首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨干细胞因子(SCF)+白细胞介素-6(IL-6)短期扩增对CD34+造血干/祖细胞黏附和迁移能力的影响。方法:用密度剃度离心的方法分离脐血CD34+细胞,经SCF和IL-6孵育48 h,用CCK-8方法检测CD34+细胞增殖能力;用流式细胞仪检测处理前后的CD49d(VLA-4)、CD11a(LFA-1)、CD62L(L-selectin)及CD184(CXCR4)的表达。用纤连蛋白(FN)包被96孔板,检测经或未经因子扩增的CD34+细胞的黏附能力。扩增的CD34+细胞悬浮于transwell培养板的上层,下层添加基质细胞衍生因子(SDF-1),流式细胞仪检测迁移细胞数,计算迁移率。结果:经SCF+IL-6处理48h后CD34+细胞扩增近3倍;表达CD49d、CD11a、CD62L及CD184的CD34+细胞的百分数分别由原来的26.34%±5.37%、17.63%±4.57%、46.38%±6.61%和9.58%±1.56%增加到65.67%±8.72%、56.67%±6.34%、84.76%±9.57%和19.32%±3.64%(P<0.01)。扩增后的CD34+细胞对FN的黏附能力及在SDF-1诱导下的迁移作用都显著增强(P<0.01)。结论:SCF+IL-6短期扩增CD34+ 造血干/祖细胞显著增加细胞的黏附能力,增加SDF-1诱导的迁移作用,可能是SCF+IL-6促进归巢的主要机制之一。  相似文献   

2.
Mesenchymal stem cells (MSC) are multipotent in nature and believed to facilitate the engraftment of hematopoietic stem cells (HSC) when transplanted simultaneously in animal studies and even in human trials. In this study, we transfected culture-expanded MSC with granulocyte macrophage-colony stimulating factor (GMCSF) and stem cell factor (SCF) cytokine genes and then cotransplanted with mononuclear cells (MNC) to further promote HSC engraftment. MNC were harvested from cord blood and seeded in long-term culture for ex vivo MSC expansion. A total of 1 x 10(7) MNC plus MSC/microL were introduced to the tail vein of nonobese diabetic/severe combined immunodeficiency mice. After 6-8 weeks later, homing and engraftment of human cells were determined by flow cytometry and fluorescence in situ hybridization studies. The total nucleated cell count and the engraftment of CD45+/CD34+ cells and XX or XY positive human cells were significantly increased in cotransplanted mice and even higher with the cytokine gene-transfected MSC (GM-CSF>SCF, p<0.05) than in transplantation of MNC alone. These results suggest that MSC transfected with hematopoietic growth factor genes are capable of enhancing the hematopoietic engraftment. Delivering genes involved in homing and cell adhesions, CXCR4 or VLA, would further increase the efficiency of stem cell transplantation in the future.  相似文献   

3.
Adhesion molecules and stromal cell-derived factor-1 (SDF-1)/CXCR4 signaling play key roles in homing and mobilization of hematopoietic stem cells (HSC). Active signaling through SDF-1/CXCR4 and upregulation of adhesion molecules are required for homing, whereas downregulation of adhesion molecules and disruption of SDF-1/CXCR4 signaling are required for mobilization of HSC. We studied the surface expression of CXCR4 very late activation antigen (VLA)-4 and VLA-5 on myeloma cells mobilized with cyclophosphamide and GM-CSF in 12 multiple myeloma patients undergoing HSC mobilization for autologous transplantation. We also studied the plasma levels of SDF-1 in apheresis collection of these patients. We observed a statistically significant decrease in the levels of SDF-1 and surface expression of CXCR4 on myeloma cells in four consecutive apheresis collections compared with premobilization bone marrow specimens. We also observed a statistically significant decrease in surface expression of VLA-4 in myeloma cells in the apheresis collections compared with premobilization bone marrow samples. Furthermore, myeloma cells derived from apheresis collections had decreased adhesion and trans-stromal migration in response to SDF-1, which could be reversed by short incubation with interleukin-6. Hence, mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4.  相似文献   

