首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efforts to understand the mechanisms that govern how immunodominant T-cell epitopes are selected from protein antigens have focused mostly on differences in the efficiency of processing and presentation of peptide/major histocompatibility complex (MHC) complexes by antigen-presenting cells, while little attention has been directed at the role of the T-cell repertoire. In this report, the influence of the T-cell repertoire on immunodominance was investigated using transgenic mice that express the beta chain from a T-cell receptor specific for a cryptic Ek restricted epitope of hen-egg lysozyme, HEL85-96. In these mice, the frequency of HEL85-96-specific T-cell precursors is increased 10-20-fold over non-transgenic mice. Transgenic mice respond as well as non-transgenic controls to intact HEL, even though they respond poorly or not at all to a variety of other antigens, including the dominant H-2k restricted epitopes of HEL. Following immunization with native HEL, the only HEL peptide that could recall a response in vitro in the transgenic mice was HEL85-96. Therefore, this normally cryptic epitope is the sole immunodominant epitope in the transgenic mice, and this alteration in immune response is due solely to an increase in the frequency of specific T-cell precursors. An analysis of four additional H-2k restricted cryptic epitopes of HEL suggests that three are similarly limited by T-cell frequency, and that only one is consistent with a defect in efficient antigen presentation. This indicates that there are at least two different types of cryptic epitopes, one in which crypticity is caused by inefficient processing or presentation, and another in which the frequency of specific T-cell progenitors is limiting.  相似文献   

2.
Biochemical and functional studies have demonstrated major histocompatibility complex (MHC) class II-restricted presentation of peptides derived from cytosolic proteins, but the underlying processing and presentation pathways have remained elusive. Here we show that endogenous presentation of an epitope derived from the cytosolic protein neomycin phosphotransferase II (NeoR) on MHC class II is mediated by autophagy. This presentation pathway involves the sequestration of NeoR into autophagosomes, and subsequent delivery into the lytic compartment. These results identify endosomes/lysosomes as the processing compartment for cytosolic antigens and furthermore link endogenous antigen presentation on MHC class II with the process of cellular protein turnover by autophagy.  相似文献   

3.
Many human and mouse tumours do not express MHC class II antigens and have reduced levels of class I antigens. Because of the requirement for class I and/or class II antigen for antigen presentation to Th and Tc cells, these phenotypes may enable tumour cells to 'escape' the host's immune response. Experiments presented here are designed to assess the role of MHC class I and class II antigens in tumour immunity, and to overcome the MHC class I- or class II-negative phenotype. When transfected with the syngeneic H-2Db gene, the MHC antigen-negative 402AX teratocarcinoma expresses high levels of H-2Db antigen. 402AX/Db cells are rejected by MHC allogeneic and some MHC syngeneic 402AX-susceptible mice, however the fully syngeneic strain of origin (129) remains tumour-susceptible. Induction of MHC class I gene products on class I antigen-negative embryonal carcinoma cells therefore increases tumour immunogenicity in some hosts, but not in the fully syngeneic mouse. In an attempt to enhance antigen presentation of tumour-associated antigens to Th cells, MHC class I antigen-positive SaI (KkDd) sarcoma cells were transfected with syngeneic A alpha k and A beta k genes to generate Iak-expressing tumour cells. SaI/Ak cells are efficiently rejected by syngeneic A/J (KkDd) mice, while untransfected SaI cells are lethal. Induction of MHC class II antigen expression on the class I antigen-positive SaI sarcoma therefore completely abrogates malignancy.  相似文献   

