首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamatergic synapses of layer 6 corticothalamic (CT) neurons form a major excitatory input onto thalamic relay cells, allowing neocortex to continuously control sensory information processing in thalamic circuits. CT synapses display both short- and long-term forms of use-dependent synaptic enhancement, mediated at least in part by increases in the probability of transmitter release. At some synapses, such increases in release probability are accompanied by a higher degree of multivesicular release (MVR) and larger glutamate transients at individual release sites, resulting in the saturation of postsynaptic receptors. The extent to which MVR and postsynaptic saturation interact and control short-term plasticity at CT synapses is not known. Here we examined two distinct presynaptic forms of short-term enhancement, facilitation and augmentation, at CT synapses contacting relay neurons in the ventrobasal nucleus of the mouse thalamus. We found that, in the presence of the low-affinity antagonist γ-D-glutamylglycine, to relieve postsynaptic DL-α-amino-3-hydroxy-5-methylisox azole-propionic acid (AMPA) receptor saturation, the magnitude of facilitation and augmentation increased. Whereas receptor saturation was prominent for both AMPA and N-methyl-D-aspartate receptors, desensitization of AMPA receptors did not significantly alter short-term plasticity. Our results suggest that at CT synapses the activity-dependent increase in synaptic strength is controlled by postsynaptic receptor saturation.  相似文献   

2.
Long-term changes in the synaptic efficacy of corticostriatal synapses are believed to be important for regulating the excitatory input to the basal ganglia, and hence for motor learning and certain forms of cognition. Previous reports have suggested that long-term depression (LTD) is the predominant form of plasticity at corticostriatal synapses. However, we report here that tetanic stimulation of the white matter can readily induce long-term potentiation (LTP) at corticostriatal synapses in a sagittal slice preparation. Furthermore, we find that corticostriatal LTP is obtained in the absence of pharmacological manipulation, and is dependent on NMDA receptor activation. In contrast, LTD is rarely observed following tetanic stimulation of the white matter, but in fact requires direct stimulation within the striatum. This striatally induced depression is blocked by both D1 and D2 dopamine receptor antagonists and by NMDA receptor blockade. Pairing of striatal stimulation with tetanic stimulation of the white matter does not prevent the induction, but significantly enhances the magnitude of LTP at corticostriatal synapses. We suggest that the corticostriatal depression reported here most likely involves the recruitment of local striatal circuits and dopaminergic inputs, and thus might explain the predominance of LTD previously reported. Our observation that it is indeed possible to induce LTP at corticostriatal synapses under physiological conditions in vitro has implications for the normal function and control of the basal ganglia in motor learning and cognition.  相似文献   

3.
Short-term synaptic plasticity, in particular short-term depression and facilitation, strongly influences neuronal activity in cerebral cortical circuits. We investigated short-term plasticity at excitatory synapses onto layer V pyramidal cells in the rat medial prefrontal cortex, a region whose synaptic dynamic properties have not been systematically examined. Using intracellular and extracellular recordings of synaptic responses evoked by stimulation in layers II/III in vitro, we found that short-term depression and short-term facilitation are similar to those described previously in other regions of the cortex. In addition, synapses in the prefrontal cortex prominently express augmentation, a longer lasting form of short-term synaptic enhancement. This consists of a 40-60% enhancement of synaptic transmission which lasts seconds to minutes and which can be induced by stimulus trains of moderate duration and frequency. Synapses onto layer III neurons in the primary visual cortex express substantially less augmentation, indicating that this is a synapse-specific property. Intracellular recordings from connected pairs of layer V pyramidal cells in the prefrontal cortex suggest that augmentation is a property of individual synapses that does not require activation of multiple synaptic inputs or neuromodulatory fibers. We propose that synaptic augmentation could function to enhance the ability of a neuronal circuit to sustain persistent activity after a transient stimulus. This idea is explored using a computer simulation of a simplified recurrent cortical network.  相似文献   