4.
Recent studies have demonstrated defective bone marrow homing of hematopoietic stem cells after cytokine expansion culture. Adhesion receptors (ARs) are essential to the homing process, and it is possible that cytokine culture modulates AR expression. We studied changes in expression of very late antigen-4 (VLA-4), VLA-5, L-selectin, leukocyte function-associated antigen-1 (LFA-1), CD44, and the stromal cell-derived factor-1 (SDF-1) receptor, CXCR4, during cytokine culture of cord blood (CB) CD34(+) cells. Expression of ARs was studied by flow cytometry on CB CD34(+) cells in whole blood, after purification and during culture for up to 10 days. Cells were cultured with stem cell factor (SCF), thrombopoietin (TPO), Flt3-ligand (Flt3), and G-CSF. Results showed that 80% or more of uncultured CD34(+) cells were positive for VLA-4, L-selectin, LFA-1, CD44, and CXCR4 while 50% were positive for VLA-5. Purification of CD34(+) cells did not affect AR expression, but cytokines increased expression three- to nine-fold throughout the 10-day culture period. In contrast, expression of CXCR4 decreased. Expression changes of ARs and CXCR4 on CD34(+)/CD38(-) cells mirrored those of the total CD34(+) population. The results indicate that cytokine culture significantly increases AR expression on CB CD34(+) cells, which may be related to the decrease in homing of cytokine-cultured hematopoietic stem cells.  相似文献   

5.
Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.  相似文献   

6.
7.
目的探讨基质细胞衍生因子受体(CXCR4)在造血干/祖细胞(HSC)宫内移植归巢中的作用。方法分离人脐血CD34+细胞,用流式细胞仪检测SCF、IL-6处理前后细胞表面CXCR4(CD184)的表达及在Transwell板中的迁移率。在BALB/c胎鼠孕13~14d期间,经胎鼠腹腔注射经不同处理的CD34+细胞,胎鼠出生1个月后取骨髓,用流式细胞仪检测人CD45细胞。结果预处理后表达CD184的CD34+细胞的百分数由原来的9.58%±1.56%上升为19.32%±3.64%。CD34+/CXCR4high细胞迁移率显著增高,但迁移作用可以被antiCXCR4mAb和PTX明显抑制。SCF和IL-6预处理组胎鼠人CD45细胞阳性率显著高于其他组。抗CXCR4抗体或PTX预处理组人CD45细胞检出率显著降低。结论增加CD34+细胞CXCR4的表达有助于宫内移植HSC的归巢,HSC宫内移植归巢过程依赖CXCR4受体,SDF-1/CXCR4调节信号通过Gi蛋白进行跨膜传导。  相似文献   

8.
Fanconi anemia (FA) is a human rare genetic disorder characterized by congenital defects, bone marrow (BM) failure and predisposition to leukemia. The progressive aplastic anemia suggests a defect in the ability of hematopoietic stem cells (HSC) to sustain hematopoieis. We have examined the role of the nuclear FA core complex gene Fancg in the functionality of HSC. In Fancg-/- mice, we observed a decay of long-term HSC and multipotent progenitors that account for the reduction in the LSK compartment containing primitive hematopoietic cells. Fancg-/- lymphoid and myeloid progenitor cells were also affected, and myeloid progenitors show compromised in vitro functionality. HSC from Fancg-/- mice failed to engraft and to reconstitute at short and long term the hematopoiesis in a competitive transplantation assay. Fancg-/- LSK cells showed a loss of quiescence, an impaired migration in vitro in response to the chemokine CXCL12 and a defective homing to the BM after transplantation. Finally, the expression of several key genes involved in self-renewal, quiescence and migration of HSC was dysregulated in Fancg-deficient LSK subset. Collectively, our data reveal that Fancg should play a role in the regulation of physiological functions of HSC.  相似文献   

9.
The maintenance and self-renewal of hematopoietic stem cells (HSC) in culture is a central focus of hematopoietic stem cell research. In vivo, the balance between HSC differentiation, apoptosis, and self-renewal is regulated at the endosteal surface niche in the bone marrow (BM). In feeder-free cultures, the fate of HSC is affected by growth factors/interleukins and serum, which affect the balance between self-renewal, differentiation, and apoptosis and lead to the rapid loss of multipotent HSC. We report that substituting human amniotic fluid (AF) for serum in HSC cultures provides a growth milieu in which HSC differentiation and apoptosis are down-regulated and multipotent HSC are maintained. Murine BM cells were cultured in serum-free medium containing 25% amniotic fluid and stem cell factor (SCF) only, "AF/SCF" cultures. Compared with serum and multiple growth factor-containing medium, cells cultured for 4 weeks in AF/SCF medium displayed downregulation of differentiation markers while maintaining a high fraction of cells expressing Sca1 (51.8%) and c-kit (10.2%). Reconstitution of lethally irradiated C57BL/6 (Ly5.2) mice with cultured Ly5.1 BM cells resulted in high levels of (cultured) donor cells in primary (78 +/- 19.4% and 94.32 +/- 2.5%, 10(5) and 10(6) cells injected, respectively) and secondary (96.5%) recipients at 8 and 11 months post-transplantation. Hence, long-term repopulation with AF/SCF cultured BM cells was maintained. Addition to the cultures of 10% serum, interleukin (IL)-3, IL-6, granulocyte colony stimulating factor (G-CSF), or granulocyte-macrophage colony stimulating factor (GM-CSF), singly or in combination, resulted in rapid differentiation and apoptosis, leading to the total loss of HSC.  相似文献   

