首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Depolarisation‐secretion coupling is assumed to be dependent only on extracellular calcium ([Ca2+]o). Ryanodine receptor (RyR)‐sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca2+]i) that are voltage‐dependent. We hypothesised that voltage‐elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage‐gated calcium channels and/or from such voltage‐sensitive ryanodine‐mediated calcium stores. Increases in [Ca2+]i upon depolarisation in the presence of voltage‐gated calcium channel blockers, or in the absence of [Ca2+]o, still give rise to neuropeptide secretion from HNS terminals. Even in 0 [Ca2+]o, there was nonetheless an increase in capacitance suggesting exocytosis upon depolarisation. This was blocked by antagonist concentrations of ryanodine, as was peptide secretion elicited by high K+ in 0 [Ca2+]o. Furthermore, such depolarisations lead to increases in [Ca2+]i. Pre‐incubation with BAPTA‐AM resulted in > 50% inhibition of peptide secretion elicited by high K+ in 0 [Ca2+]o. Nifedipine but not nicardipine inhibited both the high K+ response for neuropeptide secretion and intraterminal calcium, suggesting the involvement of CaV1.1 type channels as sensors in voltage‐induced calcium release. Importantly, RyR antagonists also modulate neuropeptide release under normal physiological conditions. In conclusion, our results indicate that depolarisation‐induced neuropeptide secretion is present in the absence of external calcium, and calcium release from ryanodine‐sensitive internal stores is a significant physiological contributor to neuropeptide secretion from HNS terminals.  相似文献   

2.
To elucidate the mechanism of pHi changes induced by membrane depolarization, the variations in pHi and [Ca2+]i induced by a number of depolarizing agents, including high K+, veratridine, N-methyl-

-aspartate (NMDA) and ouabain, were investigated in rat hippocampal slices by the fluorophotometrical technique using BCECF or fura-2. All of these depolarizing agents elicited a decrease in pHi and an elevation of intracellular calcium ([Ca2+]i) in the CA1 pyramidal cell layer. The increases in [Ca2+]i caused by the depolarizing agents almost completely disappeared in the absence of Ca2+ (0 mM Ca2+ with 1 mM EGTA). In Ca2+ free media, pHi acid shifts produced by high K+, veratridine or NMDA were attenuated by 10–25%, and those produced by ouabain decreased by 50%. Glucose-substitution with equimolar amounts of pyruvate suppressed by two-thirds the pHi acid shifts induced by both high K+ and NMDA. Furthermore, lactate contents were significantly increased in hippocampal slices by exposure to high K+, veratridine or NMDA but not by ouabain. These results suggest that the intracellular acidification produced by these depolarizing agents, with the exception of ouabain, is mainly due to lactate accumulation which may occur as a result of accelerated glycolysis mediated by increased Na+–K+ ATPase activity. A Ca2+-dependent process may also contribute to the intracellular acidification induced by membrane depolarization. Since an increase in H+ concentration can attenuate neuronal activity, glycolytic acid production induced by membrane depolarization may contribute to the mechanism that prevents excessive neuronal excitation.  相似文献   

3.
《Brain research》1997,769(2):1194
We have found earlier that the depolarization-induced release of acetylcholine from the brain could be inhibited by tacrine (tetrahydroaminoacridine) but the mechanism of this action of tacrine was not clarified (S. Tu?ek, V. Dole?al, J. Neurochem. 56 (1991) 1216). We have now investigated whether tacrine has an effect on the changes in the intracellular concentration of calcium ions ([Ca2+]i) induced by depolarization. Experiments were performed on the cholinergic SN56 neuronal cell line with Fura-2 fluorescence technique of calcium imaging. The depolarization by 71 mmol/l K+ evoked minimum increases of [Ca2+]i up to day 5 in culture. Then the response gradually increased and reached a plateau after 7 days in culture. A similar time course was observed for acetylcholinesterase activity. The effect of K+ ions was concentration-dependent and the concentration of 71 mmol/l K+ evoked maximum [Ca2+]i responses. The increases of [Ca2+]i did not occur in the absence of extracellular calcium. They were mediated by high voltage-activated calcium channels of the L-type and the N-type. Nifedipine (2 μmol/l; L-type calcium channel blocker) and ω-conotoxin GVIA (100 nmol/l; N-type calcium channel blocker) diminished the response to 71 mmol/l K+ by 53% and 39%, respectively, and their effects were additive (decrease to 8% of controls). Non-selective inorganic blocker of voltage-activated calcium channels LaCl3 (0.1 mmol/l) decreased the response by 83%. Tacrine attenuated the [Ca2+]i response in a concentration-dependent manner. At a concentration of 10 μmol/l it inhibited the [Ca2+]i response by 55% and its inhibitory effect was additive with that of ω-conotoxin GVIA but not with that of nifedipine. An equimolar concentration of paraoxon, an irreversible inhibitor of cholinesterases, had no influence on [Ca2+]i response. Tacrine exhibited the same inhibitory effect when paraoxon was present. In conclusion, our data indicate that high-voltage-activated calcium channels of the L-type and the N-type are both present in the SN56 cells but that they are fully expressed only after 6–7 days in culture. Tacrine attenuates the influx of calcium by inhibiting the L-type calcium channels. This inhibitory effect is not a consequence of the anticholinesterase activity of tacrine. The finding that low micromolar concentrations of tacrine may interfere with calcium-dependent events is likely to be of importance for the evaluation of the therapeutic potential of the drug.  相似文献   