4.
Endocannabinoids are potent regulators of synaptic strength. They are generally thought to modify neurotransmitter release through retrograde activation of presynaptic type 1 cannabinoid receptors (CB1Rs). In the cerebellar cortex, CB1Rs regulate several forms of synaptic plasticity at synapses onto Purkinje cells, including presynaptically expressed short-term plasticity and, somewhat paradoxically, a postsynaptic form of long-term depression (LTD). Here we have generated mice in which CB1Rs were selectively eliminated from cerebellar granule cells, whose axons form parallel fibers. We find that in these mice, endocannabinoid-dependent short-term plasticity is eliminated at parallel fiber, but not inhibitory interneuron, synapses onto Purkinje cells. Further, parallel fiber LTD is not observed in these mice, indicating that presynaptic CB1Rs regulate long-term plasticity at this synapse.  相似文献   

5.
The role of pertussis toxin (PTX)-sensitive G-proteins in corticostriatal synaptic transmission and long-term synaptic depression (LTD) was examined using extracellular field potential and whole cell voltage-clamp recordings in striatal slices. High-frequency stimulation (HFS) produced LTD, defined as long-lasting decreases both in synaptically driven population spikes (PSs) measured with field potential recording and in excitatory postsynaptic currents (EPSCs) measured with whole cell recording. Striatal LTD could not be induced in slices obtained from rats that had received a unilateral intrastriatal injection of PTX. However, LTD could be induced in slices obtained from paired control slices. Furthermore, striatal LTD was prevented by pretreatment with N-ethylmaleimide (NEM), another compound that disrupts the function of PTX-sensitive G-proteins. NEM, itself, also potentiated PS and EPSC amplitudes. In addition, NEM increased the frequency and amplitude of both spontaneous and miniature EPSCs and decreased the paired-pulse facilitation ratio, suggesting that it may act on both pre- and postsynaptic sites. The findings suggest that PTX-sensitive G-proteins have multiple roles at corticostriatal synapses, including regulation of synaptic transmission at both pre- and postsynaptic sites, and a key role in striatal LTD.  相似文献   

6.
Two forms of short-term plasticity at inhibitory synapses were investigated in adult rat striatal brain slices using intracellular recordings. Intrastriatal stimulation in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM) and D,L-2-amino-5-phosphonovaleric acid (50 microM) produced an inhibitory postsynaptic potential (IPSP) that reversed polarity at -76 +/- 1 (SE) mV and was sensitive to bicuculline (30 microM). The IPSP rectified at hyperpolarized membrane potentials due in part to activation of K(+) channels. The IPSP exhibited two forms of short-term plasticity, paired-pulse depression (PPD) and synaptic augmentation. PPD lasted for several seconds and was greatest at interstimulus intervals (ISIs) of several hundred milliseconds, reducing the IPSP to 80 +/- 2% of its control amplitude at an ISI of 200 ms. Augmentation of the IPSP, elicited by a conditioning train of 15 stimuli applied at 20 Hz, was 119 +/- 1% of control when sampled 2 s after the conditioning train. Augmentation decayed with a time constant of 10 s. We tested if PPD and augmentation modify the ability of the IPSP to prevent the generation of action potentials. A train of action potentials triggered by a depolarizing current injection of constant amplitude could be interrupted by stimulation of an IPSP. If this IPSP was the second in a pair of IPSPs, it was less effective in blocking spikes due to PPD. By contrast, augmented IPSPs were more effective in blocking spikes. The same results were achieved when action potentials were triggered by a depolarizing current injection of varying amplitude, a manipulation that produces nearly identical spike times from trial to trial and approximates the in vivo behavior of these neurons. These results demonstrate that short-term plasticity of inhibition can modify the output of the striatum and thus may be an important component of information processing during behaviors that involve the striatum.  相似文献   

7.
Long-term treatment with the dopamine precursor levodopa (L-DOPA) induces dyskinesia in Parkinson's disease (PD) patients. We divided hemiparkinsonian rats treated chronically with L-DOPA into two groups: one showed motor improvement without dyskinesia, and the other developed debilitating dyskinesias in response to the treatment. We then compared the plasticity of corticostriatal synapses between the two groups. High-frequency stimulation of cortical afferents induced long-term potentiation (LTP) of corticostriatal synapses in both groups of animals. Control and non-dyskinetic rats showed synaptic depotentiation in response to subsequent low-frequency synaptic stimulation, but dyskinetic rats did not. The depotentiation seen in both L-DOPA-treated non-dyskinetic rats and intact controls was prevented by activation of the D1 subclass of dopamine receptors or inhibition of protein phosphatases. The striata of dyskinetic rats contained abnormally high levels of phospho[Thr34]-DARPP-32, an inhibitor of protein phosphatase 1. These results indicate that abnormal information storage in corticostriatal synapses is linked with the development of L-DOPA-induced dyskinesia.  相似文献   

