首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transection of the rat sciatic nerve induces retrograde changes in the dorsal root ganglia (DRG) neurons and in the motoneurons in the ventral grey matter of the lumbar L4-L6 spinal cord segments. In the ipsilateral dorsal grey matter and in the ipsilateral nucleus gracilis, transganglionic changes occur in the terminal fields of the centrally projecting axons of injured DRG neurons. As revealed by immunocytochemistry, the neuronal reactions were associated with a rapid proliferation and activation of microglial cells in the lumbar spinal cord as well as in the nucleus gracilis. Reactive microglial cells were detected as early as 24 h after sciatic axotomy. The microglial reaction had a maximum around day 7 postlesion and disappeared around 6 weeks after axotomy. In addition to light microscopy, activated, perineuronal microglia were identified by immuno-electron microscopy in the ventral grey matter. In the DRG, satellite cells constitutively expressed major histocompatibility complex (MHC) class II antigens. Sciatic axotomy led to a proliferation of satellite cells and an increased expression of MHC class II molecules in particular. This satellite cell reaction started 24 h after axotomy and continued to increase gradually until about 6 weeks after the lesion. Resident macrophages, detected in the DRG interstitial tissue by their expression of monocyte/macrophage markers, also reacted to sciatic axotomy. Our data suggest that (1) sciatic axotomy leads to a rapid microglial reaction in both the ventral and dorsal grey matter of the lumbar spinal cord and in the ipsilateral nucleus gracilis; (2) the immunophenotype of activated microglia following sciatic axotomy is comparable with that observed after axotomy of cranial nerves, e.g. the facial nerve; (3) satellite cells in DRG constitutively express MHC class II molecules; and (4) sciatic axotomy leads to a rapid activation of satellite cells and interstitial macrophages in the axotomized DRG.  相似文献   

2.
Microglia represent a population of brain macrophage precursor cells which are intrinsic to the CNS parenchyma. Transection of the facial nerve in the newborn rat causes death of the affected motor neurons which is accompanied by massive activation of local microglia. Many of these cells develop into macrophages as can be shown by immunocytochemistry for OX-42 and ED1. Using the new polyclonal microglial marker ionized calcium binding adapter molecule 1, iba1, in combination with immunocytochemical double-labeling for the proliferating cell nuclear antigen (PCNA), or [3H]thymidine autoradiography, and confocal microscopy, qualitative as well as quantitative differences can be demonstrated between the newborn and the adult axotomized rat facial nucleus. While microglial cells are the only cell population which responds to axotomy by cell division in the adult facial nucleus, GFAP positive reactive astrocytes can be shown to undergo mitosis following axotomy in the newborn rat. Furthermore, ED1 immunoreactivity, early expression of MHC class II molecules and morphological transformation of microglia into macrophages can only be observed under conditions of neuronal degeneration, i.e., in the neonatal rat facial nucleus. Thus, the combination of cellular markers described here should be useful for studies employing the neonatal rat facial nucleus as an in vivo assay system to test the efficacy of neurotrophic factors.  相似文献   