4.
T cells bearing αβ receptors recognize antigenic peptides bound to class I and class II glycoproteins encoded in the major histocompatibility complex (MHC). Cytotoxic and helper T cells respond respectively to peptide antigens derived from endogenous sources presented by MHC class I, and exogenous sources presented by MHC II, on antigen presenting cells. Differences in the MHC class I and class II structures and their maturation pathways have evolved to optimize antigen presentation to their respective T cells. A main focus of our laboratory is on efforts to understand molecular events in processing of antigen for presentation by MHC class II. The different stages of MHC class II—interactions with molecular chaperons involved in folding and traffic from the ER through the antigen-loading compartments, peptide exchange, and transport to the cell surface have been investigated. Through intense research on biophysical and biochemical properties of MHC class II molecules, we have learned that the conformational heterogeneity of MHC class II induced upon binding to different peptides is a key regulator in antigen presentation and epitope selection, and a determinant of the ability of MHC class II to participate in peptide association or dissociation and interaction with the peptide editor HLA-DM.  相似文献   

5.
Distinct CD4(+) T-cell epitopes within the same protein can be optimally processed and loaded into major histocompatibility complex (MHC) class II molecules in disparate endosomal compartments. The CD1 protein isoforms traffic to these same endosomal compartments as directed by unique cytoplasmic tail sequences, therefore we reasoned that antigen/CD1 chimeras containing the different CD1 cytoplasmic tail sequences could optimally target antigens to the MHC class II antigen presentation pathway. Evaluation of trafficking patterns revealed that all four human CD1-derived targeting sequences delivered antigen to the MHC class II antigen presentation pathway, to early/recycling, early/sorting and late endosomes/lysosomes. There was a preferential requirement for different CD1 targeting sequences for the optimal presentation of an MHC class II epitope in the following hierarchy: CD1b > CD1d = CD1c > > > CD1a or untargeted antigen. Therefore, the substitution of the CD1 ectodomain with heterologous proteins results in their traffic to distinct intracellular locations that intersect with MHC class II and this differential distribution leads to specific functional outcomes with respect to MHC class II antigen presentation. These findings may have implications in designing DNA vaccines, providing a greater variety of tools to generate T-cell responses against microbial pathogens or tumours.  相似文献   

6.
Major histocompatibility complex (MHC) class II molecules present antigenic peptides derived from engulfed exogenous proteins to CD4+ T cells. Exogenous antigens are processed in mature endosomes and lysosomes where acidic proteases reside and peptide‐binding to class II alleles is favoured. Hence, maintenance of the microenvironment within these organelles is probably central to efficient MHC class II‐mediated antigen presentation. Lysosome‐associated membrane proteins such as LAMP‐2 reside in mature endosomes and lysosomes, yet their role in exogenous antigen presentation pathways remains untested. In this study, human B cells lacking LAMP‐2 were examined for changes in MHC class II‐restricted antigen presentation. MHC class II presentation of exogenous antigen and peptides to CD4+ T cells was impaired in the LAMP‐2‐deficient B cells. Peptide‐binding to MHC class II on LAMP‐2‐deficient B cells was reduced at physiological pH compared with wild‐type cells. However, peptide‐binding and class II‐restricted antigen presentation were restored by incubation of LAMP‐2‐negative B cells at acidic pH, suggesting that efficient loading of exogenous epitopes by MHC class II molecules is dependent upon LAMP‐2 expression in B cells. Interestingly, class II presentation of an epitope derived from an endogenous transmembrane protein was detected using LAMP‐2‐deficient B cells. Consequently, LAMP‐2 may control the repertoire of peptides displayed by MHC class II molecules on B cells and influence the balance between endogenous and exogenous antigen presentation.  相似文献   

7.
Antiviral or antitumor immunity requires activation of cytotoxic CD8+ T cells by dendritic cells, which present viral or tumor antigens on major histocompatibility complex (MHC) class I molecules. The intracellular mechanisms facilitating MHC class I-restricted presentation of extracellular antigens ('cross-presentation') are unclear. Here we demonstrate that cross-presentation of soluble antigen occurred in an early endosomal compartment distinct from the endoplasmic reticulum where endogenous antigen is loaded onto MHC class I. Efficient cross-presentation required endotoxin-induced, Toll-like receptor 4- and signaling molecule MyD88-dependent relocation of the transporter associated with antigen processing, essential for loading of MHC class I, to early endosomes. Transport of cross-presented antigen from endosomes to the cell surface was inhibited by primaquine, which blocks endosomal trafficking. Thus, cross-presentation is spatially and mechanistically separated from endogenous MHC class I-restricted antigen presentation and is biased toward antigens containing microbial molecular patterns.  相似文献   

