首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increase in neurotrophic factors after craniocerebral injury has been shown to promote fracture healing. Moreover, neurotrophic factors play a key role in the regeneration and repair of peripheral nerve. However, whether craniocerebral injury alters the repair of peripheral nerve injuries remains poorly understood. Rat injury models were established by transecting the left sciatic nerve and using a free-fall device to induce craniocerebral injury. Compared with sciatic nerve injury alone after 6–12 weeks, rats with combined sciatic and craniocerebral injuries showed decreased sciatic functional index, increased recovery of gastrocnemius muscle wet weight, recovery of sciatic nerve ganglia and corresponding spinal cord segment neuron morphologies, and increased numbers of horseradish peroxidase-labeled cells. These results indicate that craniocerebral injury promotes the repair of peripheral nerve injury.  相似文献   

2.
A sciatic nerve transection and repair model was established in Sprague-Dawley rats by transecting the tendon of obturator internus muscle in the greater sciatic foramen and suturing with nylon sutures. The models were treated with tacrolimus gavage (4 mg/kg per day) for 0, 2, 4 and 6 weeks. Specimens were harvested at 6 weeks of intragastric administration. Masson staining revealed that the collagen fiber content and scar area in the nerve anastomosis of the sciatic nerve injury rats were significantly reduced after tacrolimus administration. Hematoxylin-eosin staining showed that tacrolimus significantly increased myelinated nerve fiber density, average axon diameter and myelin sheath thickness. Intragastric administration of tacrolimus also led to a significant increase in the recovery rate of gastrocnemius muscle wet weight and the sciatic functional index after sciatic nerve injury. The above indices were most significantly improved at 6 weeks after of tacrolimus gavage. The myelinated nerve fiber density in the nerve anastomosis and the sciatic nerve functions had a significant negative correlation with the scar area, as detected by Spearman’s rank correlation analysis. These findings indicate that tacrolimus can promote peripheral nerve regeneration and accelerate the recovery of neurological function through the reduction of scar formation.  相似文献   

3.
Peripheral nerve injuries with a poor prognosis are common. Evening primrose oil (EPO) has beneficial biological effects and immunomodulatory properties. Since electrical activity plays a major role in neural regeneration, the present study investigated the effects of electrical stimulation (ES), combined with evening primrose oil (EPO), on sciatic nerve function after a crush injury in rats. In anesthetized rats, the sciatic nerve was crushed using small haemostatic forceps followed by ES and/or EPO treatment for 4 weeks. Functional recovery of the sciatic nerve was assessed using the sciatic functional index. Histopathological changes of gas-trocnemius muscle atrophy were investigated by light microscopy. Electrophysiological changes were assessed by the nerve conduction velocity of sciatic nerves. Immunohistochemistry was used to determine the remy-elination of the sciatic nerve following the interventions. EPO + ES, EPO, and ES obviously improved sciatic nerve function assessed by the sciatic functional index and nerve conduction velocity of the sciatic nerve at 28 days after operation. Expression of the peripheral nerve remyelination marker, protein zero (P0), was in-creased in the treatment groups at 28 days after operation. Muscle atrophy severity was decreased significantly while the nerve conduction velocity was increased significantly in rats with sciatic nerve injury in the injury+ EPO + ES group than in the EPO or ES group. Totally speaking, the combined use of EPO and ES may pro-duce an improving effect on the function of sciatic nerves injured by a crush. The increased expression of P0 may have contributed to improving the functional effects of combination therapy with EPO and ES as well as the electrophysiological and histopathological features of the injured peripheral nerve.  相似文献   

4.
In this study, we constructed tissue-engineered nerves with acellular nerve allografts in Sprague-Dawley rats, which were prepared using chemical detergents-enzymatic digestion and mechanical methods, in combination with bone marrow mesenchymal stem cells of Wistar rats cultured in vitro, to repair 15 mm sciatic bone defects in Wistar rats. At postoperative 12 weeks, electrophysiological detection results showed that the conduction velocity of regenerated nerve after repair with tissue-engineered nerves was similar to that after autologous nerve grafting, and was higher than that after repair with acellular nerve allografts. Immunohistochemical staining revealed that motor endplates with acetylcholinesterase-positive nerve fibers were orderly arranged in the middle and superior parts of the gastrocnemius muscle; regenerated nerve tracts and sprouted branches were connected with motor endplates, as shown by acetylcholinesterase histochemistry combined with silver staining. The wet weight ratio of the tibialis anterior muscle at the affected contralateral hind limb was similar to the sciatic nerve after repair with autologous nerve grafts, and higher than that after repair with acellular nerve allografts. The hind limb motor function at the affected side was significantly improved, indicating that acellular nerve allografts combined with bone marrow mesenchymal stem cell bridging could promote functional recovery of rats with sciatic nerve defects.  相似文献   