3.
Presentation of antigen is key to the development of the immune response, mediated by association of antigen with major histocompatibility complex glycoproteins abbreviated as MHC1 and MHC2. In the current study, we examined the regulation of MHC1 in the brain after facial axotomy. The normal facial motor nucleus showed no immunoreactivity for MHC1 (MHC1-IR). Transection of the facial nerve led to a strong and selective up-regulation of MHC1-IR on the microglia in the affected nucleus, beginning at day 2 and reaching a maximum 14 days after axotomy, coinciding with a peak influx of the T lymphocytes that express CD8, the lymphocyte coreceptor for MHC1. Specificity of the MHC1 staining was confirmed in beta2-microglobulin-deficient mice, which lack normal cell surface MHC1-IR. MHC1-IR was particularly strong on phagocytic microglia, induced by delayed neuronal cell death, and correlated with the induction of mRNA for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and interferon-gamma and the influx of T lymphocytes. Mice with severe combined immunodeficiency (scid), lacking T and B cells, showed an increase in the number of MHC1-positive nodules but no significant effect on overall MHC1-IR. Transgenic deletion of the IL1 receptor type I, or the interferon-gamma receptor type 1 subunit, did not affect the microglial MHC1-IR. However, a combined deletion of TNF receptors 1 and 2 (TNFR1&2-KO) led to a decrease in microglial MHC1-IR and to a striking absence of the phagocytic microglial nodules. Deletion of TNFR2 (p75) did not have an effect; deletion of TNFR1 (p55) reduced the diffuse microglial staining for MHC1-IR but did not abolish the MHC1(+) microglial nodules. In summary, neural injury leads to the induction of MHC1-IR on the activated, phagocytic microglia. This induction of MHC1 precedes the interaction with the immune system, at least in the facial motor nucleus model. Finally, the impaired induction of these molecules, up to now, only in the TNFR-deficient mice underscores the central role of TNF in the immune activation of the injured nervous system.  相似文献   

4.
We have studied the microglial reaction that accompanies cortical infarction induced by middle cerebral artery occlusion (MCAO). Lectin histochemistry with the B4-isolectin from Griffonia simplicifoliaas well as immunocytochemistry with a panel of monoclonal antibodies directed against major histocompatibility complex (MHC) and lymphocytic antigens were performed. Principal attention was focused on neocortical and thalamic regions, representative of primary and secondary ischemic damage, respectively. With the lectin procedure, activated microglial cells were abundant in the neocortex 24 hours after MCAO. In contrast, microglial activation in the thalamus was not apparent until day 2 after MCAO. On day 5, MHC class II antigen was expressed by reactive microglia in fiber tracts traversing the striatum, but was absent from activated microglia in the primary cortical infarction area. MHC class I and lymphocytic antigens were expressed differentially on microglia with class I antigens appearing early and lymphocytic antigens appearing late in the time course after focal ischemia. The findings are compatible with previous studies during global ischemia and confirm the early activation and the progressive nature of immunomolecule expression on activated microglia after an ischemic insult. In addition to neocortical and thalamic sites, our results showed an early microglial activation to be present also in forebrain regions outside of the middle cerebral artery (MCA) territory, such as the contralateral cortex and hippocampus. A unilateral microglial reaction was also detectable after long-term survival (≥4 weeks) in the pyramidal tracts, as well as in the corticospinal tracts at cervical but not lumbar spinal cord levels. Ischemia-induced neuronal damage, as evaluated by Nissl staining, was found only in cortical and thalamic regions. We conclude that the demonstration of reactive microglia indicates not only imminent ischemic neuronal damage within MCA territory but can also delineate extra-focal disturbances, possibly reflecting subtle and transitory changes in neuronal activity. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Reaction of microglial cells as well as DNA fragmentation in pyramidal cells was investigated using immunohisto-chemistry and in situ end-labeling method (TUNEL) in the hippocampus of rats after rapid kindling or kainic acid treatment. In intact rats, no or very little DNA fragmentation was detected in the hippocampus. Resting microglia distributed evenly throughout the hippocampus. Neither major histocompatibility complex antigens class I (MHC I) nor class II (MHC II) immunoreactivity was seen in the hippocampus. In the rapid-kindling model, no DNA fragmentation, reactive microglia or MHC antigen-positive cells were present in the hippocampus. In rats given an intraperitoneal injection of kainic acid (12 mg/kg), reactive microglial cells were seen around pyramidal neurons in the CA1 and CA3 field of the hippocampus as well as in the hilus of the dentate gyrus at 3 h. At that point in time, DNA fragmentation was not detected. DNA fragmentation was clearly observed, mainly in the CA1 region of the hippocampus, from 24 h to 4 weeks after the kainic acid injection. The number of reactive microglia was quickly increased and reached a maximum at 7 days after the injection, and continued until 8 weeks thereafter. During this period, many reactive microglia expressed MHC I and MHC II. The present study indicates that epileptic seizures do not depend on microglial activation and that microglial activation is closely related to the neuronal death process induced by kainic acid.  相似文献   

