首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cisplatin is a widely used anti-cancer drug. Ototoxicity is a major dose-limiting side-effect. A reproducible mammalian in-vitro model of cisplatin ototoxicity is required to screen and validate otoprotective drug candidates. We utilized a whole organ culture system of the postnatal mouse inner ear in a rotating wall vessel bioreactor under “simulated microgravity” culture conditions. As previously described this system allows whole organ culture of the inner ear and quantitative assessment of ototoxic effects of aminoglycoside induced hair cell loss. Here we demonstrate that this model is also applicable to the assessment of cisplatin induced ototoxicity. In this model cisplatin induced hair cell loss was dose and time dependent. Increasing exposure time of cisplatin led to decreasing EC50 concentrations. Outer hair cells were more susceptible than inner hair cells, and hair cells in the cochlear base were more susceptible than hair cells in the cochlear apex. Initial cisplatin dose determined the final extent of hair cell loss irrespective if the drug was withdrawn or continued. Dose dependant otoprotection was demonstrated by co-administration of the antioxidant agent N-acetyl l-cysteine. The results support the use of this inner ear organ culture system as an in vitro assay and validation platform for inner ear toxicology and the search for otoprotective compounds.  相似文献   

2.
The aim of this study was to develop a microemulsion formulation of adapalene for transfollicular delivery. A pseudoternary phase diagram was developed for microemulsion consisting of oleic acid as oil phase, tween 20 as surfactant, Transcutol® as cosurfactant, and deionized water. Differential tape stripping and confocal laser scanning microscopy were performed to determine the penetration of microemulsion through hair follicles. Transmission electron microscopy, dynamic light scattering, polarizing light microscopy, and differential scanning calorimetry were performed to characterize the microstructures of microemulsion. The pH and viscosity of the microemulsions were also determined. Permeation studies were carried out in vitro on porcine ear skin over a period of 24 h using Franz diffusion cells. The drug penetration in the hair follicles increased from 0.109 ± 0.03 to 0.292 ± 0.094 μg, as the microstructure of microemulsion shifted from oil-in-water to bi-continuous, with increase in water content of microemulsion. Confocal laser scanning microscopy images suggested that hair follicles provided the path for transfollicular permeation of adapalene microemulsion. These results suggest that microemulsion penetrated through hair follicles and are promising for transfollicular drug delivery. © 2013 Wiley Periodicals, Inc. and the American Pharmacists AssociationJ Pharm Sci 102:2622–2631, 2013  相似文献   

3.
Stearic acid-grafted chitosan oligosaccharide (CSO-SA) micelles presented a potential candidate for intracellular drug delivery carrier due to its special spatial structure. In this article, CSO-SA was further modified by polyethylene glycol (PEG). The physicochemical properties of PEGylated CSO-SA (PEG-CSO-SA) micelles were characterized. After PEGylation, the critical micelle concentration (CMC) of PEG-CSO-SA had no significant change; the micelle size increased; and the zeta potential decreased. The cellular uptake of CSO-SA micelles before and after PEGylation in macrophage RAW264.7, immortalized rat liver cells BRL-3A and human liver tumor cells HepG2 was studied. About 58.4 ± 0.63% of CSO-SA micelles were uptaked by RAW264.7 in 24 h, however, only 17.7 ± 0.94% of PEG-CSO-SA micelles were internalized into RAW264.7 after the CSO-SA was modified with PEG in five molar times. Meanwhile, there were no changes in the uptake after PEGylation of CSO-SA in BRL-3A and HepG2. Using mitomycin C as a model drug, the in vitro anti-tumor activities of the drug loaded in the micelles were investigated. The 50% cellular growth inhibition (IC50) of the drug decreased from 1.97 ± 0.2 to 0.13 ± 0.02 μg/mL after mitomycin C was loaded into CSO-SA micelles, and the IC50 value of the drug had no obvious change when the CSO-SA was modified by PEG.  相似文献   