5.
Skeletal muscle-derived cells have strong secretory function,while skeletal muscle-derived stem cells,which are included in muscle-derived cells,can differentiate into Schwann cell-like cells and other cell types.However,the effect of muscle-derived cells on peripheral nerve defects has not been reported.In this study,5-mm-long nerve defects were created in the right sciatic nerves of mice to construct a peripheral nerve defect model.Adult female C57BL/6 mice were randomly divided into four groups.For the muscle-derived cell group,muscle-derived cells were injected into the catheter after the cut nerve ends were bridged with a polyurethane catheter.For external oblique muscle-fabricated nerve conduit and polyurethane groups,an external oblique muscle-fabricated nerve conduit or polyurethane catheter was used to bridge the cut nerve ends,respectively.For the sham group,the sciatic nerves on the right side were separated but not excised.At 8 and 12 weeks post-surgery,distributions of axons and myelin sheaths were observed,and the nerve diameter was calculated using immunofluorescence staining.The number,diameter,and thickness of myelinated nerve fibers were detected by toluidine blue staining and transmission electron microscopy.Muscle fiber area ratios were calculated by Masson’s trichrome staining of gastrocnemius muscle sections.Sciatic functional index was recorded using walking footprint analysis at 4,8,and 12 weeks after operation.The results showed that,at 8 and 12 weeks after surgery,myelin sheaths and axons of regenerating nerves were evenly distributed in the muscle-derived cell group.The number,diameter,and myelin sheath thickness of myelinated nerve fibers,as well as gastrocnemius muscle wet weight and muscle area ratio,were significantly higher in the muscle-derived cell group compared with the polyurethane group.At 4,8,and 12 weeks post-surgery,sciatic functional index was notably increased in the muscle-derived cell group compared with the polyurethane group.These criteria of the muscle-derived cell group were not significantly different from the external oblique muscle-fabricated nerve conduit group.Collectively,these data suggest that muscle-derived cells effectively accelerated peripheral nerve regeneration.This study was approved by the Animal Ethics Committee of Plastic Surgery Hospital,Chinese Academy of Medical Sciences(approval No.040)on September 28,2016.  相似文献   

6.
BACKGROUND:Artificial materials composed of acellular heterogeneous nerves can resolve donor shortage problems for the repair of peripheral nerve defects.However,it remains unclear whether artificial materials can overcome immunological rejection of heterogeneous nerve grafts and obtain similar effects as allogeneic nerve grafts.OBJECTIVE:To analyze regeneration and immunological rejection of defective sciatic nerves in rats through the use of acellular heterogeneous nerve grafts.DESIGN,TIME AND SETTING:A randomized,controlled study was performed at the Department of Anatomy,China Medical University and the Experimental Center,First Affiliated Hospital,China Medical University between January and December 2008.MATERIALS:TritonX-100 (Sigma,USA) and deoxycholate (Pierce,USA) were used.METHODS:Bilateral sciatic nerves were collected from adult rabbits and treated with TritonX-100 and sodium deoxycholate to prepare acellular sciatic nerves,which were used to bridge 1 -cm defective sciatic nerves in adult rats.MAIN OUTCOME MEASURES:The lymphocyte percentage in leukocytes was quantified following hemocyte staining.Neural regeneration and the recovery of motor end plates in the gastrocnemius muscle were observed under optical and electronic microscopy following toluidine blue staining,as well as acetylcholinesterase and succinate dehydrogenase histochemical staining.RESULTS:There was no significant difference in the lymphocyte percentage in leucocytes between transplanted and normal rats (P > 0.05).At 3 months after surgery,the rat toes on the operated side were separated and the rats could walk.In addition,the footplates exhibited an escape response when acupunctured.A large number of regenerated nerve fibers were observed in the transplant group,and acetylcholinesterase-positive motor end plates were visible in fibers of the gastrocnemius muscle.CONCLUSION:Acellular heterogeneous nerve transplants for the repair of defective sciatic nerves in rats promote neural regeneration without significant immunological rejection.  相似文献   

7.
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3‐treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine α‐bungarotoxin and neurofilament antibody. Four weeks after surgery, most end‐plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS‐treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP amplitudes was not significantly different between the groups. In contrast, the SAP amplitude only recovered to the low normal range and there were no statistically significant differences between the two groups in terms of sensory recovery rates. The rodent and primate studies suggest that in terms of recovery of physiological responses from target muscle and sensory nerves, entubulation repair of peripheral nerves with a collagen-based nerve guide conduit over a short nerve gap (4 mm) is as effective as a standard nerve autograft.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were macroscopically observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson’s trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects.  相似文献   

10.
Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair.  相似文献   

11.
The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro‐Gold retrograde‐labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain‐derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF‐mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions.  相似文献   

12.
Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium‐modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24‐week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real‐time polymerase chain reaction results showed that upregulation of calcium‐ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium‐ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium‐modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects. In this study, we compared the efficacy of different lengths (6, 8, 10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects. At 16 weeks after the regeneration chamber was implanted, the number, diameter and myelin sheath thickness of the regenerated nerve fibers, as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio, were similar to that observed with autologous nerve transplantation. Our results demonstrate that 6-, 8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effec-tively repair 12-mm-long nerve defects. Because the chemoattractive capacity is not affected by the length of the nerve fragment, we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.  相似文献   

