首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 探究颈椎内镜下不同范围小关节切除对颈椎节段稳定性的影响,为临床手术提供生物力学理论基础。方法 基于CT数据建立颈椎C5~6正常有限元模型,并模拟颈椎内镜手术操作获得不同范围(0、25%、50%、75%、100%)单侧小关节切除椎板开窗模型(模型1~5),分析比较各组模型节段活动度(range of motion, ROM)及椎间盘von Mises应力情况。结果 除前屈工况外,模型1、2较正常模型各方向下ROM及椎间盘von Mises应力改变不明显,模型3较正常模型各方向下ROM及椎间盘von Mises应力出现较为明显增加,前屈、后伸、左侧弯、右侧弯、左旋转及右旋转时ROM分别增加27%、4%、3%、13%、5%、16%,von Mises应力分别增加32%、4%、2%、5%、9%、5%。模型4、5较正常模型各方向下ROM及椎间盘von Mises应力增加显著,模型4的ROM分别增加27%、14%、6%、24%、7%、167%,von Mises应力分别增加33%、13%、3%、32%、10%、130%;模型5的ROM分别增加27%、17%、6%、25%、7%、167%,von Mises应力分别增加33%、29%、8%、33%、12%、138%。结论 随着单侧小关节切除范围的增加,颈椎节段ROM和椎间盘von Mises应力极值逐渐增加。当单侧小关节切除超过1/2时,颈椎出现较大的ROM增加及应力改变。临床手术中应尽量保留1/2以上颈椎小关节,避免医源性失稳。  相似文献   

2.
Surgeons often use spinal fixators to manage spinal instability. Dynesys (DY) is a type of dynamic fixator that is designed to restore spinal stability and to provide flexibility. The aim of this study was to design a new spinal fixator using topology optimization [the topology design (TD) system]. Here, we constructed finite element (FE) models of degenerative disc disease, DY, and the TD system. A hybrid-controlled analysis was applied to each of the three FE models. The rod structure of the topology optimization was modelled at a 39 % reduced volume compared with the rigid rod. The TD system was similar to the DY system in terms of stiffness. In contrast, the TD system reduced the cranial adjacent disc stress and facet contact force at the adjacent level. The TD system also reduced pedicle screw stresses in flexion, extension, and lateral bending.  相似文献   

3.
目的对比Zero-P零切迹颈椎前路椎间融合固定系统和Cage-Plate融合系统对相邻节段的生物力学影响,为单节段颈椎病的治疗远期临床疗效提供参考。方法选择正常人CT扫描数据建立颈椎C1~7有限元模型,在验证模型的有效性后,分别建立在颈椎C5~6植入Zero-P和Cage-Plate融合系统的有限元模型。分别加载1.5 N·m扭矩模拟颈椎前屈、后伸、侧弯和旋转运动,对比正常情况下颈椎和分别植入Zero-P与Cage-Plate融合系统后相邻节段活动范围(range of motion,ROM)变化和椎间盘髓核、纤维环、终板及小关节上的应力。结果两种颈椎融合器植入后,C4~5椎间ROM增大20%,但C6~7椎间ROM增大120%,C4~5、C6~7髓核上的应力分别增大78%、110%,相邻节段终板和纤维环上的应力均有所增大。结论 Cage-Plate和Zero-P融合系统植入后均会引起相邻节段ROM增大,以及相邻椎间盘髓核、纤维环和小关节上应力增大,长远上会引起邻近节段的病变。但Cage-Plate和Zero-P融合系统对邻近节段的生物力学影响没有本质区别。  相似文献   