6.
Neural mouse xenografts undergoing rejection in the adult recipient rat brain were characterized with regard to infiltrating host leukocytes and reactions of graft and host astro- and microglial cells. Rejection occurred within 35 days with infiltration of the grafts by in particular macrophages and T-cells as well as blood-brain barrier (BBB) leakage for IgG. In the surrounding host brain microglial cells showed increased histochemical staining for nucleoside diphosphatase (NDPase) and increased immunocytochemical expression of complement receptor type 3 (CR3), while astroglial cells displayed an increased immunoreactivity for glial fibrillary acidic protein (GFAP). Light microscopic findings of rat major histocompatibility complex (MHC) antigen class I on microglial cells, endothelial cells and leukocytes were confirmed at the ultrastructural level and extended to include a few astrocytes. Rat and mouse MHC antigen class II was only detected on leukocytes and activated microglia. We suggest that host macrophages and activated host and xenograft microglial cells act in situ as immunostimulatory cells on T-helper cells, and that increased levels of donor MHC antigen class I may further enhance the killer activity exerted by host T-cytotoxic cells.  相似文献   

7.
Expression of major histocompatibility complex (MHC) antigens was studied in the brains of 10 healthy sheep 2 months to 5 years old and 13 sheep infected with visna virus by intracerebral inoculation and killed one and 6 months post infection (p.i.). In healthy sheep there was prominent expression of class I, mainly on endothelial cells but also detected on ependyma, choroid plexus and in the leptomeninges. Class II expression was sparse. It was observed on perivascular cells, in choroid plexus, leptomeninges and on microglial cells in the white matter. No definite increase with age in the constitutive expression of class I and II was observed, confirming that we are dealing with a true constitutive expression. In visna-infected sheep a considerable induction of MHC antigens on microglia was observed, which correlated with severity of lesions and was mainly found in or adjacent to inflammatory infiltrates of the white matter. Increase in class II antigen expression was detected in all sheep but class I only in sheep with the most severe lesions 6 months p.i., an indication of a higher threshold for induction of class I than class II antigens on microglia. Few cells expressed viral antigens, indicating that direct immune-mediated destruction of infected cells plays a minor role in evolution of lesions. Since the preferential induction of MHC antigens on microglia in the white matter correlated with the lesion pattern, activated microglia may play a considerable role in the pathogenesis of lesions.  相似文献   

8.
In order to study microglial cells and microglia-derived brain macrophages in vitro, a method has been developed which allows the transfer of mitotic microglial cells from adult rat brain into tissue culture. The studies were performed on facial motor nuclei which were explanted after axotomy of the facial nerve. Outgrowing cells were identified and characterized by (i) morphological criteria using light and electron microscopy, (ii) in vivo [3H]thymidine labeling combined with subsequent in vitro autoradiography, (iii) immunocytochemistry for vimentin, GFAP, Fc and complement receptors, MHC antigens, laminin, fibronectin, factor VIII related- and 04 antigen as well as lectin histochemistry, and (iv) functional in vitro tests. In addition, a microglial cell line was established from proliferating cells. The results indicate that perineuronal microglia rather than astrocytes, perivascular cells, oligodendrocytes or endothelial cells may become phagocytic after having been activated by axotomy in situ.  相似文献   