8.
The effects of synapsin proteins on synaptic transmission from vesicles in the readily releasable vesicle pool have been examined by comparing excitatory synaptic transmission in hippocampal slices from mice devoid of synapsins I and II and from wild-type control animals. Application of stimulus trains at variable frequencies to the CA3-to-CA1 pyramidal cell synapse suggested that, in both genotypes, synaptic responses obtained within 2 s stimulation originated from readily releasable vesicles. Detailed analysis of the responses during this period indicated that stimulus trains at 2–20 Hz enhanced all early synaptic responses in the CA3-to-CA1 pyramidal cell synapse, but depressed all early responses in the medial perforant path-to-granule cell synapse. The synapsin-dependent part of these responses, i.e. the difference between the results obtained in the transgene and the wild-type preparations, showed that in the former synapse, the presence of synapsins I and II minimized the early responses at 2 Hz, but enhanced the early responses at 20 Hz, while in the latter synapse, the presence of synapsins I and II enhanced all responses at both stimulation frequencies. The results indicate that synapsins I and II are necessary for full expression of both enhancing and decreasing modulatory effects on synaptic transmission originating from the readily releasable vesicles in these excitatory synapses.  相似文献   

9.
The hypothesis that plastic changes in the efficacy of excitatory neurotransmission occur in areas of chronic cortical injury was tested by assessing short-term plasticity of evoked excitatory synaptic currents (EPSCs) in neurons of partially isolated neocortical islands (undercut cortex). Whole cell recordings were obtained from layer V pyramidal neurons of sensorimotor cortical slices prepared from P36-P43 control and undercut rats. AMPA/kainate receptor-mediated EPSCs elicited by stimuli delivered at 40 to 66.7 Hz exhibited more paired-pulse depression (PPD) in undercut cortex than control, the time constant of depression evoked by trains of 20- to 66.7-Hz stimuli was faster, and the steady-state amplitude of EPSCs reached after five to seven EPSCs was lower. An antagonist of the glutamate autoreceptor, group II mGluR, increased the steady-state amplitude of EPSCs from undercut but not control cortex, suggesting that activation of presynaptic receptors by released glutamate is more prominent in undercut cortex. In contrast, the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid had no effect. Increasing [Ca(2+)](o) from 2 to 4 mM increased PPD, with a smaller effect in neurons of the undercut. The I-V relationship of AMPA/kainate receptor-mediated EPSCs was close to linear in both control and undercut neurons, and spermine had no significant effect on the EPSCs, suggesting that decreases in postsynaptic glutamate receptors containing the GluR2 subunit were not involved in the alterations in short-term plasticity. Results are compatible with an increase in the probability of transmitter release at excitatory synapses in undercut cortex due to functional changes in presynaptic terminals.  相似文献   

10.
Cannabinoids receptors have been reported to modulate synaptic transmission in many structures of the CNS, but yet little is known about their role in the prefrontal cortex where type I cannabinoid receptor (CB-1) are expressed. In this study, we tested first the acute effects of selective agonists and antagonist of CB-1 on glutamatergic excitatory postsynaptic currents (EPSCs) in slices of rat prefrontal cortex (PFC). EPSCs were evoked in patch-clamped layer V pyramidal cells by stimulation of layer V afferents. Monosynaptic EPSCs were strongly depressed by bath application (1 microM) of the cannabinoid receptors agonists WIN55212-2 (-50.4 +/- 8.8%) and CP55940 (-42.4 +/- 10.9%). The CB-1 antagonist SR141716A reversed these effects. Unexpectedly, SR141716A alone produced a significant increase of glutamatergic synaptic transmission (+46.9 +/- 11.2%), which could be partly reversed by WIN55212-2. In the presence of strontium in the bath, the frequency but not the amplitude of asynchronous synaptic events evoked in layer V pyramidal cells by stimulating layer V afferents, was markedly decreased (-54.2 +/- 8%), indicating a presynaptic site of action of cannabinoids at these synapses. Tetanic stimulation (100 pulses at 100 Hz, 4 trains) induced in control condition, no changes (n = 7/18), long-term depression (LTD; n = 6/18), or long-term potentiation (LTP; n = 5/18) of monosynaptic EPSCs evoked by stimulation of layer V afferents. When tetanus was applied in the presence of WIN 55,212-2 or SR141716-A (1 microM) in the bath, the proportion of "nonplastic" cells were not significantly changed (n = 7/15 in both cases). For the plastic ones (n = 8 in both cases), WIN 55,212-2 strongly favored LTD (n = 7/8) at the apparent expense of LTP (n = 1/8), whereas the opposite effect was observed with SR141716-A (7/8 LTP; 1/8 LTD). These results demonstrate that cannabinoids influence glutamatergic synaptic transmission and plasticity in the PFC of rodent.  相似文献   