4.
This study was designed to measure the pressure distribution of the intervertebral disc under different degrees of distraction of the interspinous process, because of a suspicion that the degree of distraction of the spinous process may have a close relationship with the disc load share. Six human cadaver lumbar spine L2-L5 segments were loaded in flexion, neutral position, and extension. The L3-L4 disc load was measured at each position using pressure measuring films. Shape-memory interspinous process implants (SMID) with different spacer heights, ranging in size from 10 to 20 mm at 2 mm increments, were used. It was found that a SMID with a spacer height equal to the distance of the interspinous process in the neutral position can share the biomechanical disc load without a significant change of load in the anterior annulus. An interspinous process stabilizing device (IPD) would not be appropriate to use in those cases with serious spinal stenosis because the over-distraction of the interspinous process by the SMID would lead to overloading the anterior annulus which is a recognized cause of disc degeneration.  相似文献   

5.
目的 研究后方韧带复合体逐级切除对损伤胸腰椎稳定性的影响,验证棘上韧带对维持损伤胸腰椎稳定的作用。方法 取8具健康新鲜人体T11~L3节段标本,于L1椎体中1/3行楔形切除,并在材料试验机上压缩至闭合以制备L1椎体骨折。对T12~L1处后方韧带复合体按照关节囊、棘间韧带、棘上韧带、黄韧带的顺序进行逐级切除,依次连续测量T12~L1节段前屈、后伸、侧弯、旋转运动时的运动范围(range of motion, ROM)及中性区(neutral zone, NZ)变化。结果 在前屈和后伸运动中,椎体切除及棘上韧带断裂后,ROM及NZ显著增加。在侧弯运动中,椎体切除和关节囊破坏后,ROM显著增加。在旋转活动中,椎体切除及关节囊破坏导致ROM增加,NZ无显著增加。结论 棘上韧带断裂后,T12~L1节段稳定性发生显著下降,尤其在前屈运动中。棘上韧带是维持胸腰椎节段稳定性的关键韧带。  相似文献   

6.
目的 研究后方韧带复合体逐级切除对损伤胸腰椎稳定性的影响,验证棘上韧带对维持损伤胸腰椎稳定的作用。方法 取8具健康新鲜人体T11~L3节段标本,于L1椎体中1/3行楔形切除,并在材料试验机上压缩至闭合以制备L1椎体骨折。对T12~L1处后方韧带复合体按照关节囊、棘间韧带、棘上韧带、黄韧带的顺序进行逐级切除,依次连续测量T12~L1节段前屈、后伸、侧弯、旋转运动时的运动范围(range of motion, ROM)及中性区(neutral zone, NZ)变化。结果 在前屈和后伸运动中,椎体切除及棘上韧带断裂后,ROM及NZ显著增加。在侧弯运动中,椎体切除和关节囊破坏后,ROM显著增加。在旋转活动中,椎体切除及关节囊破坏导致ROM增加,NZ无显著增加。结论 棘上韧带断裂后,T12~L1节段稳定性发生显著下降,尤其在前屈运动中。棘上韧带是维持胸腰椎节段稳定性的关键韧带。  相似文献   

7.
目的研究后方韧带复合体逐级切除对损伤胸腰椎稳定性的影响,验证棘上韧带对维持损伤胸腰椎稳定的作用。方法取8具健康新鲜人体T11~L3节段标本,于L1椎体中1/3行楔形切除,并在材料试验机上压缩至闭合以制备L1椎体骨折。对T12~L1处后方韧带复合体按照关节囊、棘间韧带、棘上韧带、黄韧带的顺序进行逐级切除,依次连续测量T12~L1节段前屈、后伸、侧弯、旋转运动时的运动范围(range of motion,ROM)及中性区(neutral zone,NZ)变化。结果在前屈和后伸运动中,椎体切除及棘上韧带断裂后,ROM及NZ显著增加。在侧弯运动中,椎体切除和关节囊破坏后,ROM显著增加。在旋转活动中,椎体切除及关节囊破坏导致ROM增加,NZ无显著增加。结论棘上韧带断裂后,T12~L1节段稳定性发生显著下降,尤其在前屈运动中。棘上韧带是维持胸腰椎节段稳定性的关键韧带。  相似文献   