9.
Our previous studies indicate that glucose transporter 5 (GLUT5) is a microglial marker in routine paraffin sections, and is rarely present in monocytes/macrophages of the peripheral organs. We examined the expression of GLUT5 in 91 cases of human gliomas to characterize the microglial phenotype in glioma tissues. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections using such antibodies as a GLUT5 antibody, two markers for activated microglia: major histocompatibility complex (MHC) class II Ag and macrophage scavenger receptor class A (MSR-A), and MIB-1 antibody. The immunoreactivity of GLUT5 was present in three microglial phenotypes: ramified (resting), activated, and ameboid (macrophagic) microglia in most of the cases. A double-labelling study of astrocytic tumours using GLUT5 and MIB-1 antibodies demonstrated a proportion of proliferating microglia. However, no morphological difference between MIB-1-positive, microglial cells and MIB-1-negative, microglial cells was found. The number of GLUT5-positive microglia was significantly (P < 0.001) higher in astrocytic tumours than in oligodendroglial tumours. Many GLUT5-positive microglia (up to 52% in total cells) were often observed in pilocytic astrocytomas, where microglial cells were predominantly ramified, and the number of MHC class II- or MSR-A-positive microglia was less than GLUT5-positive microglia. Thus, the present study indicated that intrinsic microglia can be a source of microglia/macrophages cell populations in astrocytic tumours, and that pilocytic astrocytomas often have a high proportion of microglial cells with mild activation.  相似文献   

10.
Following facial nerve axotomy in mice, peripheral T cells home to the injured facial motor nucleus (FMN) where they may influence the glial response. Interactions between T cells and microglia, which proliferate in response to axotomy, appear to confer neuroprotection to injured motoneurons. The primary objective of this study was to determine whether T lymphocytes could influence the microglial reaction to motoneuron injury. These experiments tested the hypotheses that (1) C57BL/6 (B6) and 129 mice, inbred strains which have high and low levels of astroglial reactivity in the axotomized FMN, respectively, would also exhibit high and low levels of T cell infiltration, and (2) that these differences would correspond with levels of microglial reactivity and neuronal regeneration. Thus, we compared the response to facial nerve axotomy in B6, 129, and immunodeficient RAG2 knockout (RAG2 KO) mice on these two backgrounds at 14 day post-axotomy for differences in levels of 1) CD3+ T cell infiltration; (2) major histocompatibility complex II (MHC2) expression by microglia; (3) perineuronal microglial phagocytic clusters, an indirect measure of neuronal death; and (4) overall microglial activity as assessed by CD11b expression. To examine the inheritance pattern of the abovementioned neuroimmune measures, we also made assessments in B6x129 F1 generation mice. B6 and 129 mice displayed high and low levels of T cell infiltration to the affected FMN and low and high MHC2 expression, respectively. Levels of microglial activity did not differ between the two strains. In immunodeficient RAG2 KO mice on both backgrounds, the number of MHC2+ microglia did not differ from their immunologically normal background controls. Moreover, deletion of either the RAG2 or RAG1 genes in B6 mice was not associated with increased neuronal death at day 14 post-axotomy, as we had previously found in B6 mice with the severe combined immunodeficiency (SCID) mutation. Contrary to our hypothesis, the paucity of T cells in the affected FMN of the 129 mice was associated with less neuronal death when compared to B6 mice, which showed a robust T cell response. Moreover, the data suggest that parameters of the central and peripheral immune responses to axotomy are independently regulated. Assessments in B6x129 F1 generation mice revealed dominant phenotypes for both T cell infiltration and neurodegeneration, whereas both strains contributed significantly to the phenotype for MHC2 expression. Our findings suggest that (1) T cells do not appear to modify measures of microglial reactivity in the axotomized FMN; and (2) the impact of T cells on injured motoneurons in immunologically intact mice and in immunodeficient mice grafted with T cells by adoptive transfer may be different. Further study is required to understand the role of T cells following motoneuron injury in immunologically intact mice and how the seemingly divergent effects of T cells in intact and immunodeficient mice might provide insight into their role in neuronal injury and repair.  相似文献   