4.
A quantitative analytical procedure for the determination of ractopamine in pig hair has been developed and validated. The hair samples were washed and incubated at 75 °C with isoxuprine and hair extraction buffer. The drug present was quantified using mixed solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. The limit of quantization (LOQ) was 10 pg/mg and the intra-day precision at 25 pg/mg and 750 pg/mg was 0.49% and 2.8% respectively. Inter-day precision was 0.88% and 3.52% at the same concentrations. The hair extraction percentage recovery at 25 pg/mg and 50 ng/mL was 99.47% and 103.83% respectively. The extraction percentage recovery at 25 pg/mg and 50 ng/mg was 93.52% and 100.26% respectively. Our results showed that ractopamine residues persist in hair in 24 days of withdrawal and also showed the possibility to test ractopamine from pig hair samples.  相似文献   

5.
A new mucoadhesive film for topical administration in the oral cavity of flufenamic acid, a poorly soluble anti-inflammatory drug, has been developed, using complexation with hydroxypropyl-β-cyclodextrin (HPβCD) to improve drug dissolution and release rate. Buccal films were prepared utilising chitosan as mucoadhesive polymer, KollicoatIR® as film-forming polymer and glycerol as plasticiser. Different combinations of these components were used and the obtained films were characterised for weight, thickness, swelling, mucoadhesive and mechanical properties. The film containing chitosan 2%, glycerol 7.5% and KollicoatIR® 1% showed the best properties for the development of the film formulation. The selected film was loaded with the plain drug and its colyophilised and coground products with HPβCD, and in vitro release studies in simulated saliva were performed. The improved drug dissolution properties, obtained by complexation with HPβCD, were critical to achieve complete release from film formulation during 4–5 h. On the contrary, film loaded with the plain drug showed incomplete release, not exceeding 70% release after 5 h. The developed film formulation containing the drug as complex with HPβCD can assure a prolonged drug release directly at the inflammation site and can be proposed as a new therapeutic tool in the treatment of oral mucosa inflammations.  相似文献   

6.
The main objective of the study was to investigate the efficacy of chitosan to facilitate brain bioavailability of intranasally administered nerve growth factor (NGF). In vitro permeability studies and electrical resistance studies were carried out across the bovine olfactory epithelium using Franz diffusion cells. The bioavailability of intranasally administered NGF in rat hippocampus was determined by carrying out brain microdialysis in Sprague–Dawley rats. The in vitro permeation flux across the olfactory epithelium of NGF solution without chitosan (control) was found to be 0.37 ± 0.06 ng/cm2/h. In presence of increasing concentration of chitosan (0.1%, 0.25%, and 0.5%, w/v) the permeation flux of NGF was found to be 2.01 ± 0.12, 3.88 ± 0.19, and 4.12 ± 0.21 ng/cm2/h respectively. Trans-olfactory epithelial electrical resistance decreased ~34.50 ± 4.06% in presence of 0.25% (w/v) chitosan. The Cmax in rats administered with 0.25% (w/v) chitosan and NGF was 1008.62 ± 130.02 pg/mL, which was significantly higher than that for rats administered with NGF only 97.38 ± 10.66 pg/mL. There was ~14-fold increase in the bioavailability of intranasally administered NGF with chitosan than without chitosan. Chitosan can enhance the brain bioavailability of intranasally administered NGF. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3640–3646, 2009  相似文献   

7.
Mass production of nanoparticles using a reliable cost-effective approach is a challenge in the pharmaceutical industry. In this study, the spinning disc processing (SDP) technology was used to fabricate chitosan nanoparticles, with a view to commercially produce chitosan nanoparticle-based drug delivery platforms. Chitosan solution (0.25%, w/v, in dilute acid, 27.5 mL, 1.5 mL/s) was intensely mixed with sodium tripolyphosphate solution (0.10%, w/v, in water, 20mL, 1.1mL/s) on the spinning disc (1000rpm). Transmission electron microscopy and dynamic light scattering data confirmed that the nanoparticles (20 ± 3 nm) were comparable in size and shape to those synthesised using a beaker and magnetic stirrer (31 ± 13 nm). Larger nanoparticles (131 ± 5 nm) were produced by increasing the chitosan and TPP feed concentrations to 0.5% and 0.125%, respectively. Drug loading further increased the size of the nanoparticles, with N-acetyl cysteine (NAC) having a greater effect (403 ± 4 nm) than paracetamol (165 ± 4 nm). Co-loading of both drugs increased the size of the particles to the micron range. In conclusion, the SDP is a robust technology capable of expanding the production of blank and drug-loaded chitosan nanoparticles for the biomedical and pharmaceutical industries.  相似文献   