10.
Given the tremendous need for and potential of umbilical cord blood (CB) to be utilized as a donor source for hematopoietic stem cell (HSC) transplantation in adults, there is a strong push to overcome the constraints created by the limited volumes and subsequent limited HSC and hematopoietic progenitor cell (HPC) numbers available for HSC transplantation from a single collection. We have previously described the use of CD26 inhibitor treatment of donor cells as a method to increase the transplant efficiency of mouse HSCs and HPCs into a mouse recipient. To study the use of CD26 inhibitors as a method of improving the transplantation of human CB HSCs and HPCs, we utilized the nonobese diabetic/severe combined immunodeficient/beta 2 microglobulin null (NOD/SCID/B2m(null)) immunodeficient mouse model of HSC transplantation. We report here significant improvements in the engraftment of long-term repopulating cells following the treatment of either CD34(+) or lineage negative (lin()) donor CB with the CD26 inhibitor, Diprotin A, prior to transplant. These results establish a basis on which to propose the use of CD26 inhibitor treatment of donor CB units prior to transplantation for the purpose of improving transplant efficiency and subsequently patient outcome.  相似文献   

11.
Hao Y  Cheng D  Ma Y  Zhou W  Wang Y 《Medical hypotheses》2011,76(3):421-423
In peripheral blood stem cell transplantation, bone marrow hematopoietic stem cells (BM HSCs) are collected as they are released from the hypoxic bone marrow, then infused into peripheral blood with higher oxygen concentration after mobilization. In some cases, in vitro amplification culture under normal oxygen may be required, and homing into the hypoxic bone marrow is further carried out after intravenous re-infusion, thereby resulting in constant changes in the reactive oxygen species (ROS). The high-level ROS can damage the hematopoietic reconstitution capacity of HSCs. Thus, the application of antioxidant intervention in the in vivo mobilization of BM HSC and the in vitro culture process of peripheral blood stem cells may be effective against the negative effects of ROS on BM HSC. Antioxidant intervention may also better protect the hematopoietic reconstitution capacity of HSCs, as well as improve the success rate of transplantation.  相似文献   

12.
There is potential interest for combining allogeneic hematopoietic cell transplantation (HCT), and particularly allogeneic HCT with a nonmyeloablative regimen, to the tyrosine kinase inhibitor imatinib (Glivec; Novartis, Basel, Switzerland, http://www.novartis.com) in order to maximize anti-leukemic activity against Philadelphia chromosome-positive leukemias. However, because imatinib inhibits c-kit, the stem cell factor receptor, it could interfere with bone marrow engraftment. In this study, we examined the impact of imatinib on normal progenitor cell function. Imatinib decreased the colony-forming capacity of mobilized peripheral blood human CD133(+) cells but not that of long-term culture-initiating cells. Imatinib also decreased the proliferation of cytokine-stimulated CD133(+) cells but did not induce apoptosis of these cells. Expression of very late antigen (VLA)-4, VLA-5, and CXCR4 of CD133(+) cells was not modified by imatinib, but imatinib decreased the ability of CD133(+) cells to migrate. Finally, imatinib did not decrease engraftment of CD133(+) cells into irradiated nonobese diabetic/severe combined immunodeficient/beta2m(null) mice conditioned with 3 or 1 Gy total body irradiation. In summary, our results suggest that, despite inhibition of hematopoietic progenitor cell growth in vitro, imatinib does not interfere with hematopoietic stem cell engraftment.  相似文献   