11.
Glutamate transporters play an important role in the re-uptake of glutamate after its release from glutamatergic synapses. So far five of such transporters subtypes have been cloned from rodent and human brains. The densities of glutamate transporters are recognised to be developmentally regulated, but the role of glutamate transporters in the mechanisms underlying the occurrence of neuronal traumatic injury has not been widely studied. In the present study quantitative Western blotting and immunohistochemical technique were employed to study the expression of GLT-1/EAAT2 in the facial nuclei of adult rats following unilateral facial nerve axotomy. The total content of GLT-1 protein decreased in the ipsilateral axotomised rat facial nucleus. However, activated microglia surrounding motoneurons showed high expression of GLT-1 after facial nerve axotomy. Parallel studies revealed that primary cultured microglial cells also showed GLT-1-immunoreactivity. To our knowledge, this is the first direct demonstration of the expression of GLT-1 protein in activated microglial cells, suggesting a neuroprotective role of microglia against glutamate excitotoxicity following nerve axotomy.  相似文献   

12.
Summary The appearance and cellular distribution of major histocompatibility complex (MHC), as well as lymphocytic and macrophage antigens has been studied in a fully developed experimental rat forebrain glioma. Activated microglial cells and microglia-derived macrophages expressing CR3 complement receptor molecules and MHC class II (Ia) antigen were found throughout the tumor, and with increased density along the tumor's periphery. MHC class I antigen expression was entirely absent from tumor cells, and found only occasionally on microglia. The expression of leukocyte common antigen, and CD4 and CD8 antigens was conspicuous throughout the tumor, and associated with lymphocytes, perivascular cells, and microglia. Cells expressing the ED2 macrophage epitope were almost exclusively of the perivascular type and revealed a distribution dissimilar to that of cells positive for Ia antigen. The ED2 epitope was found sporadically on ramified microglial cells. The results show that despite heavy infiltration with blood mononuclear and CNS microglial cells, the tumor showed no evidence of destruction caused by inflammatory cells. Possible mechanisms of tumor immunosuppressive activity preventing the full immunological activation of microglia and blood mononuclear cells are discussed.Supported in part by an American Cancer Society Institutional Research Grant at the University of Florida  相似文献   

13.
There is increasing evidence that microglia serve as antigen presenters in the human CNS. Although the occurrence of MHC class II immunoreactive cells has been reported in astrocytic gliomas, the relative contribution of microglia to this cell population has not been studied in detail. Using computer-assisted image analysis, we have investigated the expression of MHC class II molecules and of the microglia/macrophage markers Ki-M1P, RCA-1, KP1 and iba1 , in 97 astrocytic gliomas comprising all WHO grades to answer the question whether there is a correlation between tumour grade and the number of MHC class II positive microglia/macrophage profiles. Microglia expressing MHC class II were common in astrocytomas and anaplastic astrocytomas but rare in pilocytic tumours although there was significant variation within each group. MHC class II immunoreactivity was reduced in highly cellular areas of glioblastomas where large numbers of cells expressing macrophage markers were still present. Thus, there was no simple relationship between tumour grade and microglial/macrophage MHC class II expression. In addition, up to 55% of astrocytic gliomas contained MHC class II immunoreactive tumour cells. Microglia but not tumour cells were found to express the BB1/B7 costimulator. We conclude that microglia in astrocytic gliomas are well equipped to function as antigen presenting cells. Yet, neoplastic astroglia appear to acquire the capacity to downregulate microglial MHC class II expression and, at the same time, may induce T-cell clonal anergy through aberrant expression of MHC class II molecules.  相似文献   