11.
Recent studies demonstrate that P2X7 receptor subunits (P2X7RS) are present at central and peripheral synapses and suggest that P2X7RS can regulate transmitter release. In brainstem slices from 15 to 26 day old pentobarbitone-anesthetized mice, we examined the effect of P2X7RS activation on excitatory postsynaptic currents (EPSCs) recorded from hypoglossal motoneurons using whole-cell patch clamp techniques. After blockade of most P2X receptors with suramin (which is inactive at P2X7RS) and of adenosine receptors with 8-phenyltheophylline (8PT), bath application of the P2X receptor agonist 3'-0-(4-benzoyl)ATP (BzATP) elicited a 40.5+/-16.0% (mean+/-S.E.M., n = 8, P = 0.039) increase in evoked EPSC amplitude and significantly reduced paired pulse facilitation of evoked EPSCs. This response to BzATP (with suramin and 8PT present) was completely blocked by prior application of Brilliant Blue G (200 nM or 2 microM), a P2X7RS antagonist. In contrast, BzATP application with suramin and 8PT present did not alter miniature EPSC frequency or amplitude when action potentials were blocked with tetrodotoxin. These electrophysiological results suggest that P2X7RS activation increases central excitatory transmitter release via presynaptic mechanisms, confirming previous indirect measures of enhanced transmitter release. We suggest that possible presynaptic mechanisms underlying enhancement of evoked transmitter release by P2X7RS activation are modulation of action potential width or an increase in presynaptic terminal excitability, due to subthreshold membrane depolarization which increases the number of terminals releasing transmitter in response to stimulation.  相似文献   

12.
Activation of metabotropic glutamate receptors (mGluRs), which are coupled to G proteins, has important roles in certain forms of synaptic plasticity including corticostriatal long-term depression (LTD). In the present study, extracellular field potential and whole cell voltage-clamp recording techniques were used to investigate the effect of mGluR antagonists with different subtype specificity on high-frequency stimulation (HFS)-induced LTD of synaptic transmission in the striatum of brain slices obtained from 15-to 25-day-old rats. Induction of LTD was prevented during exposure to the nonselective mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (500 microM). The group I mGluR-selective antagonists (S)-4-carboxy-phenylglycine (50 microM) and (RS)-1-aminoindan-1,5-dicarboxylic acid (100 microM) prevented induction of LTD when applied before and during HFS. The mGluR1-selective antagonist 7-(Hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (80 microM) also blocked LTD induction. Unexpectedly, the mGluR5-selective antagonist 2-methyl-6-(phenylethyl)-pyridine (10 microM) also prevented LTD induction. The group II mGluR antagonist LY307452 (10 microM) did not block LTD induction at corticostriatal synapses, but LY307452 was able to block transient synaptic depression induced by the group II agonist LY314593. None of the antagonists had any effect on basal synaptic transmission at the concentrations used, and mGluR antagonists did not reverse LTD when applied beginning 20 min after HFS. These results suggest that both group I mGluR subtypes contribute to the induction of LTD at corticostriatal synapses.  相似文献   

13.
Summary In serial sections of neurons in the paravertebral ganglia of the frog (Limnodynastes dumerili), the postsynaptic structures termed postsynaptic bar (PSB) and junctional subsurface organ (JSO) were never observed in the same ganglion cell. Further, PSBs were found mostly in small ganglion cells (less than 22 m), while JSOs were found mostly in large ganglion cells (up to 45 m). Between 10 and 22 PSBs were located at both spine and non-spinous somatic synapses of the smaller ganglion cells; while 8 to 16 JSOs were located largely in the axon hillock region of the larger ganglion cells.Based on these observations, it is suggested that the two ganglion cell populations represent the B and C cell types defined according to electrophysiological data. Further, since the nerve terminals adjacent to both these postsynaptic structures appear to be cholinergic according to their vesicular content, this provides some basis for suggesting that JSOs are associated with slow excitatory synapses, while PSBs are present at slow inhibitory synapses.  相似文献   