4.
We investigated the effects of amitriptyline, a tricyclic antidepressant, on [3H]norepinephrine ([3H]NE) secretion and ion flux in bovine adrenal chromaffin cells. Amitriptyline inhibited [3H]NE secretion induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) and 70 mM K+. The half maximal inhibitory concentration (IC50) was 2 μM and 9 μM, respectively. Amitriptyline also inhibited the elevation of cytosolic calcium ([Ca2+]i) induced by DMPP and 70 mM K+ with IC50 values of 1.1 μM and 35 μM, respectively. The rises in cytosolic sodium ([Na+]i) and [Ca2+]i induced by the Na+ channel activator veratridine were also inhibited by amitriptyline with IC50 values of 7 μM and 30 μM, respectively. These results suggest that amitriptyline at micromolar concentrations inhibits both voltage-sensitive calcium (VSCCs) and sodium channels (VSSCs). Furthermore, submicromolar concentrations of amitriptyline significantly inhibited DMPP-induced [3H]NE secretion and [Ca2+]i rise, but not veratridine- or 70 mM K+-induced responses, suggesting that nicotinic acetylcholine receptors (nAChR) as well as VSCCs and VSSCs can be targeted by amitriptyline. DMPP-induced [Na+]i rise was much more sensitive to amitriptyline than the veratridine-induced rise, suggesting that the influx of Na+ and Ca2+ through the nAChR itself is blocked by amitriptyline. Receptor binding competition analysis showed that binding of [3H]nicotine to chromaffin cells was significantly affected by amitriptyline at submicromolar concentrations. The data suggest that amitriptyline inhibits catecholamine secretion by blocking nAChR, VSSC, and VSCC. Synapse 29:248–256, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
We determined the relationships between the intracellular free Ca2+ concentration ([Ca2+]i) and the membrane potential (Em) of six different neurones in the leech central nervous system: Retzius, 50 (Leydig), AP, AE, P, and N neurones. The [Ca2+]i was monitored by using iontophoretically injected fura-2. The membrane depolarization evoked by raising the extracellular K+ concentration ([K+]o) up to 89 mM caused a persistent increase in [Ca2+]i, which was abolished in Ca2+-free solution indicating that it was due to Ca2+ influx. The threshold membrane potential that must be reached in the different types of neurones to induce a [Ca2+]i increase ranged between −40 and −25 mV. The different threshold potentials as well as differences in the relationships between [Ca2+]i and Em were partly due to the cell-specific generation of action potentials. In Na+-free solution, the action potentials were suppressed and the [Ca2+]i/Em relationships were similar. The K+-induced [Ca2+]i increase was inhibited by the polyvalent cations Co2+, Ni2+, Mn2+, Cd2+, and La3+, as well as by the cyclic alcohol menthol. Neither the polyvalent cations nor menthol had a significant effect on the K+-induced membrane depolarization. Our results suggest that different leech neurones possess voltage-dependent Ca2+ channels with similar properties.  相似文献   