14.
The 20S proteasome is a multicatalytic threonine protease and serves to process peptides that are subsequently presented as antigenic epitopes by MHC class I molecules. In the brain, microglial cells are the major antigen presenting cells and they respond sensitive to pathologic events. We used cultured mouse microglia and a microglial cell line, the BV-2 line, as a model to study the correlation between microglial activation parameters and structural plasticity of the 20S/26S proteasome. Lipopolysaccharide (LPS)- or interferon-gamma (IFN-gamma)-stimulated microglia or BV-2 cells exhibit properties of activated microglia such as high levels of TNFalpha and IL-6 release. In response to IFN-gamma or LPS, three constitutive beta subunits (beta1/Delta, beta2/MC14, beta5/MB1) were replaced by the immunoproteasome subunits ibeta1/LMP2, ibeta2/MECL-1, and ibeta5/LMP7, indicating that activated microglia adapts its proteasomal subunit composition to the requirements of an optimized MHC class I epitope processing. Induction of immunoproteasomes in BV-2 cells was solely provoked by IFN-gamma, but not by LPS. Moreover, LPS (but not IFN-gamma) triggered the expression of a novel protein of approximately 50 kD as part of the proteasome activator PA700, that is the substrate-recognizing and unfolding unit of the 26S proteasome. These results indicate that both the 20S core protease as well as the proteasome activator PA700 are targets of modulatory subunit replacements or transient association of regulatory components in the course of microglial activation.  相似文献   

15.
We reflect here on the development of a neuroimmunological concept which has been formulated over the past 5 years through studying microglial cell responses in the facial nerve system. A simple axotomy of the adult rat facial nerve which causes regeneration of facial motor neurons and little, if any, cell death can activate microglial cells just as easily as a full-blown degeneration of the entire nucleus induced by toxic ricin. In both instances, the prompt microglial reaction is characterized by a series of structural and phenotypic changes which are in many ways similar to an immune response, e.g., there is cell proliferation and upregulation of MHC antigens. However, since white blood cells do not participate in the retrograde response of facial motor neurons, we have adopted a notion which views microglia as a CNS-wide network of immunocompetent cells whose morphological dissimilarities from leukocytes are a result of their unique adaptation to the CNS architecture. We have continued our in vivo investigations of the phagocytic and immunophenotypic properties of microglial and perivascular cells during the retrograde reaction of facial motor neurons by using intraneural injections of fluorogold (FG) and ricin followed by lectin and immunostaining for microglia. Two new findings can be added to the microglial neuroimmune network: (1) Microglia take up FG only after motor neuron degeneration, whereas perivascular cells may take up FG under nondegenerating conditions. (2) Immunologically important molecules, such as MHC class II, CD4, and leukocyte common antigens, are expressed by different microglial subpopulations. Thus there is functional and phenotypic heterogeneity among immunocompetent cells of the CNS.  相似文献   

16.
Cathepsin S (CS) is a lysosomal/endosomal cysteine protease especially expressed in cells of a mononuclear lineage including microglia. To better understand the role of CS in microglia, we investigated microglial responses after a facial nerve axotomy in CS-deficient (CS-/-) and wild-type mice. Microglia in both groups accumulated in the facial motor nucleus following axotomy. However, the mean number of microglia in CS-/- mice on the axotomized side was significantly smaller than that in wild-type mice. Microglia were found to adhere to injured motoneurons in wild-type mice, whereas microglia abutted on injured motoneurons without spreading on their surface in CS-/- mice. At the same time, the axotomy-induced down-regulation of tenasin-R, an antiadhesive perineuronal net for microglia, was partially abrogated in CS-/- mice. Primary cultured microglia prepared from CS-/- mice showed that CS deficiency caused significant suppression of migration and transmigration of microglia. In CS-/- mice, impaired recruitments of circulating monocytes and T lymphocytes and reduced expression of the class II major compatibility complex on the axotomized side were observed. Interestingly, cathepsin B, a typical lysosomal cysteine protease, was markedly expressed on the axotomized side in CS-/- but not in wild-type microglia. Finally, we compared axotomy-induced neuronal death in the two groups and found that the percentage of motoneurons that survived in CS-/- mice was significantly smaller than that in wild-type mice. The present study strongly suggests that CS plays a role in the migration and activation of microglia to protect facial motoneurons against axotomy-induced injury.  相似文献   