13.
Choi JS  Harley BA 《Biomaterials》2012,33(18):4460-4468
Hematopoietic stem cells (HSCs) are adult stem cells with the capacity to give rise to all blood and immune cells in the body. HSCs are housed in a specialized microenvironment known as the stem cell niche, which provides intrinsic and extrinsic signals to regulate HSC fate: quiescence, self-renewal, differentiation, mobilization, homing, and apoptosis. These niches provide a complex, three dimensional (3D) microenvironment consisting of cells, the extracellular matrix (ECM), and ECM-bound or soluble biomolecules that provides cellular, structural, and molecular signals that regulate HSC fate decisions. In this study, we examined the decoupled effects of substrate elasticity, construct dimensionality, and ligand concentration on the biophysical properties of primary hematopoietic stem and progenitor cells (HSPCs) using homologous series of two and three dimensional microenvironments. Microenvironments were chosen to span the range of biophysical environments presented physiologically within the bone marrow, ranging from soft marrow and adipose tissue (<1 kPa), to surrounding cell membranes (1-3 kPa), to developing osteoid (>30 kPa). We additionally investigated the influence of collagen ligand density on HSPC biophysical parameters and compared these behaviors to those observed in HSPCs grown in culture on stiff glass substrates. This work suggests the potential for substrate stiffness and ligand density to directly affect the biophysical properties of primary hematopoietic stem and progenitor cells at the single cell level and that these parameters may be critical design criteria for the development of artificial HSC niches.  相似文献   

14.
Giebel B 《Cells, tissues, organs》2008,188(1-2):116-126
Like other somatic stem cells, hematopoietic stem cells (HSC) contain the capacity to self-renew and to give rise to committed progenitor cells that are able to replenish all hematopoietic cell types. To keep a constant level of HSC, the decision whether their progeny maintain the stem cell fate or become committed to differentiation needs to be highly controlled. In this context it became evident that HSC niches fulfill important functions in keeping the level of HSC more or less constant. Before discovering such niches, it was widely assumed that HSC divide asymmetrically to give birth to a daughter cell maintaining the stem cell fate and to another one which is committed to differentiation. Here, I summarize some of the experimental data being compatible with the model of asymmetric cell division and review some of our latest findings, which demonstrate the occurrence of asymmetric cell divisions within the HSC and hematopoietic progenitor cell compartment. Since cell polarity is an essential prerequisite for asymmetrically dividing as well as for migrating cells, I will also discuss some aspects of cell polarity of primitive hematopoietic cells.  相似文献   

15.
Summary: Hematopoietic stem cells (HSC) have the capacity to reconstitute ail the blood cells in the body HSC are rare, representing on average 0.0 5% of the mononuclear cells present in healthy human bone marrow. Due to their capacity for self–renewal and their pluripotent, long–term reconstituting potential. HSC are considered ideal for transplantation to reconstitute the hematopoietic system after treatment for various hematologic disorders or as a target for the delivery of therapeutic genes. Human HSC also have potential applications in restoring the immune system in autoimmune diseases and in the induction of tolerance for allogeneic solid organ transplantation. With the increased interest in human HSC for clinical applications, technology for the isolation of candidate HSC and knowledge of human hematopoiesis have been growing rapidly. In this article, we discuss the functional characterization of a human CD34+ Thy-1+ HSC population which is essentially free of residual disease, our efforts to generate alternate monoclonal antibodies for the isolation of clinically useful stem or progenitor cell populations, and the identification of a novel lymphoid progenitor as part of an exploration towards defining progenitors with potential application as adjuncts to HSC–based cellular therapy.  相似文献   

16.
Migration of hematopoietic stem cells (HSCs) is essential during embryonic development and throughout adult life. During embryogenesis, trafficking of HSCs is responsible for the sequential colonization of different hematopoietic organs by blood-producing cells. In adulthood, circulation of HSCs maintains homeostasis of the hematopoietic system and participates in innate immune responses. HSC trafficking is also crucial in clinical settings such as bone marrow (BM) and stem cell transplantation. This review provides an overview of the molecular and cellular signals that control and fine-tune trafficking of HSCs and hematopoietic progenitor cells in embryogenesis and during postnatal life. We also discuss the potential clinical utility of therapeutic approaches to modulate HSC trafficking in patients.  相似文献   

17.
Stem cell trafficking between extravascular marrow sites and circulating blood is an essential part of the blood stem cell transplantation technology. Recombinant human G-CSF (rHuG-CSF) is widely used for stem cell peripheralization alone or together with chemopriming mobilizing early and pluripotent CD34+ cell subsets. New cytokine/chemokine mobilization regimens are under investigation such as combined rHuG-CSF and rHu thrombopoietin, rHuG-CSF and interleukin 3, rHuG-CSF and rHu stem cell factor, rHuG-CSF and Flt-3 ligand, human macrophage inflammatory protein, interleukin 1, and interleukin 8. Modifying the adherence of CD34+ cells to extracellular matrix molecules is a new mechanism by which hematopoietic progenitor cells are released into the circulating blood. Blocking the alpha4beta1 integrin receptor on CD34+ progenitor cells by using monoclonal antibodies specific for the heterodimeric complex alpha4beta1 has been shown to further increase the circulating stem cell concentration when given following rHuG-CSF priming. The current clinical research is primarily focused on improving stem cell mobilization efficiency in heavily pretreated and poorly mobilizing patients, and to decrease adverse effects of cytokine treatment.  相似文献   