8.
Immunization of C57BL/6 mice with syngeneic cells transformed by simian virus 40 large T antigen (SV40 T ag) induces the generation of T antigen-specific cytotoxic T lymphocytes (CTL) which are restricted by the major histocompatibility class I antigens H-2Db and H-2Kb. Previous studies have shown that the H-2Db-restricted CTL response is directed to at least three distinct epitopes (I, II/III, and V) in the SV40 T antigen which have been precisely mapped using deletion mutagenesis and overlapping synthetic peptides. Although in vivo the CTL response to SV40 T antigen is dominated by the H-2Kb class I antigen, the precise location of the H-2Kb-restricted epitope(s) was not known, and whether there was multiplicity of H-2Kb-restricted epitopes remained unclear. In this study, we have defined the minimal recognition epitope for the SV40-specific H-2Kb-restricted CTL clone Y-4 as T antigen residues 404-411 by using T antigen deletion and point mutants and synthetic peptides. DNA sequence analysis of the region encoding residues 404-411 from the T antigens expressed in three independently isolated CTL clone Y-4 escape variants identified inactivating mutations capable of abrogating CTL recognition. Estimation of CTL precursor (CTLp) frequencies by limiting dilution analysis revealed that CTLp specific for epitope IV represent a large percentage of the total CTL response elicited by the intact T antigen in H-2b mice. Immunization of B6 mice with cells expressing a T antigen derivative deleted of residues 404-411 revealed that site IV represents the only immunodominant H-2Kb-restricted epitope within T antigen.  相似文献   

9.
Cytotoxic T lymphocytes (CTL) recognize foreign antigens as short peptides presented by class I molecules of the major histocompatibility complex (MHC). T2 cells are profoundly defective in the presentation of endogenously synthesized antigens to CTL due to a deletion of MHC class II-encoded genes for transporters associated with antigen presentation (TAP1/TAP2). Surprisingly, we here demonstrate that T2 cells, after infection with Sendai virus, are readily killed by H-2Kb restricted CD8+ T cells. In contrast to classical class I-mediated antigen presentation, the presentation of Sendai virus antigen inT2Kb cells is brefeldin A (BFA) insensitive. The present findings may suggest the presence of an alternative pathway for MHC class I-mediated antigen presentation in T2 cells.  相似文献   

10.
Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens   总被引:1,自引:0,他引:1  
Extracellular antigens are internalized and processed before binding MHC class II molecules within endosomal and lysosomal compartments of professional antigen presenting cells (APC) for subsequent presentation to T cells. Yet select cytoplasmic peptides derived from autoantigens also intersect and bind class II molecules via an unknown mechanism. In human B lymphoblasts, inhibition of the peptide transporter associated with antigen processing (TAP) failed to alter class II-restricted cytoplasmic epitope presentation. By contrast, decreased display of cytoplasmic epitopes via class II molecules was observed in cells with diminished expression of the lysosome-associated membrane protein-2 (Lamp-2). Overexpression of Lamp-2 isoform A (Lamp-2a), an established component of chaperone-mediated autophagy, enhanced cytoplasmic autoantigen presentation. Manipulating APC expression of heat shock cognate protein 70 (hsc70), a cofactor for Lamp-2a, also altered cytoplasmic class II peptide presentation. These results demonstrate a novel role for the lysosomal Lamp-2a-hsc70 complex in promoting immunological recognition and antigen presentation.  相似文献   

11.
The effect on antigenicity of covalent attachment of lipid groups to a protein antigen was investigated. Coupling of palmitic acid to ovalbumin (OVA) enhanced major histocompatibility complex (MHC) class II-restricted presentation to most OVA-specific murine T-cell clones in vitro. The enhanced antigenicity of palmitoylated antigen was localized to the level of presentation of the synthetic peptide epitope, OVA 323-339. T-cell responses to palmitoylated antigen were more difficult to block with anti-MHC class II antibodies than responses to native antigen. However, T-cell proliferation to palmitoyl (p)-OVA and native (n)-OVA were blocked equally by anti-CD4 antibodies. Taken together, the results suggest that lipid conjugation of a protein antigen leads to the formation of a lipopeptide T-cell epitope with increased affinity of binding to MHC class II and/or T-cell receptor (TcR). These results have implications for the design of synthetic peptide vaccines.  相似文献   