8.
The surgical devices for the treatment of degenerative disc disease are based on different concepts (rods for spine fusion, ROM-restricting or load-bearing devices for dynamic stabilization). In the present work, the effects of some stabilization systems on the biomechanics of the lumbar spine were investigated by means of a finite element model of the L2-L5 spine segment. Pedicular screws and stabilization devices were added at L4-L5. Different rods were considered: stainless steel, titanium, PEEK and the composite ostaPek. Two pedicular devices aimed at motion preservation were also considered: the FlexPLUS and the DSS. All models were loaded by using the hybrid protocol in flexion, extension, lateral bending and axial rotation. The spine biomechanics after implantation resulted significantly sensitive to the design and the materials of the device. The impact of all rods in reducing the ROM was found to be critical (>70% in flexion and extension). The dynamic devices were able to preserve the motion of the segment, but with different performances (ROM reduction from 30% (DSS) to 50% (FlexPLUS)). The shared load was more sensitive to the elastic modulus of the device material than the calculated ROMs (from 7% (PEEK) to 48% (stainless steel)). Regarding devices aimed at motion preservation, the authors suggest to distinguish "flexible" devices, which are able to preserve only a minor fraction (e.g. at most 50%) of the physiological ROM, from "dynamic" devices, which induce a smaller ROM restriction. However, the optimal characteristics of a stabilization device for the treatment of degenerative disc disease still need to be determined by means of basic science and clinical studies.  相似文献   

9.
目的:研究终板凹陷程度变化对腰椎运动节段生物力学影响。方法:在以往建立的腰椎L4~5运动节段三维非线性有限元模型基础上,采用CAD方法精确构建三种不同终板凹陷角改变的有限元模型,有限元模型的椎间盘前凸角、小关节间隙等其余形态学参数及网格划分均保持一致。垂直压缩、屈曲、伸直、前后剪力5种载荷条件下,分别对三种有限元模型生物力学参数进行测试。结果:负载条件下,终板凹陷角增加、终板凹陷程度减小可导致终板-椎间盘界面应变减小,椎间盘刚度及髓核内压增加,椎间盘膨出、纤维环纤维张应力、纤维环基质应力、腰椎后部结构应力以及关节突接触力减小。结论:终板凹陷程度的减小增强了椎间盘对椎体的保护作用;同时可通过影响终板的形变减少对椎间盘的营养传递。  相似文献   

10.
In the current study, finite element analyses were conducted to examine the biomechanical capability of a newly design dynamic stabilization system, FlexPLUS, to restore the load transmission of degenerated intervertebral L4-L5 lumbar motion segment spine under compression. Detailed three-dimensional FE models of L4-L5 motion segment and the FlexPLUS were developed. Compressive loading up to 1000 N was applied to the intact L4-L5 model, the L4-L5 models with slight and moderate degenerated disc, and the implanted L4-L5 model. Further more, the load transmission characteristics of Dynesys and a rigid rod was also simulated for comparison. The resultant load–displacement curves and the load transferred through annulus under various conditions were compared. The predicted axial displacement of L4 top surface against applied compressive force of the intact L4-L5 model agreed well with experimental data. The predicted results showed that degenerated disc has significant effect on the lumbar segment load bearing capacity. Not only the stiffness of the segment was greatly increased, the uniform nature of the disc stress distribution was also altered. The FlexPLUS can effectively reduce the disc loading of degenerated model. Although the non-uniform load distribution pattern through annulus was not improved, the overall stress magnitude was greatly reduced to the level of intact model for grade II degeneration.  相似文献   

