首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to mammals, adult zebrafish recover locomotor functions after spinal cord injury (SCI), in part due to axonal regrowth and regeneration permissivity of the central nervous system. Upregulation of major vault protein (MVP) expression after spinal cord injury in the brainstem of the adult zebrafish prompted us to probe for its contribution to recovery after SCI. MVP is a multifunctional protein expressed not only in many types of tumours but also in the nervous system, where its importance for regeneration is, however, unclear. Using an established zebrafish SCI model, we found that MVP mRNA and protein expression levels were increased in ependymal cells in the spinal cord caudal to the lesion site at 6 and 11 days after SCI. Double immunolabelling showed that MVP was co‐localised with Islet‐1 or tyrosine hydroxylase around the central canal of the spinal cord in sham‐injured control fish and injured fish 11 days after surgery. MVP co‐localised with the neural stem cell marker nestin in ependymal cells after injury. By using an in vivo morpholino‐based knock‐down approach, we found that the distance moved by MVP morpholino‐treated fish was reduced at 4, 5 and 6 weeks after SCI when compared to fish treated with standard control morpholino. Knock‐down of MVP resulted in reduced regrowth of axons from brainstem neurons into the spinal cord caudal to the lesion site. These results indicate that MVP supports locomotor recovery and axonal regrowth after SCI in adult zebrafish.  相似文献   

2.
This study sought to elucidate the changes of nuclear factor kappa B (NF-κB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury.The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury,compared with normal saline-tre ated rats.This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury.Overall,the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.  相似文献   

3.
Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modiifed Allen’s method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apop-totic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve ifber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury.  相似文献   

4.
To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improve- ments in locomotor function in injured rats, combined administration of both treatments had a significantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.  相似文献   

5.
6.
BACKGROUND: For the treatment of spinal cord injury, any pathological changes of the injured tissue should be primarily corrected or reversed. Any remaining fibrous function and neurons with intact structure should be retained, and the toxic substances caused by ischemia-hypoxia following spinal cord injury, should be eliminated to create a favorable environment that would promote neural functional recovery. OBJECTIVE: This study was designed to investigate the effects of the impact of early methylprednisolone-treatment on the sensory and motor function recovery in patients with acute spinal cord injury. DESIGN: A self-control observation. SETTING: Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China. PARTICIPANTS: Forty-three patients with acute spinal cord injury were admitted to the Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, between October 2005 and September 2007. These patients were recruited for the present study. The patients comprised 33 males and 10 females, and all met with the inclusive criteria namely, the time between suffering from acute spinal cord injury and receiving treatment was less than or equal to eight hours. METHODS: According to the protocol determined by the State Second Conference of Acute Spinal Cord Injury of USA, all patients received the drop-wise administration of a 30-mg/kg dose of methylprednisolone (H200040339, 500 mg/bottle, Pharmacia N.V/S.A, Belgium) for 15 minutes within 8 hours post injury. After a 45-minute interval, methylprednisolone was administered at 5.4 mg/kg/h for 23 hours. MAIN OUTCOME MEASURES: Prior to and post treatment, acupuncture sense and light touch scoring were performed at 28 dermatomic area key points, including occipital tuberosity and supraclavicular fossa. At the same time, motor scoring of key muscles among 10 pairs of sarcomeres was also performed. RESULTS: All 43 patients participated in the final analysis. There was no s  相似文献   

7.
Melatonin has been shown to diminish edema in rats. Melatonin can be used to treat spinal cord injury. This study presumed that melatonin could relieve spinal cord edema and examined how it might act. Our experiments found that melatonin (100 mg/kg, i.p.) could reduce the water content of the spinal cord, and suppress the expression of aquaporin-4 and glial fibrillary acidic protein after spinal cord injury. This suggests that the mechanism by which melatonin alleviates the damage to the spinal cord by edema might be related to the expression of aquaporin-4 and glial fibrillary acidic protein.  相似文献   

8.
The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase (ERK), serine-threonine protein kinase (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt (p-Akt) and phosphorylated ERK (p-ERK) increased immediately after reperfusion, peaked at 4 hours (p-Akt) or 2 hours (p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.  相似文献   

9.
Receptor protein tyrosine phosphatase sigma (RPTPσ) plays a role in inhibiting axon growth during development. It has also been shown to slow axon regeneration after peripheral nerve injury and inhibit axon regeneration in the optic nerve. Here, we assessed the ability of the corticospinal tract (CST) axons to regenerate after spinal hemisection and contusion injury in RPTPσ deficient (RPTPσ−/−) mice. We show that damaged CST fibers in RPTPσ−/− mice regenerate and appear to extend for long distances after a dorsal hemisection or contusion injury of the thoracic spinal cord. In contrast, no long distance axon regeneration of CST fibers is seen after similar lesions in wild‐type mice. In vitro experiments indicate that cerebellar granule neurons from RPTPσ−/− mice have reduced sensitivity to the inhibitory effects of chondroitin sulfate proteoglycan (CSPG) substrate, but not myelin, which may contribute to the growth of CST axons across the CSPG‐rich glial scar. Our data suggest that RPTPσ may function to prevent axonal growth after injury in the adult mammalian spinal cord and could be a target for promoting long distance regeneration after spinal cord injury. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
A large body of evidence shows that spinal circuits are significantly affected by training,and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection.However,after incomplete lesions,the effect of treadmill training has been debated,which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects.In this study,rats with moderate spinal cord contusion were subjected to either step training on a treadmill or used in the model(control) group.The treadmill training began at day 7 post-injury and lasted 20 ± 10 minutes per day,5 days per week for 10 weeks.The speed of the treadmill was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat.After 3 weeks of step training,the step training group exhibited a significantly greater improvement in the Basso,Beattie and Bresnahan score than the model group.The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury,while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups.These results suggest that treadmill training significantly improves functional recovery and neural plasticity after incomplete spinal cord injury.  相似文献   