12.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

13.
Frauwirth K  Shastri N 《Immunology》2001,102(4):405-415
The invariant chain (Ii) plays a key role in regulating the antigen presentation function of major histocompatibility complex (MHC) class II molecules. Ii also influences the presentation of usually excluded endogenously synthesized proteins into the MHC class II presentation pathway. To evaluate the role of Ii in the generation of peptide-MHC class II complexes derived from endogenously synthesized proteins, we tested mutant Ii constructs in two model systems. Co-expression of wild-type Ii inhibits the presentation of hen-egg lysozyme (HEL) 35-45/Ak complex, but enhances the presentation of ovalbumin (OVA) 247-265/Ak complex from endogenously synthesized HEL or OVA precursors. The differential sensitivity of these antigens to chloroquine was consistent with their being processed in distinct compartments. Nevertheless, with a panel of Ii deletion constructs we show here that both the Ii-mediated inhibition and enhancement functions require the endosomal targeting and CLIP residues. Surprisingly, the Ii mutant lacking the endoplasmic reticulum lumenal residues 126-215, despite apparently lower expression, was at least as effective as full-length Ii in antigen presentation assays. Thus, alternative pathways exist for processing endogenously expressed antigens, and Ii-mediated inhibition and enhancement of peptide/MHC class II expression depend upon the same regions, with neither requiring the 89 C-terminal, lumenal Ii residues.  相似文献   

14.
Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen‐presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross‐presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross‐presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross‐presentation pathway.  相似文献   

15.
We demonstrated that an epitope from the recombinant protective antigen (rPA) of Bacillus anthracis was presented by mature major histocompatibility complex class II (MHC-II) molecules, whereas an epitope from the recombinant virulent (rV) antigen of Yersinia pestis was presented by newly synthesized MHC-II. We addressed which endosomal compartments were involved in the antigen processing of each epitope. Bone-marrow-derived macrophages were subjected to subcellular fractionation; fractions were analysed for the expression of endosomal markers and used as a source of enzyme activity for the processing of rPA and rV antigens. The rPA epitope was productively processed by dense lysosomal fractions and light membrane fractions expressing early endosomal markers Rab5 and early endosomal antigen-1 as well as markers of antigen-presenting compartments (MHC-II, DM, DO and Ii chain). In contrast, the rV epitope was productively processed only by dense fractions with lysosomal activity. No productive antigen-processing activity was associated with fractions of intermediate density expressing Rab7 and Rab9, characteristic of late endosomes. The data suggest that endosomal compartments expressing Rab5 guanosine triphosphatase can productively process protein antigens for presentation by mature MHC class II molecules.  相似文献   

16.
MHC class II molecules present peptides, derived largely from exogenous antigens, to CD4+ T cells. Complex-generation occurs mainly in the specialized late endosomal MHC class II-rich compartment (MIIC) vesicles of antigen-presenting cells (APC). Dendritic cells (DC) have been reported to store intact antigen in MIIC until the receipt of an activation signal, when they process it into peptide-MHC class II complexes. However, constitutive migration of DC from the periphery to secondary lymphoid organs has been observed, and antigen presentation by nonactivated DC is proposed to play a role in the induction of tolerance to peripheral antigens. Thus, constitutive peptide-MHC class II complex generation must also occur in DC in immunologically quiescent situations. We have used a monoclonal antibody that detects a specific peptide-MHC class II complex to directly demonstrate constitutive complex generation in immature murine DC. Protein-derived peptide-MHC class II complexes were detected by flow cytometry at the DC surface within 1 h of antigen exposure in the absence of an exogenous activation signal, and could be detected by confocal microscopy in the MIIC within 5 min of antigen exposure. This processing activity was endotoxin independent. These data provide evidence for constitutive peptide-MHC class II complex generation in immature DC, and thus support a role for this activity in the induction of peripheral tolerance.  相似文献   

