首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《中国神经再生研究》2016,(7):1090-1098
Electroacupuncture(EA) has anti-oxidative and anti-inflammatory actions,but whether the neuroprotective effect of EA against cerebral ischemia-reperfusion(I/R) injury involves modulation of the extracellular regulated kinase 1/2(ERK1/2) signaling pathway is unclear.Middle cerebral artery occlusion(MCAO) was performed in Sprague-Dawley rats for 2 hours followed by reperfusion for 24 hours.A 30-minute period of EA stimulation was applied to both Baihui(DU20) and Dazhui(DU14) acupoints in each rat(10 mm EA penetration depth,continuous wave with a frequency of 3 Hz,and a current intensity of 1–3 m A) when reperfusion was initiated.EA significantly reduced infarct volume,alleviated neuronal injury,and improved neurological function in rats with MCAO.Furthermore,high m RNA expression of Bax and low m RNA expression of Bcl-2 induced by MCAO was prevented by EA.EA substantially restored total glutathione reductase(GR),glutathione(GSH) and glutathione peroxidase(GSH-Px) levels.Additionally,Nrf2 and glutamylcysteine synthetase(GCS) expression levels were markedly increased by EA.Interestingly,the neuroprotective effects of EA were attenuated when ERK1/2 activity was blocked by PD98059(a specific MEK inhibitor).Collectively,our findings indicate that activation of the ERK1/2 signaling pathway contributes to the neuroprotective effects of EA.Our study provides a better understanding of the regulatory mechanisms underlying the therapeutic effectiveness of EA.  相似文献   

3.
Cerebralcare Granule(CG) improves cerebral microcirculation and relieves vasospasm,but studies investigating its therapeutic effect on cerebral ischemia/reperfusion injury are lacking.In the present study,we administered CG(0.3,0.1 and 0.03 g/m L intragastrically) to rats for 7 consecutive days.We then performed transient occlusion of the middle cerebral artery,followed by reperfusion,and administered CG daily for a further 3 or 7 days.Compared with no treatment,high-dose CG markedly improved neurological function assessed using the Bederson and Garcia scales.At 3 days,animals in the high-dose CG group had smaller infarct volumes,greater interleukin-10 expression,and fewer interleukin-1β-immunoreactive cells than those in the untreated model group.Furthermore,at 7 days,high-dose CG-treated rats had more vascular endothelial growth factor-immunoreactive cells,elevated angiopoietin-1 and vascular endothelial growth factor expression,and improved blood coagulation and flow indices compared with untreated model animals.These results suggest that CG exerts specific neuroprotective effects against cerebral ischemia/reperfusion injury.  相似文献   

4.
《中国神经再生研究》2016,(9):1431-1437
13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inlfammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic ifbroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic ifbroblast growth factor and vascular endothe-lial growth factor at 24 hours of reperfusion. The effect was most signiifcant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The ifndings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimu-late the upregulation of basic ifbroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects.  相似文献   

5.
A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.  相似文献   

6.
Excess activation and expression of large-conductance Ca2+-activated K+ channels (BKCa channels) may be an important mechanism for delayed neuronal death after cerebral ischemia/reperfusion injury. Electroacupuncture can regulate BKCa channels after cerebral ischemia/reperfusion injury, but the precise mechanism remains unclear. In this study, we established a rat model of cerebral ischemia/reperfusion injury. Model rats received electroacupuncture of 1 mA and 2 Hz atShuigou (GV26) for 10 minutes, once every 12 hours for a total of six times in 72 hours. We found that in cerebral ischemia/reperfusion injury rats, ischemic changes in the cerebral cortex were mitigated after electroacupuncture. Moreover, BKCa channel protein and mRNA expression were reduced in the cerebral cortex and neurological function noticeably improved. These changes did not occur after electroacupuncture at a non-acupoint (5 mm lateral to the left side of Shuigou). Thus, our ifndings indicate that electroacupuncture atShuigou improves neurological function in rats following cerebral ischemia/reperfu-sion injury, and may be associated with down-regulation of BKCa channel protein and mRNA expression. Additionally, our results suggest that theShuigou acupoint has functional speciifcity.  相似文献   

7.
《中国神经再生研究》2016,(11):1779-1783
Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proan-thocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and de-crease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) conifrmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatment of cerebral ischemia/reperfusion injury. Our results suggest that ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties.  相似文献   