8.
The overall goal of this study was to develop a micellar system of paclitaxel (PTX) to enhance its oral absorption. An amphiphilic chitosan derivative, N-deoxycholic acid-N, O-hydroxyethyl chitosan (DHC), was synthesized and characterized by FTIR, 1H NMR, elemental analysis, and X-ray diffraction (XRD) techniques. The degree of substitution (DS) of hydroxyethyl group and deoxycholic acid group ranged from 89.5–114.5% and 1.11-8.17%, respectively. The critical micelle concentration (CMC) values of DHC decreased from 0.26 to 0.16 mg/mL as the DS of deoxycholic acid group increased. PTX was successfully loaded in DHC micelles with a high drug loading (31.68 ± 0.14%) and entrapment efficiency (77.57 ± 0.51%). The particle size of PTX-loaded DHC micelles ranged from 203.35 ± 2.19 to 236.70 ± 3.40 nm as the DS of deoxycholic acid group increased. After orally administration of PTX-loaded DHC micelles, the bioavailability was threefold compared with that of an orally dosed Taxol®. The single-pass intestinal perfusion studies (SPIP) showed that the intestinal absorption of micelles was via endocytosis involving a saturable process and a p-glycoprotein (P-gp)-inde-pendent way. All these indicated that the DHC micelles might be a promising tool for oral delivery of poorly water-soluble drugs. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4543–4553, 2010  相似文献   

9.
The aim of this project was to study the effect of stainless steel solid microneedles and microneedle rollers on percutaneous penetration of verapamil hydrochloride and amlodipine besylate.Verapamil, 2-(3,4-dimethooxyphenyl)-5-[2-(3,4 dimethoxyphenyl)ethyl-methyl-amino]-2-propan-2-yl-pentanenitrile is a calcium channel blocker agent that regulates high blood pressure by decreasing myocardial contractilty, heart rate and impulse conduction. Amlodipine, (R, S)-2-[(2-aminoethoxy) methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1, 4-dihydropyridine, is a calcium channel blocker that is used for the management of hypertension and ischemic heart disease. Passive penetration of verapamil and amlodipine across the skin is low. In vitro studies were performed with microneedle-treated porcine ear skin using vertical static Franz diffusion cells (PermeGear, Hellertown, PA, USA). The receiver chamber contained 5 ml of PBS (pH7.4) and was constantly maintained at 37 °C temperature with a water circulation jacket. The diffusion area of the skin was 1.77 cm2. The donor compartment was loaded with 1 ml of the solution containing 2.5 mg/ml of amlodipine besylate. The donor chamber was covered with parafilm to avoid evaporation. Passive diffusion across untreated porcine skin served as control. Aliquots were taken every 2 h for 12 h and analyzed by liquid chromatography–mass spectrometry. Transcutaneous flux of verapamil increased significantly from 8.75 μg/cm2/h to 49.96 μg/cm2/h across microneedle-roller treated porcine skin. Percutaneous flux of amlodipine besylate following the use of stainless steel microneedles was 22.39 μg/cm2/h. Passive flux for the drug was 1.57 μg/cm2/h. This enhancement of amlodipine flux was statistically significant. Transdermal flux of amlodipine with microneedle roller was 1.05 μg/cm2/h in comparison with passive diffusion flux of 0.19 μg/cm2/h. The difference in flux values was also statistically significant. Stainless steel solid microneedles and microneedle rollers increased percutaneous penetration of verapamil hydrochloride and amlodipine besylate. It may be feasible to develop transdermal microneedle patches for these drugs.  相似文献   