11.
Eight fresh porcine lumbar spines received a posterior instrumentation at L4-L5 using pedicle screw-rod system. Each specimen was tested utilizing laminectomies of varying extent. Group A (Integrity) preserved the spinous process and interspinous ligament; Group B (Partial laminectomy) removed the inferior portion of L4 spinous process and preserved the interspinous ligament of L3-L4; Group C (Complete laminectomy) removed the entire L4 spinous process. Hydraulic testing machine was used to generate an increasing moment up to 8400 N mm in flexion and extension. The intervertebral displacement on the superior adjacent disc between L3-L4 was measured using an extensometer. Under extension, no significant difference in the intervertebral displacement was observed among three different models of laminectomy. However, under flexion, the intervertebral displacement on adjacent disc with complete laminectomy was statistically larger than those of integrity and partial laminectomies (P=0.000976 and P=0.0363, respectively). No difference was found between integrity and partial laminectomy groups (P>0.05). This study implies that an instrumented spine with integrity of posterior complex is less likely to develop adjacent instability than a spine with destruction of the anchoring point for supraspinous ligament.  相似文献   

12.
The artificial disc is a mobile implant for degenerative disc replacement that attempts to lessen the degeneration of the adjacent elements. However, inconsistent biomechanical results for the neighboring elements have been reported in a number of studies. The present study used finite element (FE) analysis to explore the biomechanical differences at the surgical and both adjacent levels following artificial disc replacement and interbody fusion procedures. First, a three-dimensional FE model of a five-level lumbar spine was established by the commercially available medical imaging software Amira 3.1.1, and FE software ANSYS 9.0. After validating the five-level intact (INT) model with previous in vitro studies, the L3/L4 level of the INT model was modified to either insert an artificial disc (ProDisc II; ADR) or incorporate bilateral posterior lumbar interbody fusion (PLIF) cages with a pedicle screw fixation system. All models were constrained at the bottom of the L5 vertebra and subjected to 150N preload and 10Nm moments under four physiological motions. The ADR model demonstrated higher range of motion (ROM), annulus stress, and facet contact pressure at the surgical level compared to the non-modified INT model. At both adjacent levels, ROM and annulus stress were similar to that of the INT model and varied less than 7%. In addition, the greatest displacement of posterior annulus occurred at the superior-lateral region. Conversely, the PLIF model showed less ROM, less annulus stress, and no facet contact pressure at the surgical level compared to the INT model. The adjacent levels had obviously high ROM, annulus stress, and facet contact pressure, especially at the adjacent L2/3 level. In conclusion, the artificial disc replacement revealed no adjacent-level instability. However, instability was found at the surgical level, which might accelerate degeneration at the highly stressed annulus and facet joint. In contrast to disc replacement results, the posterior interbody fusion procedure revealed possibly accelerative degeneration of the annulus and facet joint at both adjacent levels.  相似文献   

13.
Failure of ultra-high molecular weight polyethylene components after total disc replacements in the lumbar spine has been reported in several retrieval studies, but immediate biomechanical evidence for those mechanical failures remained unclear. Current study aimed to investigate the failure mechanisms of commercial lumbar disc prostheses and to enhance the biomechanical performances of polyethylene components by modifying the articulating surface into a convex geometry. Modified compressive-shearing tests were utilized in finite element analyses for comparing the contact, tensile, and shearing stresses on two commercial disc prostheses and on a concave polyethylene design. The influence of radial clearance on stress distributions and prosthetic stability were considered. The modified compressive-shearing test revealed the possible mechanisms for transverse and radial cracks of polyethylene components, and would be helpful in observing the mechanical risks in the early design stage. Additionally, the concave polyethylene component exhibited lower contact and shearing stresses and more acceptable implant stability when compared with the convex polyethylene design through all radial clearances. Use of a concave polyethylene component in lumbar disc replacements decreased the risk of transverse and radial cracks, and also helped to maintain adequate stability. This design concept should be considered in lumbar disc implant designs in the future.  相似文献   