11.
Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.  相似文献   

12.
BACKGROUND: For the treatment of spinal cord injury, any pathological changes of the injured tissue should be primarily corrected or reversed. Any remaining fibrous function and neurons with intact structure should be retained, and the toxic substances caused by ischemia-hypoxia following spinal cord injury, should be eliminated to create a favorable environment that would promote neural functional recovery. OBJECTIVE: This study was designed to investigate the effects of the impact of early methylprednisolone-treatment on the sensory and motor function recovery in patients with acute spinal cord injury. DESIGN: A self-control observation. SETTING: Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China. PARTICIPANTS: Forty-three patients with acute spinal cord injury were admitted to the Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, between October 2005 and September 2007. These patients were recruited for the present study. The patients comprised 33 males and 10 females, and all met with the inclusive criteria namely, the time between suffering from acute spinal cord injury and receiving treatment was less than or equal to eight hours. METHODS: According to the protocol determined by the State Second Conference of Acute Spinal Cord Injury of USA, all patients received the drop-wise administration of a 30-mg/kg dose of methylprednisolone (H200040339,500mg/bottle, Pharmacia N.V/S.A, Belgium) for 15 minutes within 8 hours post injury. After a 45-minute interval, methylprednisolone was administered at 5.4mg/kg/h for 23 hours. MAIN OUTCOME MEASURES: Prior to and post treatment, acupuncture sense and light touch scoring were performed at 28 dermatomic area key points, including occipital tuberosity and supraclavicular fossa. At the same time, motor scoring of key muscles among 10 pairs of sarcomeres was also performed.RESULTS: All 43 patients participated in the final analysis. There was no significant difference of sensory and motor scores in patients with complete acute spinal cord injury between prior to and post methylprednisolone impact treatment (P>0.05). The motor score was significantly decreased in patients with incomplete acute spinal cord injury post methylprednisolone impact treatment (P<0.01).CONCLUSION: Early methylprednisolone impact may improve the motor function of patients with incomplete acute spinal cord injury. However, it has no influences on patients with complete acute spinal cord injury.  相似文献   

13.
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.  相似文献   

14.
Oligodendrocyte-produced Nogo-A has been shown to inhibit axonal regeneration. Methylprednisolone plays an effective role in treating spinal cord injury, but the effect of methylprednisolone on Nogo-A in the injured spinal cord remains unknown. The present study established a rat model of acute spinal cord injury by the weight-drop method. Results showed that after injury, the motor behavior ability of rats was reduced and necrotic injury appeared in spinal cord tissues, which was accompanied by increased Nogo-A expression in these tissues. After intravenous injection of high-dose methylprednisolone, although the pathology of spinal cord tissue remained unchanged, Nogo-A expression was reduced, but the level was still higher than normal. These findings implicate that methylprednisolone could inhibit Nogo-A expression, which could be a mechanism by which early high dose methylprednisolone infusion helps preserve spinal cord function after spinal cord injury.  相似文献   

15.
16.
Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.  相似文献   

17.
The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.  相似文献   

18.
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.  相似文献   

19.
Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In the present study, autologous Schwann cells in combination with a fetal spinal cord cell suspension were transplanted into adult Wistar rats with spinal cord injury, and newly generated axonal connections were observed ultrastructurally. Transmission electron microscopic observations showed that...  相似文献   

20.
《中国神经再生研究》2016,(12):1990-1996
Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity has become the key to the success of central nervous system repair. It remains controversial whether fine motor skill training contributes to the recovery of neurological function after spinal cord injury. Therefore, we established a rat model of unilateral corticospinal tract injury using a pyramidal tract cutting method. Horizontal ladder crawling and food ball grasping training procedures were conducted 2 weeks before injury and 3 days after injury. The neurological function of rat forelimbs was assessed at 1, 2, 3, 4, and 6 weeks after injury. Axon growth was observed with biotinylated dextran amine anterograde tracing in the healthy corticospinal tract of the denervated area at different time periods. Our results demonstrate that compared with untrained rats, functional recovery was better in the forelimbs and forepaws of trained rats. The number of axons and the expression of growth associated protein 43 were increased at the injury site 3 weeks after corticospinal tract injury. These findings confirm that fine motor skill training promotes central nervous system plasticity in spinal cord injury rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号