17.
Transection of the rat facial nerve leads to a rapid activation of both astrocytes and microglia around axotomized motoneurons. The factors involved in glial activation in vivo are poorly defined but cytokines have been implicated as major regulators of glial activity in vitro. In the present study we have investigated the expression of cytokine mRNAs in the axotomized facial nucleus that might be involved in glial activation. Eight hours after axotomy unilateral transection of the facial nerve had already induced a rapid accumulation of interleukin (IL)-6-mRNA, with a peak at 24 hours. No IL-6 mRNA was detected on the unoperated control side. Transforming growth factor (TGF)-β1 mRNA was detected at low levels in the normal facial nucleus, increasing to three times the normal level 2 days after axotomy. After day 7 TGF-β1 mRNA levels gradually declined, with a second minor peak 21 days after axotomy. In situ hybridization experiments, 4 and 21 days after axotomy, localized TGF-β1 mRNA to activated microglial cells around regenerating motoneurons, as well as probably some astrocytes. Motoneurons did not express TGF-β1 mRNA. TGF-β3 was found to be normally expressed in the facial nucleus but was not regulated by axotomy. No mRNA for IL-1, tumour necrosis factor-α or interferon-γ was found in the regenerating facial nucleus at any point in time. Our data indicate that IL-6 might act as an early activating signal for glial cells in response to motoneuron axotomy, and that TGF-β1 expressed by activated glial cells might provide a long-lasting negative feedback signal to control glial activation.  相似文献   

18.
19.
The response to intracerebroventricular administration of interferon (IFN)-γ was examined in the adult Wistar rat brain: major histocompatibility complex (MHC) antigens class I and II, CD8 and CD4 antigens, and the macrophage/microglia antigen OX42 were analyzed in respect to saline-injected cases over 1 week. The glial cell type expressing MHC antigens was characterized with double labeling. IFN-γ was thus found to induce MHC class I and II expression in microglia, identified by tomato lectin histochemistry, and not in GFAP-immunostained astrocytes. MHC antigen-expressing microglia was detected in the periventricular parenchyma, several fields of the cerebral cortex, cerebellum, major fiber tracts, and brainstem superficial parenchyma. Different gradients of density and staining intensity of the MHC-immunopositive elements were observed in these regions, in which MHC class I antigens persisted up to 1 week, when MHC class II induction had declined. Quantitative analysis pointed out the proliferation of OX42-immunoreactive cells in periventricular and basal brain regions. CD8+ T cells were observed in periventricular regions, basal forebrain, and fiber tracts 3 days after IFN-γ injection and their density markedly increased by 7 days. CD4+ T cells were also seen and they were fewer than CD8+ ones. However, numerous CD4+ microglial cells were observed in periventricular and subpial regions, especially 1 week after IFN-γ injection. Our data indicate that this proinflammatory cytokine mediatesin vivomicroglia activation and T cell infiltration in the brain and that the cells involved in this immune response display a regional selectivity and a different temporal regulation of antigen expression.  相似文献   

20.
Zhang SC  Goetz BD  Carré JL  Duncan ID 《Glia》2001,34(2):101-109
The relationship between microglial activation and dysmyelination/demyelination was analyzed in a long-lived myelin mutant, the Long Evans shaker (les) rat, which exhibits early dysmyelination and a later loss of abnormal myelin sheaths. A microglial reaction characterized by progressive morphological transformation and increasing cell density was localized exclusively to white matter during postnatal 2-4 weeks, suggesting a microglial response to dysmyelination and oligodendroglial pathology. A further microglial reaction as marked by microglial expression of MHC II and a concomitant expression in the brain and spinal cord of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) began around 4 weeks when the remaining myelin was lost. Ultrastructurally, activated microglia ingested numerous myelin figures, suggestive of active phagocytosis. Thus, this study indicates that microglial reaction is graded in chronic neurological disorders and suggests that MHC II expression marks a functional change of activated microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号