14.
An anatomically accurate, three-dimensional, nonlinear finite element model of the human cervical spine was developed using computed tomography images and cryomicrotome sections. The detailed model included the cortical bone, cancellous core, endplate, lamina, pedicle, transverse processes and spinous processes of the vertebrae; the annulus fibrosus and nucleus pulposus of the intervertebral discs; the uncovertebral joints; the articular cartilage, the synovial fluid and synovial membrane of the facet joints; and the anterior and posterior longitudinal ligaments, interspinous ligaments, capsular ligaments and ligamentum flavum. The finite element model was validated with experimental results: force–displacement and localized strain responses of the vertebral body and lateral masses under pure compression, and varying eccentric anterior-compression and posterior-compression loading modes. This experimentally validated finite element model was used to study the biomechanics of the cervical spine intervertebral disc by quantifying the internal axial and shear forces resisted by the ventral, middle, and dorsal regions of the disc under the above axial and eccentric loading modes. Results indicated that higher axial forces (compared to shear forces) were transmitted through different regions of the disc under all loading modes. While the ventral region of the disc resisted higher variations in axial force, the dorsal region transmitted higher shear forces under all loading modes. These findings may offer an insight to better understand the biomechanical role of the human cervical spine intervertebral disc.  相似文献   

15.
目的 分析棘突间撑开器Coflex和X-STOP在治疗腰椎管狭窄中的不同生物力学特性,为棘突间植入物的设计改进提供参考。方法依据1名正常志愿者中立位下螺旋CT扫描资料构建L2~5健康腰椎有限元模型、L4/5椎间盘轻度退变有限元模型、棘突撑开器X-STOP和Coflex的动态固定模型,并对4组模型分别模拟前屈、后伸、侧弯和轴向旋转,验证和对比分析活动度(range of motion, ROM)的变化和应力在棘突和撑开器上的分布。结果与退变模型相比,Coflex和X-STOP有效限制退变节段后伸ROM-48.12%和-75.35%,Coflex还能限制前屈ROM-59.58%,侧弯和扭转ROM不受限制。Coflex和X-STOP减少椎间盘后伸时应力达-58.03%和-80.75%,Coflex在前屈时应力减少-52.84%。侧弯和扭转的ROM基本不受影响。Coflex最大应力发生在前屈时U型弯处,X-STOP最大应力出现在扭转时左翼螺钉连接处。Coflex与腰椎接触最大应力发生在扭转时,为31.38 MPa。X-STOP与腰椎接触最大应力发生在侧弯时,为46.86 MPa。结论Coflex和X-STOP是治疗腰椎管狭窄的有效方法,均可以显著降低后伸ROM和椎间盘压力,对相邻节段无明显影响。  相似文献   

16.
背景:腰椎管狭窄引起腰椎两侧神经根痛等不适症状甚至致残,严重影响人们的生活质量,针对这种疾病临床上主要采用椎间融合治疗。有研究表明棘突融合器易出现骨裂及植入器脱落等现象,所以实验从腰椎L4/5棘突研究椎间融合器的生物力学特性和生物相容性。 目的:分析研究腰椎L4/5棘突间植入椎间融合器的稳定性,以及对相邻节段的生物力学特性和生物相容性。 方法:选择10组新鲜的成人冰冻脊柱标本,将10个标本分为2组,分别为正常标本组和模拟腰椎棘突间植入物组,每组5例。对标本进行编号并放置固定在特殊的夹具中,使用由郑州凯斯特医疗器械有限公司生产的腰椎融合器,选择棘突间弹性内植入,由Ti6AL-4V ELI钛合金构成的cage固定器固定。 结果与结论:人工椎体不同植入位置在中心压缩、前屈、后伸、侧屈4种状态下的应变变化均小于正常组标本(P < 0.05)。两组标本在最大载荷500 N下椎体的位移数据中,与正常标本组比较,模拟腰椎棘突间植入物组线性位移和角位移在前屈、后伸、左侧屈、左旋转时均减小(P < 0.05)。结果表明,腰椎棘突间融合器能够保留伤椎的大部分活动度,维持节段稳定性,降低椎间盘应力。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