17.
The primary immune response of cytotoxic T lymphocytes in H-2d and H-2q mice to infection with lymphocytic choriomeningitis virus is directed mostly towards the common major T cell epitope of amino acids 112-132 on the viral nucleoprotein (NP). The molecules responsible for presentation of the T cell epitope NP112-132 are in both haplotypes the MHC class I L antigens (Ld, Lq). Truncations of the amino and carboxy termini of the NP 112-132 sequence revealed the nonapeptide RPQASGVYM (NP118-126) as a most effective peptide antigen, but even the tetrapeptide GVYM was recognized by CTL of both haplotypes in a class I antigen-restricted specificity. When tyrosine (Y) or methionine (M) were substituted with alanine, CTL recognition of the altered nonamer required 10(6) to 10(8) times higher peptide concentrations and in one case (Y----A on Ld) the peptide was not recognized at all. Up-modulation of the expression of Ld and Lq class I antigens as measured by flow cytometry correlated with the ability to present the peptide antigens. The only exception was peptide NP118-126 (M----A), which was recognized by T cells on L-Ld and L-Lq target cells but failed to up-regulate Ld and Lq antigens.  相似文献   

18.
T cells recognize nonnative processed fragments of antigens presented in association with major histocompatibility complex (MHC) class I or class II molecules. Recently, an accumulating body of evidence has provided a functional linkage between antigen presentation events and the cell biology of MHC molecule assembly and transport. In this review Thomas and Vivian Braciale synthesize these developments into a cohesive model of MHC assembly and antigen presentation pathways.  相似文献   

19.
Watts C 《Nature immunology》2004,5(7):685-692
The endosomes and lysosomes of antigen-presenting cells host the processing and assembly reactions that result in the display of peptides on major histocompatibility complex (MHC) class II molecules and lipid-linked products on CD1 molecules. This environment is potentially hostile for T cell epitope and MHC class II survival, and the influence of regulators of protease activity and specialized chaperones that assist MHC class II assembly is crucial. At present, evidence indicates that individual proteases make both constructive and destructive contributions to antigen processing for MHC class II presentation to CD4 T cells. Some features of CD1 antigen capture within the endocytic pathway are also discussed.  相似文献   

20.
During the process of class II MHC assembly and cell surface expression, the class II-associated invariant chain peptide (CLIP) is removed from the peptide-binding groove of MHC, a task mediated by H-2M. This allows binding and presentation of peptide epitopes. We have previously shown that exogenously added CLIP interferes with this process and down-regulates the cell surface expression of class II molecules. In this study, we explored the effect of exogenously added CLIP on antigen-specific immune responses. In vivo studies with CLIP and various peptide and protein antigens with different affinities for I-A(d) molecules demonstrated that CLIP variably affects the T cell-mediated immune responses. Immunization with CLIP along with the antigen induced a shift from a T(h)1- to T(h)2-like response as determined by the cytokine profile and antibody isotype. These results suggest that the presence of exogenous CLIP can significantly influence the presentation of antigen by class II MHC molecules to CD4 T cells and thereby modulate immune responses. Exogenously added CLIP rapidly localized into the subcellular compartment of antigen-presenting cells where MHC class II molecules are present. We suggest that exogenous CLIP reduces the loading of peptides on the class II molecules, thus down-regulating MHC-peptide complexes on the cell surface. Alternatively, CLIP may bind to cell surface class II molecules and this complex is rapidly internalized resulting in reduced cell surface MHC class II expression. The reduced level of MHC-peptide complexes favors the activation of T(h)2 cells over T(h)1 cells. These results have implications in the regulation of immune responses, particularly the prevention of certain autoimmune diseases where T(h)1-type responses are pathogenic and T(h)2-type responses are protective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号