8.
目的观察亚低温对大鼠脑缺血再灌注损伤后热休克蛋白70(HSP70)及胶质纤维酸性蛋白(GFAP)表达的影响。方法将雄性Wistar大鼠30只分为假手术组、常温组和亚低温组。制作右侧大脑中动脉阻塞(MCAO)模型,观察缺血2h再灌注48h后各组大鼠脑组织学改变和HSP70及GFAP的表达。结果常温组大鼠脑皮质下神经元严重坏死,亚低温组皮质下神经元坏死严重程度明显较常温组轻,假手术组未见神经元坏死。常温组大鼠脑组织GFAP和HSP70阳性细胞较多,假手术组、亚低温组GFAP和HSP70阳性细胞少于常温组,假手术组偶见HSP70阳性细胞;图像分析显示,常温组大鼠脑组织GFAP、HSP70表达的平均光密度较假手术组和亚低温组明显增高(均P<0.01)。结论亚低温能减轻大鼠脑缺血再灌注损伤,降低脑组织HSP70及GFAP蛋白的表达。  相似文献   

9.
In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/ reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulated, the oxidative stress-related marker malondialdehyde was increased, and super- oxide dismutase activity was decreased in the ischemic cerebral cortex. Atorvastatin pretreatment significantly inhibited these changes. Our findings indicate that atorvastatin protects against ce-rebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects.  相似文献   

10.
11.
Electroacupuncture(EA)has been widely used for functional restoration after stroke.However,its role in post-stroke rehabilitation and the associated regulatory mechanisms remain poorly understood.In this study,we applied EA to the Zusanli(ST36)and Quchi(LI11)acupoints in rats with middle cerebral artery occlusion and reperfusion.We found that EA effectively increased the expression of brain-derived neurotrophic factor and its receptor tyrosine kinase B,synapsin-1,postsynaptic dense protein 95,and microtubule-associated protein 2 in the ischemic penumbra of rats with middle cerebral artery occlusion and reperfusion.Moreover,EA greatly reduced the expression of myelin-related inhibitors Nogo-A and NgR in the ischemic penumbra.Tyrosine kinase B inhibitor ANA-12 weakened the therapeutic effects of EA.These findings suggest that EA can improve neurological function after middle cerebral artery occlusion and reperfusion,possibly through regulating the activity of the brain-derived neurotrophic factor/tyrosine kinase B signal pathway.All procedures and experiments were approved by the Animal Research Committee of Shanghai University of Traditional Chinese Medicine,China(approval No.PZSHUTCM200110002)on January 10,2020.  相似文献   

12.
The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.  相似文献   

13.
目的探讨褪黑素在大鼠脑缺血再灌注损伤中的神经保护作用及可能机制。方法选取45只雄性SD大鼠,分为假手术组(5只)、脑缺血再灌注组(20只)、褪黑素干预组(20只);脑缺血再灌注组和褪黑素干预组根据时间点第6小时、第1天、第3天、第7天分为4个组,每组5只。采用Longa线栓法建立大鼠左侧大脑中动脉栓塞(MCAO)模型,采用HE染色检测脑组织的病理改变,TUNEL染色检测神经细胞的凋亡,免疫组织化学(免疫组化)法及蛋白质印迹法(Western Blotting)观察大鼠脑组织内c-fos表达情况。结果在脑缺血再灌注组的各时间点的HE染色显示,胶质细胞呈现程度不一的增生,神经元出现坏死;褪黑素干预能减轻脑缺血再灌注后胶质细胞增生及神经元的坏死。在TUNEL染色凋亡检测中,脑缺血再灌注组各时间点的神经细胞凋亡升高;褪黑素干预组各时间点的细胞凋亡数低于脑缺血再灌注组(P <0.05)。在免疫组化及蛋白质印迹检测中,脑缺血再灌注组c-fos表达增加,在第1天时达到高峰,之后表达逐步降低;在褪黑素干预组,c-fos表达趋势与缺血再灌注组一致,但表达水平比缺血再灌注组相应时间点低,差异有统计学意义(P <0.05)。结论褪黑素能够减轻脑缺血再灌注后神经元的损伤,降低c-fos的表达,表明褪黑素可能通过调控c-fos的表达在脑缺血再灌注中发挥神经保护作用。  相似文献   

14.
BACKGROUND: Recently, grape seed procyanidin (GSP) has been shown to be exhibit antioxidant effects, effectively reducing ischemia/reperfusion injury and inhibiting brain cell apoptosis. OBJECTIVE: To study the effects of GSP on nerve growth factor (NGF) expression and neurological function following cerebral ischemia/reperfusion injury in rats. DESIGN: Randomized controlled study based on SD rats. SETTING: Weifang Municipal People's Hospital. MATERIALS: Forty-eight healthy adult SD rats weighing 280-330 g and irrespective of gender were provided by the Experimental Animal Center of Shandong University. GSP derived from grape seed was a new high-effective antioxidant provided by Tianjin Jianfeng Natural Product Researching Company (batch number: 20060107). Rabbit-anti-rat NGF monoclonal antibody was provided by Beijing Zhongshan Biotechnology Co., Ltd., and SABC immunohistochemical staining kit by Wuhan Boster Bioengineering Co., Ltd. METHODS: The present study was performed in the Functional Laboratory of Weifang Medical College from April 2006 to January 2007. Forty-eight SD rats were randomly divided into the sham operation group, ischemia/reperfusion group, high-dose GSP (40 mg/kg) group, or low-dose GSP (10 mg/kg) group (n = 12 per group). Ischemia/reperfusion injury was established using the threading embolism method of the middle cerebral artery. Rats in the ischemia/reperfusion model group were given saline injection (2 mL/kg i.p.) once daily for seven days pre-ischemia/reperfusion, and once more at 15 minutes before reperfusion. Rats in the high-dose and low-dose GSP groups were injected with GSP (20 or 5 mg/mL i.p., respectively, 2 mL/kg) with the same regime as the ischemia/reperfusion model group. The surgical procedures in the sham operation group were as the same as those in the ischemia/reperfusion model group, but the thread was approximately 10 mm long, thus, the middle cerebral artery was not blocked. MAIN OUTCOME MEASURES: NGF expression in the  相似文献   