14.
After exocytosis, synaptic vesicle components are selectively retrieved by clathrin-mediated endocytosis and then re-used in future rounds of transmitter release. Under some conditions, synaptic terminals in addition perform bulk endocytosis of large membranous sacs. Bulk endocytosis is less selective than clathrin-mediated endocytosis and probably internalizes components normally targeted to the plasma membrane. Nonetheless, this process plays a major role in some tonic ribbon-type synapses, which release neurotransmitter for prolonged periods of time. We show here, that large endosomes formed after strong and prolonged stimulation undergo stimulated exocytosis in retinal bipolar neurons. The result suggests how cells might return erroneously internalized components to the plasma membrane, and also demonstrates that synaptic vesicles are not the only neuronal organelle that stains with styryl dyes and undergoes stimulated exocytosis.  相似文献   

15.
16.
17.
Hippocampal output is mediated via the subiculum, which is the principal target of CA1 pyramidal cells, and which sends projections to a variety of cortical and subcortical regions. Pyramidal cells in the subiculum display two different firing modes and are classified as being burst-spiking or regular-spiking. In a previous study, we found that low-frequency stimulation induces an NMDA receptor-dependent long-term depression (LTD) in burst-spiking cells and a metabotropic glutamate receptor-dependent long-term potentiation (LTP) in regular-spiking cells [P. Fidzinski, O. Shor, J. Behr, Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses, Eur. J. Neurosci., 27 (2008) 1111–1118]. Here, we present evidence that this bidirectional plasticity relies upon the co-activation of muscarinic acetylcholine receptors, as scopolamine blocks synaptic plasticity in both cell types. In addition, we demonstrate that the L-type calcium channel inhibitor nifedipine converts LTD to LTP in burst-spiking cells and LTP to LTD in regular-spiking cells, indicating that the polarity of synaptic plasticity is modulated by voltage-gated calcium channels. Bidirectional synaptic plasticity in subicular cells therefore appears to be governed by a complex signaling system, involving cell-specific recruitment of ligand and voltage-gated ion channels as well as metabotropic receptors. This complex regulation might be necessary for fine-tuning of synaptic efficacy at hippocampal output synapses.  相似文献   

18.
At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.  相似文献   

19.
Alterations in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPA-R) and N-methyl-D-aspartate receptor (NMDA-R) have been documented in aged animals and may contribute to changes in hippocampal-dependent memory. Growth hormone (GH) regulates AMPA-R and NMDA-R-dependent excitatory transmission and decreases with age. Chronic GH treatment mitigates age-related cognitive decline. An in vitro CA1 hippocampal slice preparation was used to compare hippocampal excitatory transmission and plasticity in old animals treated for 6-8 months with either saline or GH. Our findings indicate that GH treatment restores NMDA-R-dependent basal synaptic transmission in old rats to young adult levels and enhances both AMPA-R-dependent basal synaptic transmission and long-term potentiation. These alterations in synaptic function occurred in the absence of changes in presynaptic function, as measured by paired-pulse ratios, the total protein levels of AMPA-R and NMDA-R subunits or in plasma or hippocampal levels of insulin-like growth factor-I. These data suggest a direct role for GH in altering age-related changes in excitatory transmission and provide a possible cellular mechanism through which GH changes the course of cognitive decline.  相似文献   

20.
Although the function of the p42/p44 mitogen-activated protein (MAP) kinase pathway in long-term potentiation at hippocampal CA3-CA1 synapses has been well described, relatively little is known about the importance of the p38 MAP kinase pathway in synaptic plasticity. Here we show that the p38 MAP kinase pathway, a parallel signaling cascade activated by distinct upstream kinases, mediates the induction of metabotropic glutamate receptor-dependent long-term depression at CA3-CA1 synapses. Thus, two parallel MAP kinase pathways contribute to opposing forms of long-term plasticity at a central synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号