6.
Ethanol and nerve growth factor (NGF) affect the survival of cholinergic neurons in the rat medial septum. To investigate whether calcium (Ca2+) homeostasis in these neurons is affected by ethanol or NGF treatment, changes in intracellular free Ca2+ concentration ([Ca2+]i) were studied in embryonic (E21) cultured medial septal neurons before stimulation (basal) and during stimulation with high potassium (K+). Changes in [Ca2+]; across time were measured in cultures of neurons treated without ethanol or with 100, 2110, 400, or 800 mg% ethanol with NGF (+NGF) or without NGF (-NGF). Changes in [Ca2+]i were analyzed from fluorescence images, using indo-1. The effect of ethanol or NGF treatment was to reduce the rise in basal [Ca2+]i. The combination of ethanol and NGF treatment in +NGF neurons led to increases in basal [Ca2+]i with the greatest increase in basal [Ca2+]i occurring with 200 mg% ethanol. The effect of ethanol or NGF was to increase [Ca2+]i; during stimulation with high K+. The greatest increases in [Ca+]i occurred with 100 and 800 mg% ethanol. Together, ethanol and NGF treatment in +NGF-treated neurons led to significantly greater increases or decreases in K+ stimulated changes in [Ca2+]i compared to similarly treated -NGF neurons. We conclude that in medial septal neurons (before and during depolarization) changes in Ca2+ homeostasis occur in the presence of ethanol or NGF. The changes in [Ca2+]i, following ethanol treatment are greater when NGF is present.  相似文献   

7.
Cytosolic calcium concentrations ([Ca2+]i) in cultured hippocampal neurons from rat embryos were measured using fura-2. Neurons with higher resting [Ca2+]i showed greater [Ca2+]i responses toN-methyl-d-aspartate (NMDA) and K+ depolarization. There was a strong relationship between resting [Ca2+]i and the maximal changes in [Ca2+]i (Δ[Ca2+]i), which fit the our proposed equation to describe this relationship.  相似文献   

8.
Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) can protect CNS neurons against ischemic/excitotoxic insults, but the mechanism of action is unknown. Imaging of the calcium indicator dye fura-3 and whole-cell patch clamp recordings of calcium currents were used to examine the mechanisms whereby hypoglycemia damages and growth factors protect cultured rat hippocampal neurons. When cultures were deprived of glucose, massive neuronal death occured 16–24 h following the onset of hypoglycemia. Early hypoglycemia-induced changes included calcium current inhibition and a reduction in intracellular free calcium levels ([Ca2+]i) without morphological signs of neuronal damage. Later changes included a large elevation of [Ca2+]i which was causally involved in neuronal damage. NGF and bFGF prevented or reduced both early and later responses to hypoglycemia. The growth factors increased calcium (barium) current and [Ca2+]i to normal limits during the early stages of hypoglycemia and prevented the later elevation in [Ca2+]i and neuronal damage. Nifedipine, but not omega-conotoxin, blocked calcium currents. The increased calcium current caused by the growth factors was apparently not sufficient to protect neurons against hypoglycemic damage since K+ depolarization during the early stages of hypoglycemia did not prevent and, in fact exacerbated, the subsequent neuronal damage. In addition, exposure of neurons to K+, NGF or bFGF only during the first 1 h of hypoglycemia did not protect against hypoglycemic damage. Taken together, the data suggest that neurons initially respond to hypoglycemia with a reduction in calcium currents which may provide a means to maintain [Ca2+]i within a concentration range conducive to cell survival. Prolonged energy deprivation eventually results in a failure of calcium extrusion systems, glutamate receptor activation and a loss of neuronal calcium homeostasis. Taken together, the data indicate that the mechanism of growth factor protection against energydeprivation involves of the late prevention rise in [Ca2+]i.  相似文献   