10.
Targeted delivery of antiosteoarthritic drug diacerein to articular tissue could be a major achievement and soluble polysaccharide chondroitin sulfate (ChS) may be a suitable agent for this. Therefore, diacerein loaded solid lipid nanoparticles modified with ChS (ChS-DC-SLN) were prepared for synergistic effect of these agents to combat multidimensional pathology of osteoarthritis (OA). Prepared formulation were of size range 396 ± 2.7 nm, showed extended release up to 16 h and increased bioavailability of diacerein by 2.8 times. ChS-DC-SLN were evaluated for their effect on histopathology of femoro-tibial joint of rat knee and amount of ChS and rhein (an active metabolite of diacerein) at targeted site. Concentration of rhein was significantly higher in case of ChS-DC-SLN (7.8 ± 1.23 μg/ml) than that of drug dispersion (2.9 ± 0.45 μg/ml). It can be stated that ChS served as homing to articular cartilage for targeting of drug. Thus, ChS-DC-SLN have great potential to enhance the overall efficacy of treatment for OA.From the Clinical EditorThis study demonstrates the feasibility of targeted delivery of diacerein to articular tissue using soluble polysaccharide chondroitin sulfate as the targeting vector. This approach has the potential to significantly increase anti-arthritic drug concentration in joints without leading to systemic toxicity.  相似文献   

11.
Tizanidine hydrochloride (THCl) is an antispasmodic agent which undergoes extensive first pass metabolism making it a possible candidate for buccal delivery. The aim of this study was to prepare a monolayered buccal patch containing THCl using the emulsification solvent evaporation method. Fourteen formulations were prepared using the polymers Eudragit® RS 100 or Eudragit® RL 100 and chitosan. Polymer solutions in acetone were combined with a THCl aqueous solution (in some cases containing chitosan) by homogenization at 9000 rpm for 2 min in the presence of triethyl citrate as plasticizer and cast in novel Teflon molds. Physicochemical properties such as film thickness, in vitro drug release and in vitro mucoadhesion were evaluated after which permeation across sheep buccal mucosa was examined in terms of flux and lag time. Formulations prepared using a Eudragit® polymer alone exhibited satisfactory physicomechanical properties but lacked a gradual in vitro drug release pattern. Incorporation of chitosan into formulations resulted in the formation of a porous structure which did exhibit gradual release of drug. In conclusion, THCl can be delivered by a buccal patch formulated as a blend of Eudragit® and chitosan, the latter being necessary to achieve gradual drug release.  相似文献   

12.
Nanocarriers may act as useful tools to deliver therapeutic agents to the skin. However, balancing the drug–particle interactions; to ensure adequate drug loading, with the drug–vehicle interactions; to allow efficient drug release, presents a significant challenge using traditional semi-solid vehicles. The aim of this study was to determine how the physicochemical properties of nanoparticles influenced minoxidil release pre and post dose application when formulated as a simple aqueous suspension compared to dynamic hydrofluoroalkane (HFA) foams. Minoxidil loaded lipid nanoparticles (LN, 1.4 mg/ml, 50 nm) and polymeric nanoparticles with a lipid core (PN, 0.6 mg/ml, 260 nm) were produced and suspended in water to produce the aqueous suspensions. These aqueous suspensions were emulsified with HFA using pluronic surfactant to generate the foams. Approximately 60% of the minoxidil loaded into the PN and 80% of the minoxidil loaded into the LN was released into the external aqueous phase 24 h after production. Drug permeation was superior from the PN, i.e. it was the particle that retained the most drugs, irrespective of the formulation method. Premature drug release, i.e. during storage, resulted in the performance of the topical formulation being dictated by the thermodynamic activity of the solubilised drug not the particle properties.  相似文献   

13.
Total hair mercury (Hg) was measured among 205 women undergoing in vitro fertilization (IVF) treatment and the association with prospectively collected IVF outcomes (229 IVF cycles) was evaluated. Hair Hg levels (median = 0.62 ppm, range: 0.03–5.66 ppm) correlated with fish intake (r = 0.59), and exceeded the recommended EPA reference of 1 ppm in 33% of women. Generalized linear mixed models with random intercepts accounting for within-woman correlations across treatment cycles were used to evaluate the association of hair Hg with IVF outcomes adjusted for age, body mass index, race, smoking status, infertility diagnosis, and protocol type. Hair Hg levels were not related to ovarian stimulation outcomes (peak estradiol levels, total and mature oocyte yields) or to fertilization rate, embryo quality, clinical pregnancy rate or live birth rate.  相似文献   