18.
Hematopoietic stem cells (HSCs) are currently utilized in the treatment of blood diseases, but widespread application of HSC therapeutics has been hindered by the limited availability of HSCs. With a better understanding of the HSC microenvironment and the ability to precisely recapitulate its components, we may be able to gain control of HSC behavior. In this work we developed a novel, biomimetic PEG hydrogel material as a substrate for this purpose and tested its potential with an anchorage-independent hematopoietic cell line, 32D clone 3 cells. We immobilized a fibronectin-derived adhesive peptide sequence, RGDS; a cytokine critical in HSC self-renewal, stem cell factor (SCF); and a chemokine important in HSC homing and lodging, stromal derived factor 1α (SDF1α), onto the surfaces of poly(ethylene glycol) (PEG) hydrogels. To evaluate the system’s capabilities, we observed the effects of the biomolecules on 32D cell adhesion and morphology. We demonstrated that the incorporation of RGDS onto the surfaces promotes 32D cell adhesion in a dose-dependent fashion. We also observed an additive response in adhesion on surfaces with RGDS in combination with either SCF or SDF1α. In addition, the average cell area increased and circularity decreased on gel surfaces containing immobilized SCF or SDF1α, indicating enhanced cell spreading. By recapitulating aspects of the HSC microenvironment using a PEG hydrogel scaffold, we have shown the ability to control the adhesion and spreading of the 32D cells and demonstrated the potential of the system for the culture of primary hematopoietic cell populations.  相似文献   

19.
Cell cycle regulation in hematopoietic stem cells (HSCs) is tightly controlled during homeostasis and in response to extrinsic stress. p53, a well-known tumor suppressor and transducer of diverse stress signals, has been implicated in maintaining HSC quiescence and self-renewal. However, the mechanisms that control its activity in HSCs, and how p53 activity contributes to HSC cell cycle control, are poorly understood. Here, we use a genetically engineered mouse to show that p53 C-terminal modification is critical for controlling HSC abundance during homeostasis and HSC and progenitor proliferation after irradiation. Preventing p53 C-terminal modification renders mice exquisitely radiosensitive due to defects in HSC/progenitor proliferation, a critical determinant for restoring hematopoiesis after irradiation. We show that fine-tuning the expression levels of the cyclin-dependent kinase inhibitor p21, a p53 target gene, contributes significantly to p53-mediated effects on the hematopoietic system. These results have implications for understanding cell competition in response to stresses involved in stem cell transplantation, recovery from adverse hematologic effects of DNA-damaging cancer therapies, and development of radioprotection strategies.  相似文献   

20.
Rhesus monkey embryonic stem (ES) cells undergo differentiation in vitro to generate hematopoietic progenitor cells. Our previous studies demonstrated a high degree of similarity in the expression of genes associated with hematopoietic differentiation, homing, and engraftment in CD34(+) and CD34(+)CD38(-) cells from rhesus monkey ES cells and from fresh or cultured bone marrow (BM). In the present study, we compared the expression patterns of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDIs) in these cells. The expression of genes for cyclins, CDKs, and CDIs was similar among the hematopoietic progenitor cells of different origins, with only minor differences. Differentially expressed genes were also analyzed in CD34(+) lineage-negative cells derived from mouse ES cells and from BM. No difference or totally divergent results were obtained with the latter system, suggesting that this variation may be species specific. We observed, however, that CD34(+) and CD34(+)CD38(-) cells derived from ES cells expressed embryonic epsilon and zeta as well as alpha, beta, and gamma globin genes, whereas no expression of embryonic globins could be detected in the cell preparations from BM. Moreover, erythroblast-enriched CD34(-) cells derived from 4- or 5-week ES cell differentiation cultures also expressed embryonic, fetal, and adult globin genes, with greater beta gene expression, but otherwise were identical to those of the more primitive CD34(+) cells derived from 2-week ES cultures. These latter observations may reflect the presence of heterogeneous cell populations within the cell fractions that were compared, or they may represent variability among ES-cell-derived hematopoietic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号