9.
The actions of vasoactive intestinal polypeptide (VIP) on catecholamine secretion and changes in [Ca2+]i in single rat chromaffin cells were studied using amperometry and Indo-1. Application of VIP prior to acetylcholine (ACh) or co-application of VIP and ACh enhanced secretion by 94% and 153% respectively, compared to ACh alone. [Ca2+]i was increased by 17% when VIP was preapplied and by 73% upon co-application. Exposure to VIP before stimulation with 60 mM K+ enhanced secretion by 68%, but not [Ca2+]i. VIP application prior to DMPP and nicotine had no effect on [Ca2+]i, but increased [Ca2+]i signals to muscarine by 18%. VIP co-application potentiated only [Ca2+]i responses to muscarine, by 28%. The effect of VIP on muscarine-induced [Ca2+]i signals was mimicked by 8-Br-cAMP, and both were blocked by H-89, a protein kinase A inhibitor. Long-lasting increases in secretion accompanied by a sustained rise in [Ca2+]i to VIP alone were seen in 55% of cells. Removal of Ca2+ or addition of La3+ inhibited both responses, while L-, N- and P-type Ca2+ channel blockers were ineffective. SK&F 96365 inhibited VIP-induced secretion completely and rises in [Ca2+]i by 75%. Neither 8-Br-cAMP nor 8-Br-cGMP evoked responses similar to VIP alone. Thus in rat chromaffin cells, VIP acts both directly as a neurotransmitter in provoking sustained catecholamine secretion in a cAMP-independent manner, and also by enhancing ACh-induced secretion, via a cAMP-dependent action involving muscarinic receptors.  相似文献   

10.
We studied the distribution of voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage from retinal and cortical cultures. Influx Of ca2+ via voltagegated channels was activated by membrane depolarization with elevated extracellular K+ concentration ([K+]e) and local, subcellular increases in cytosolic free Ca2+ concentration ([Ca2+]in) could be monitored with a fluometric system connected to a laser scanning confocal microscope. In glial precursor cells from both retina and cortex, small depolarizations (with 10 or 20 mM K+) activated Ca2+ transients in processes indicating the presence of low-voltage-activated Ca2+ channels. Larger depolarizations (with 50 mM K+) additionally activated high-voltage-activated Ca2+ channels in the soma. An uneven distribution of Ca2+ channels was also observed in the mature oligodendrocytes; Ca2+ trasients in processes were considerably larger. Recovery of Ca2+ levels after the voltage-induced influx was achieved by the activity of the plasmalemmal Ca2+ pump, while mitochondria played a minor role to restore2+ levels after an influx through voltageoperated channels. During the development of white matter tracts, cells of the oligodendrocyte lineage contact axons to form myelin. Neuronal activity is accompanied by increases in [K+]e; this may lead to Ca2+ changes in the processes and the Ca2+ increase might be a signal for the glial precursor cell to start myelin formation. © 1995 Wiley-Liss, Inc.  相似文献   

11.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

12.
Intracellular magnesium concentration ([Mg2+]i) of cultured dorsal root ganglion (DRG) neurons was measured using the magnesium indicator Mag-Fura-2/AM. [Mg2+]i was 0.48±0.08 mM (mean±SEM, n=23) at rest, and it increased 3-fold by depolarization with a 60-mM K+ solution. The [Mg2+]i increase was observed in the absence of extracellular Mg2+, but the increase disappeared in the absence of extracellular Ca2+. 50 μM cadmium or 100 μM verapamil, a Ca2+ channel blocker, also diminished the rise of [Mg2+]i. The additional measurement of an intracellular Ca2+ concentration ([Ca2+]i) indicated that the [Mg2+]i rise requires a threshold concentration of [Ca2+]i to be reached; above 60 nM. The present results indicate that depolarization induces a Ca2+-influx through voltage dependent Ca channels and this causes the release of Mg2+ from intracellular stores into the cytoplasm.  相似文献   