14.
A hydrophobic mucoadhesive thiolated chitosan for hydrophobic drug delivery was designed and prepared by conjugating p-coumaric acid (pCA) to increase hydrophobic compatibility with drug via pi–pi interaction and then covalently linking homocysteine thiolactone (HT) to the pCA-chitosan to increase the mucoadhesive properties. The degree of substituted phenolics in the modified chitosan was about 7.21 ± 0.05 mg gallic acid equivalents (GAE)/g. The pCA-HT-chitosan formed from a 24 h HT conjugation reaction time showed the highest yield of grafted thiol groups (∼17.6 μmol/g) and the strongest mucoadhesive property, being about 10-, 2- and 1.6-fold more than that for the unmodified chitosan at pH 1.2, 4.0 and 6.4, respectively. Piperine (PIP) as a model hydrophobic drug was encapsulated in pCA-HT-chitosan microparticles via electrospray ionization with an encapsulation efficiency of over 80%. In vitro release studies showed a sustained release of PIP to >75% over 12 h between pH 1.2 and 6.4.  相似文献   

15.
Prolonged analgesia may be achieved using a single injection of slow-release local anesthetic formulation. The study objective was to improve the efficacy of a previously reported formulation comprising 10% bupivacaine in poly(dl:lactic acid co castor oil) 3:7. The polymer was loaded with 15% bupivacaine and injected through a 22G needle close to the sciatic nerve of ICR mice. Sensory and motor nerve blockade were measured. The efficacy and toxicity of the polymer–drug combination were determined. Sixty percent of the incorporated bupivacaine was released during 1 week in vitro. During in vitro release no burst effect was seen, suggesting low toxicity of the formulation. Single injection of 0.1 mL of 15% polymer-bupivacaine formulation caused motor block that lasted 64 h and sensory block that lasted 96 h. The MTD of the polymer–drug formulation was established as 0.175 mL. Microscopic examination of the injection sites revealed reversible nerve inflammation and normal internal organs. The polymer poly(dl:lactic acid co castor oil) 3:7 is a safe carrier for prolonged activity of bupivacaine up to 96 h. The increase of drug load in the formulation reduces the drug release rates due to stronger polymer–drug interactions and higher overall hydrophobicity of the formulation  相似文献   

16.
Polyelectrolyte protected β-carotene nanoparticles (nanosuspensions) with average diameter of < 100 nm were achieved by turbulent mixing and flash nanoprecipitation (FNP). Three types of multi-amine functional polyelectrolytes, ε-polylysine (ε-PL), poly(ethylene imine) (PEI), and chitosan, were investigated to electrosterically protect the nanoparticles. Particle size and distribution were measured by dynamic light scattering (DLS); particles were imaged via scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (cryo-TEM). Low pH and high polyelectrolyte molecular weight gave the smallest and most stable particles. High drug loading capacity, > 80 wt%, was achieved by using either PEI or chitosan. X-ray diffraction (XRD) patterns showed that β-carotene nanoparticles were amorphous. These findings open the way for utilization of FNP for preparation of nanoparticles with enhanced bioavailability for highly water insoluble drugs.  相似文献   

17.
A near infrared (NIR) triggered drug delivery platform based on the chitosan-modified chemically reduced graphene oxide (CRGO) incorporated into a thermosensitive nanogel (CGN) was developed. CGN exhibited an NIR-induced thermal effect similar to that of CRGO, reversible thermo-responsive characteristics at 37-42 °C and high doxorubicin hydrochloride (DOX) loading capacity (48 wt%). The DOX loaded CGN (DOX-CGN) released DOX faster at 42 °C than at 37 °C. The fluorescence images revealed DOX expression in the cytoplasm of cancer cells when incubated with DOX-CGN at 37 °C but in the nucleus at 42 °C. Upon irradiation with NIR light (808 nm), a rapid, repetitive DOX release from the DOX-CGN was observed. Furthermore, the cancer cells incubated with DOX-CGN and irradiated with NIR light displayed significantly greater cytotoxicity than without irradiation owing to NIR-triggered increase in temperature leading to nuclear DOX release. These results demonstrate CGN's promising application for on-demand drug release by NIR light.From the Clinical EditorThese investigators report the successful development of a novel near infrared triggered drug delivery platform based on chitosan-modified chemically reduced graphene oxide (CRGO) incorporated into a thermosensitive nanogel (CGN).  相似文献   