15.
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury. To further iden-tify the involved mechanisms, we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway. We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method. At 30 minutes before model establishment, p38 MAPK blocker SB20358 was injected into the left lateral ventricles. At 1.5 hours after model establishment, electroacupuncture was administered at acupoints of Chize (LU5), Hegu (LI4), Zusanli (ST36), and Sanyinjiao (SP6) for 20 minutes in the affected side. Results showed that the combination of EA and SB20358 injec-tion significantly decreased neurologic impairment scores, but no significant differences were determined among different interventional groups. Hematoxylin-eosin staining also showed reduced brain tissue injuries. Compared with the SB20358 group, the cells were regularly arranged, the structures were complete, and the number of viable neurons was higher in the SB20358 + electroacupuncture group. Termi-nal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assay showed a decreased apoptotic index in each group, with a significant decrease in the SB20358 + electroacupuncture group. Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group. There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group. These find-ings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway. A time period of 3 days could promote the repair of ischemic cerebral nerves.  相似文献   

16.
Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats(20–22 months) were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline(40 m L/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation.  相似文献   

17.
Previous experimental studies have shown that cerebral infarction can be effectively reduced following treatment with scutellaria baicalensis stem-leaf total flavonoid (SSTF). However, the mechanism of action of SSTF as a preventive drug to treat cerebral infarction remains unclear. In this study, Sprague-Dawley rats were pretreated with 50, 100, 200 mg/kg SSTF via intragastric ad- ministration for 1 week prior to the establishment of focal cerebral ischemia/reperfusion injury. The results showed that pretreatment with SSTF effectively improved neurological function, reduced brain water content and the permeability of blood vessels, ameliorated ischemia-induced morphology changes in hippocampal microvessels, down-regulated Fas and FasL protein expression, elevated the activity of superoxide dismutase and glutathione peroxidase, and decreased malondialdehyde content. In contrast to low-dose SSTF pretreatment, the above changes were most obvious after pretreatment with moderateand high-doses of SSTF. Experimental findings indicate that SSTF pretreatment can exert protective effects on the brain against cerebral ischemia/reperfusion injury. The underlying mechanisms may involve reducing brain water content, increasing microvascular recanalization, inhibiting the apoptosis of hippocampal neurons, and attenuating free radical damage.  相似文献   

18.
Previous studies have indicated that electrical stimulation of the cerebellar fastigial nucleus in rats may reduce brain infarct size, increase the expression of Ku70 in cerebral ischemia/ reperfusion area, and decrease the number of apoptotic neurons. However, the anti-apoptotic mechanism of Ku70 remains unclear. In this study, fastigial nucleus stimulation was given to rats 24, 48, and 72 hours before cerebral ischemia/reperfusion injury. Results from the electrical stim- ulation group revealed that rats exhibited a reduction in brain infarct size, a significant increase in the expression of KuT0 in cerebral ischemia/reperfusion regions, and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Double immunofluorescence staining revealed no co-localization of Ku70 with TUNEL-positive cells. However, Ku70 partly co-localized with Bax protein in the cytoplasm of rats with cerebral ischemia/reperfusion injury. These findings suggest an involvement of Ku70 with Bax in the cy- toplasm of rats exposed to electrical stimulation of the cerebellar fastigial nucleus, and may thus provide an understanding into the anti-apoptotic activity of KuT0 in cerebral ischemia/reperfu- sion injury.  相似文献   

19.
The present study established rat models of middle cerebral artery ischemia/reperfusion using the thread method.Rats performed willed-movement(climbing a ladder or wall in a box) when induced by food and water.Results revealed that Longa scores of neurological deficits significantly de-creased in the willed-movement group at 15 days after reperfusion,while expression of glial fibrillary acidic protein,neurotrophic factor-3,and growth-associated protein-43 significantly increased at 7 and 15 days after reper...  相似文献   

20.
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号