17.
传统腰椎融合固定术后存在许多不可避免的缺陷,可造成邻近节段的退行性变或加剧已存在的脊柱退行性变。而动态内固定系统的植入在不牺牲脊柱即刻稳定性的前提下将其动态固定,术后可分散坚固内固定的负荷传导,避免应力遮挡。但目前使用的各种棘突间动态内固定物,尚存在有的未能保留脊柱在各方向上弹性活动等诸多缺陷,均难以保证很低的并发症与很好的远期效果。设计一种新型脊柱动态内固定系统,既能适应脊柱的多向活动,又能设计保留棘上韧带。从设计理念而言,更能满足人体脊柱的正常活动。该棘间多向动态稳定器,可安于棘突根部,实现棘间、棘-板间弹性承载并能多向活动,从而有望克服现有技术的诸多不足并降低其价格,以促进临床的广泛应用。  相似文献   

18.
This study presents a finite element model of the C4-C7 segment in healthy conditions and after implantation of a disc prosthesis at a single level, in order to investigate of the influence of disc arthroplasty on the biomechanics of the cervical spine. A nonlinear finite element model of the C4-C7 segment in intact conditions was developed and run in flexion and extension. A detailed model of the Bryan disc prosthesis, including contacts between the different components of the device, was built and positioned at C5-C6. The calculated segmental motion resulted preserved after disc arthroplasty, with respect to the model of the intact spine, in both flexion and extension. A general preservation of the forces transmitted through the facet joints was obtained; a minor force increase at the implanted level was detected. The analysis of the instantaneous centers of rotation (ICR) in flexion-extension showed the preservation of a physiological kinematics. The mechanical behaviour showed an asymmetry between flexion and extension, probably due to the removal of the anterior longitudinal ligament and the anterior part of the annulus fibrosus, and the preservation of the posterior structures. In general, the disc prosthesis showed to be able to reproduce a nearly physiological motion. However, other important mechanical aspects, such as the possible micromotion at the bone-implant interface and the possible degenerative conditions of the spine, need to be evaluated before drawing a conclusion about total disc arthroplasty from an engineering point of view.  相似文献   

19.
The effects of intervertebral disc (IVD) degeneration on biomechanics of the lumbar spine were analyzed. Finite element models of the lumbar spine with various degrees of IVD degeneration at the L4-L5 functional spinal unit (FSU) were developed and validated. With progression of degeneration, intersegmental rotation at the degenerated FSU decreased in flexion–extension and left–right lateral bending, intradiscal pressure at the adjacent FSUs increased in flexion and lateral bending, and facet joint forces at the degenerated FSU increased in lateral bending and axial rotation. These results could provide fundamental information for understanding the mechanism of injuries caused by IVD degeneration.  相似文献   

20.
Different finite element models of the cervical spine have been suggested for evaluating the roles of ligaments, facet joints, and disks in the stability of cervical spine under sagittal moments. However, no comprehensive study on the response of the full cervical spine that has used a detailed finite element (FE) model (C2-T1) that considers the asymmetry about the mid-sagittal plane has been reported. The aims of this study were to consider asymmetry in a FE model of the full cervical spine and to investigate the influences of ligaments, facet joints, and disk nucleus on the stability of the asymmetric model during flexion and extension. The model was validated against various published in vitro studies and FE studies for the three main loading planes. Next, the C4-C5 level was modified to simulate different cases to investigate the role of the soft tissues in segmental stability. The FE model predicted that excluding the interspinous ligament (ISL) from the index level would cause excessive instability during flexion and that excluding the posterior longitudinal ligament (PLL) or the ligamentum flavum (LF) would not affect segmental rotation. During extension, motion increased when the facet joints were excluded. The model without disk nucleus was unstable compared to the intact model at lower loads and exhibited a similar rotation response at higher loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号