18.
Albendazole (ABZ), a broad-spectrum anthelmintic agent, is poorly absorbed after oral administration due to its low aqueous solubility. The aim of this study was to improve albendazole dissolution rate by formulating avicel pellets loaded with 10% w/w drug using extrusion/spheronization technique. In addition the wet masses were characterized by mix torque rheometry (MTR) prior to pelletization process. Different additives (i.e., lactose, Tween 80 and low molecular weight chitosan) were formulated with avicel to enhance the dissolution rate of ABZ from the produced pellets. Moreover, mix torque rheometer was used to quantitatively determine the suitable moisture content in the pastes before the extrusion process. The produced pellets were characterized for their ABZ content, particle size, particle shape, dissolution profile and thermal behaviors. The maximum consistencies (the peak torques) of the wet granules were obtained using 0.667–1.333 ml/g of water or water containing surfactant. Also, the produced pellets have size range from 1036 to 1246 μm. The calculated drug RDR30 for 10%, 30% and 50% lactose concentrations were 1.08, 1.08 and 2.03, respectively, while that calculated for 10%, 30% and 50% w/w chitosan concentrations were 1.71, 3.62 and 3.62, respectively. The results revealed also that increasing the weight ratio of lactose and chitosan was accompanied by a significant reduction of the peak torque magnitude and this was accompanied by an enhanced ABZ dissolution rate.  相似文献   

19.
To enhance permeation and solubility of an intranasal delivery system of fexofenadine hydrochloride (FXD HCl), a new formulation using poloxamer 407 (P407)/hydroxypropyl-β-cyclodextrin (HP-β-CD)-based thermoreversible gels with chitosan, was developed. Prepared gels were characterized by gelation temperature, viscosity, viscoelasticity, and drug release profile. The in vitro permeation study was performed in primary human nasal epithelial cell monolayers cultured by air–liquid interface method. The addition of chitosan caused the slight elevation of gelation temperature and viscosity-enhancing effect. Viscosity enhancement by the incorporation of chitosan caused the retardation of drug release from P407 gels in in vitro release test. The in vitro permeation profile showed that the increase in chitosan content (0.1% and 0.3%, w/v) significantly enhanced the permeation of FXD HCl. After intranasal administration of P407/HP-β-CD–based thermoreversible gels containing 0.1% and 0.3% of chitosan in rabbits at 0.5 mg/kg dose, plasma concentrations of FXD HCl were significantly higher than those of nasal solutions (p < 0.05). In particular, the bioavailability of the optimized thermoreversible gel containing 0.3% chitosan was about 18-fold higher than that of the solution type. These results suggested the feasibility that thermosensitive gels could be used as an effective dosage form to enhance the nasal absorption of FXD HCl.  相似文献   

20.
The potential of ethosomes for delivering ketoprofen via skin was evaluated. The ethosomes were prepared, optimized and characterized. Vesicular shape, size and entrapment efficiency were determined by transmission electron microscopy, dynamic light scattering and minicolumn centrifugation technique, respectively. Vesicle sizes varied from 120.3±6.1 to 410.2±21.8 nm depending on the concentrations of soya phosphatidyl choline (SPC) and ethanol. Entrapment efficiency increased with concentrations of SPC and ethanol. The formulations exhibited entrapment efficiencies of 42–78%. In vitro release through cellophane membrane showed sustained release of drug from ethosomal formulations in contrast to hydroalcoholic drug solution (HA), which released most of the drug within 2–3 h. In vitro drug permeation across human skin revealed improved drug permeation and higher transdermal flux with ethosomal formulations compared to hydroethanolic drug solution. Kinetics of in vitro skin permeation showed zero order drug release from formulations. Based on in vitro transdermal flux, the estimated steady state in vivo plasma concentration from ethosomes attained therapeutic drug levels whereas hydroalcoholic drug solution exhibited sub therapeutic drug concentration with a patch size of 50 cm2. Skin permeation of ethosomal formulations assessed by confocal microscopy revealed enhanced permeation of Rhodamine 123 loaded formulation in comparison to the hydroalcoholic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号