the receptors EP2 and EP4 were quantified by means of real-time PCR and Western blotting. PGE2 levels in the supernatants were measured by means of enzyme immunoassay. RESULTS: IL-13 significantly inhibited the PGE2 synthetic pathways COX-2 and PGE synthase 1 while upregulating the PGE2 metabolizing enzyme 15-PG dehydrogenase. These enzymatic changes associated and correlated with decreased supernatant PGE2 levels. Significant reductions in the mRNA for EP2 (but not EP4) were also observed. Changes in the PG pathway were both time and dose dependent (n = 3). CONCLUSION: These data suggest that IL-13 induces systematic modulation of proteins related to the production, catabolism, and function of PGE2, which might alter inflammatory and immune responses at the level of the epithelium and the submucosa below. CLINICAL IMPLICATIONS: Modulation of PGE2 pathways by IL-13 might alter inflammatory and repair processes in asthma.  相似文献   

17.
Although an immune dysfunction and the involvement of infectious agents in the pathophysiology of schizophrenia are discussed since decades, the field never came into the mainstream of research. In schizophrenia a blunted type-1 immune response seems to be associated with a dysbalance in the activation of the enzyme indoleamine 2,3-dioxygenase (IDO) and in the tryptophan - kynurenine metabolism resulting in increased production of kynurenic acid in schizophrenia. This is associated with an imbalance in the glutamatergic neurotransmission, leading to an NMDA antagonism in schizophrenia. The immunological effects of antipsychotics rebalance partly the immune imbalance and the overweight of the production of the kynurenic acid. This immunological imbalance results in an inflammatory state combined with increased prostaglandin E(2) (PGE(2)) production and increased cyclo-oxygenase-2 (COX-2) expression. COX-2 inhibitors have been tested in clinical trials, pointing to favourable effects in schizophrenia.  相似文献   

18.
Prostaglandins (PGs) are potent proinflammatory mediators generated through arachidonic acid metabolism by cyclooxygenase-1 and -2 (COX-1 and COX-2) in response to different stimuli and play an important role in modulating the inflammatory responses in a number of conditions, including allergic airway inflammation. Thymoquinone (TQ) is the main active constituent of the volatile oil extract of Nigella sativa seeds and has been reported to have anti-inflammatory properties. We examined the effect of TQ on the in vivo production of PGs and lung inflammation in a mouse model of allergic airway inflammation. Mice sensitized and challenged through the airways with ovalbumin (OVA) exhibited a significant increase in PGD2 and PGE2 production in the airways. The inflammatory response was characterized by an increase in the inflammatory cell numbers and Th2 cytokine levels in the bronchoalveolar lavage (BAL) fluid, lung airway eosinophilia and goblet cell hyperplasia, as well as the induction of COX-2 protein expression in the lung. Intraperitoneal injection of TQ for 5 days before the first OVA challenge attenuated airway inflammation as demonstrated by the significant decrease in Th2 cytokines, lung eosinophilia, and goblet cell hyperplasia. This attenuation of airway inflammation was concomitant to the inhibition of COX-2 protein expression and PGD2 production. However, TQ had a slight inhibitory effect on COX-1 expression and PGE2 production. These findings suggest that TQ has an anti-inflammatory effect during the allergic response in the lung through the inhibition of PGD2 synthesis and Th2-driven immune response.  相似文献   

19.
Bacteroides fragilis produces an approximately 20-kDa heat-labile toxin (B. fragilis enterotoxin, BFT) which is known to be associated with diarrhea. To determine whether cyclooxygenase (COX)-2, via NF-kappaB activation, can contribute to BFT-induced diarrhea, the relationship between COX-2 expression and fluid secretion in BFT-stimulated human intestinal epithelial cells was examined. BFT stimulation increased the expression of COX-2, but not COX-1, in human intestinal epithelial cells. Suppression of the NF-kappaB signal significantly decreased COX-2 expression in response to BFT stimulation. Prostaglandin E2 (PGE2) levels were increased in parallel with COX-2 expression, and, conversely, PGE2 production was significantly inhibited when COX-2 or NF-kappaB activities were suppressed using COX-2 small interfering RNA (siRNA), p65 NF-kappaB subunit siRNA, or a retrovirus encoding the IkappaBalpha superrepressor. In addition, a selective COX-2 inhibitor, NS-398, significantly inhibited the increased cAMP level induced by BFT stimulation. Furthermore, a selective COX-2 inhibitor prevented BFT-induced PGE2 production and ileal fluid secretion in a mouse ileal loop model. These results suggest that the secretory response to BFT stimulation may be mediated by the production of PGE2, through NF-kappaB activation and the up-regulation of COX-2 in intestinal epithelial cells.  相似文献   

20.
AIMS: To test the hypothesis that cyclooxygenase (COX)-1 or COX-2 expression is defective in lungs in idiopathic pulmonary fibrosis (IPF) and to characterize the cellular distribution. IPF is a progressive inflammatory lung disorder with an adverse prognosis. Previous work has shown that prostaglandin E2 (PGE2) regulates collagen deposition and fibroblast proliferation and a defect in COX regulation may contribute to the fibrosis that occurs in IPF. METHODS: Immunohistochemistry was utilized to determine COX immunoreactivity in lung sections from 25 IPF, six sarcoidosis and 14 control subjects. RESULTS: COX-1 and COX-2 expression in bronchiolar epithelial cells was significantly lower in IPF and sarcoidosis than in controls. No significant difference was found in COX-2 expression between macrophages in IPF and control sections, but COX-2 was reduced in macrophages in sarcoidosis compared with controls. CONCLUSIONS: These studies confirm COX-2 loss in bronchial epithelial cells but not macrophages in IPF, and show for the first time reduced constitutive COX-1 expression in epithelial cells and macrophages. Similar abnormalities were observed in sarcoidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号