14.
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.  相似文献   

15.
Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application in this manner is not convenient. To this end, the effects of a single intraoperative administration of neutrophil peptide 1 on peripheral nerve regeneration were experimentally observed. A rat model of sciatic nerve crush injury was established using the clamp method. After model establishment, a normal saline group and a neutrophil peptide 1 group were injected with a single dose of normal saline or 10 μg/mL neutrophil peptide 1, respectively. A sham group, without sciatic nerve crush was also prepared as a control. Sciatic nerve function tests, neuroelectrophysiological tests, and hematoxylin-eosin staining showed that the nerve conduction velocity, sciatic functional index, and tibialis anterior muscle fiber cross-sectional area were better in the neutrophil peptide 1 group than in the normal saline group at 4 weeks after surgery. At 4 and 8 weeks after surgery, there were no differences in the wet weight of the tibialis anterior muscle between the neutrophil peptide 1 and saline groups. Histological staining of the sciatic nerve showed no significant differences in the number of myelinated nerve fibers or the axon cross-sectional area between the neutrophil peptide 1 and normal saline groups. The above data confirmed that a single dose of neutrophil peptide 1 during surgery can promote the recovery of neurological function 4 weeks after sciatic nerve injury. All the experiments were approved by the Medical Ethics Committee of Peking University People's Hospital, China(approval No. 2015-50) on December 9, 2015.  相似文献   

16.
Skeletal muscle atrophy inevitably occurs in denervated skeletal muscle,and cell apoptosis plays an important role in skeletal muscle atrophy and degeneration.The present study established rat models of simple nerve injury by transecting the ventral or dorsal spinal nerve root and observed rat skeletal muscle cell apoptosis following simple motor nerve injury versus simple sensory nerve injury.Following skeletal muscle denervation for 10 weeks,cell apoptosis was detected in skeletal muscle,which was accompanied by obvious changes in rat behavior and electrophysiological responses.In addition,changes in cross-sectional area and average gray-scale of motor endplates of the gastrocnemius muscle were analyzed following sciatic nerve injury and motor nerve injury.Cell nuclei in denervated skeletal muscle tissue were more densely arranged than in normal skeletal muscle tissue.Cell nuclei were most dense in the sciatic nerve injury group,followed by the motor nerve injury group and the sensory nerve injury group.Fas/FasL expression and the number of apoptotic cells increased in denervated skeletal muscle,and apoptosis-related changes were observed.These findings suggested that motor and sensory nerves provided trophic actions following skeletal muscle and motor nerve injury,resulting in a greater influence on skeletal muscle atrophy than sensory nerve injury.Therefore,reconstruction of motor nerves should be preferentially considered for treating denervation-induced skeletal muscle atrophy.  相似文献   

17.
《中国神经再生研究》2016,(12):2012-2017
Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.  相似文献   

18.
Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury.Neurotropin is a potential treatment for nerve injuries like demyelinating diseases.This study sought to observe the effects of high-frequency repetitive magnetic stimulation,neurotropin and their combined use in the treatment of peripheral nerve injury in 32 adult male Sprague-Dawley rats.To create a sciatic nerve injury model,a 10 mm-nerve segment of the left sciatic nerve was cut and rotated through 180°and each end restored continuously with interrupted sutures.The rats were randomly divided into four groups.The control group received only a reversed autograft in the left sciatic nerve with no treatment.In the high-frequency repetitive magnetic stimulation group,peripheral high-frequency repetitive magnetic stimulation treatment(20 Hz,20 min/d)was delivered for 10 consecutive days after auto-grafting.In the neurotropin group,neurotropin therapy(0.96 NU/kg per day)was administrated for 10 consecutive days after surgery.In the combined group,the combination of peripheral high-frequency repetitive magnetic stimulation(20 Hz,20 min/d)and neurotropin(0.96 NU/kg per day)was given for 10 consecutive days after the operation.The Basso-Beattie-Bresnahan locomotor rating scale was used to assess the behavioral recovery of the injured nerve.The sciatic functional index was used to evaluate the recovery of motor functions.Toluidine blue staining was performed to determine the number of myelinated fibers in the distal and proximal grafts.Immunohistochemistry staining was used to detect the length of axons marked by neurofilament 200.Our results reveal that the Basso-Beattie-Bresnahan locomotor rating scale scores,sciatic functional index,the number of myelinated fibers in distal and proximal grafts were higher and axon lengths were longer in the high-frequency repetitive magnetic stimulation,neurotropin and combined groups compared with the control group.These measures were not significantly different among the high-frequency repetitive magnetic stimulation,neurotropin and combined groups.Therefore,our results suggest that peripheral high-frequency repetitive magnetic stimulation or neurotropin can promote the repair of injured sciatic nerves,but their combined use seems to offer no significant advantage.This study was approved by the Animal Ethics Committee of the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University,China on December 23,2014(approval No.2014keyan002-01).  相似文献   

19.
A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group 〉 chemically extracted acellular nerve graft + ciliary neurotrophic factor group 〉 chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.  相似文献   

20.
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 10 6 ) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号