13.
The effects of neuropeptide Y on the intracellular level of Ca2+ ([Ca2+]i) were studied in cultured rat adrenal chromaffin cells loaded with fura-2. A proportion (16%) of cells exhibited spontaneous rhythmic [Ca2+]i oscillations. In silent cells, oscillations could be induced by forskolin and 1,9–dideoxyforskolin. This action of forskolin was not modified by H-89, an inhibitor of protein kinase A. Spontaneous [Ca2+i fluctuations and [Ca2+]i fluctuations induced by forskolin- and 1,9-dideoxyforskolin were inhibited by neuropeptide Y. Increases in [Ca2+]i induced by 10 and 20 mM KCI but not by 50 mM KCI were diminished by neuropeptide Y. However, neuropeptide Y had no effect on [Ca2+]i increases evoked by (-)BAY K8644 and the inhibitory effect of neuropeptide Y on responses induced by 20 mM KCI was not modified by o-conotoxin GVIA, consistent with neither L- nor N-type voltage-sensitive Ca2+ channels being affected by neuropeptide Y. Rises in [Ca2+]i provoked by 10 mM tetraethylammonium were not decreased by neuropeptide Y, suggesting that K+ channel blockade reduces the effect of neuropeptide Y. However, [Ca2+]i transients induced by 1 mM tetraethylammonium and charybdotoxin were still inhibited by neuropeptide Y, as were those to 20 mM KCI in the presence of apamin. The actions of neuropeptide Y on [Ca2+]i transients provoked by 20 and 50 mM KCI, 1 mM tetraethylammonium, (-)BAY K8644 and charybdotoxin were mimicked by 8–bromo-cGMP. In contrast, 8–bromo-CAMP did not modify responses to 20 mM KCI or 1 mM tetraethylammonium. The inhibitory effects of neuropeptide Y and 8–bromo-cGMP on increases in [Ca2+]i induced by 1 mM tetraethylammonium were abolished by the Rp-8–pCPT-cGMPS, an inhibitor of protein kinase G, but not by H-89. A rapid, transient increase in cGMP level was found in rat adrenal medullary tissues stimulated with 1 μM neuropeptide Y. Rises in [Ca2+]i produced by DMPP, a nicotinic agonist, but not by muscarine, were decreased by neuropeptide Y. Our data suggest that neuropeptide Y activates a K+ conductance via a protein kinase G-dependent pathway, thereby opposing the depolarizing action of K+ channel blocking agents and the associated rise in [Ca2+]i.  相似文献   

14.
Patch-clamp recordings were made on rat hippocampal neurons maintained in culture. In cell-attached and excised inside-out and outside-out patches a large single-channel current was observed. This channel had a conductance of 220 and 100 pS in 140 mM [K+]i/140 mM [K+]o and 140 mM [K+]i/3 mM [K+]o respectively. From the reversal potential the channel was highly selective for K+, the PK+/Pna+ ratio being 50/1. Channel activity was voltage-dependent, the open probability at 100 mM [Ca2+]i increasing by e-fold for a 22 mV depolarization. It was also dependent on [Ca2+]i at both resting and depolarized membrane potentials. Channel open states were best described by the sum of two exponentials with time constants that increased as the membrane potential became more positive. Channel activity was sensitive to both external (500 μM) and internal (5 mM) tetraethylammonium chloride. These data are consistent with the properties of maxi-K+ channels described in other preparations, and further suggest a role for maxi-channel activity in regulating neuronal excitability at the resting membrane potential. Channel activity was not altered by 8-chlorophenyl thio cAMP, concanavalin A, pH reduction or neuraminidase. In two of five patches lemakalim (BRL 38227) increased channel activity. Internal ruthenium red (10 μM) blocked the channel by shortening the duration of both open states. This change in channel gating was distinct from the ‘mode switching’ seen in two patches, where a channel switched spontaneously from normal activity typified by two open states to a mode where only short openings were represented.  相似文献   

15.
We have examined how NGF-dependent rat sympathetic neurons maintain Ca2+ homeostasis when challenged with high K+ or 8-(4-chlorophenylthio)cyclic AMP (CPTcAMP), two survival factors. In the presence of NGF, high K+ (55 mM) caused a stable, 65% reduction in the density of cell soma voltage-sensitive Ca2+ channels within 2 days. Although resting [Ca2+]i was elevated by 1.6-fold, this was 50% less than the rise in [Ca2+]i measured before down-regulation occurred, suggesting that down-regulation may help prevent the toxic effects of persistently elevated [Ca2+]i. Inhibition of protein synthesis by cycloheximide blocked recovery from down-regulation. Moreover, treatment with cycloheximide or actinomycin-D caused a 2-fold rise in the peak Ca2+ current, suggesting that voltage-sensitive Ca2+ channel activity may be tonically attenuated during normal growth. In the absence of NGF, neurons survived for several days in high K+ medium with no significant rise in resting [Ca2+]i, although neurites did not grow. Neither Ca2+ channel density nor resting [Ca2+]i were altered in neurons surviving with CPTcAMP. Moreover, CPTcAMP lowered the dependence on extracellular Ca2+. However, the dihydropyridine antagonist nitrendipine blocked both high K+- and CPTcAMP-dependent survival although it had no effect in the presence of NGF. Thus, in the absence of NGF, sympathetic neurons do not require elevation of [Ca2+]i above resting levels to survive with either high K+ or CPTcAMP, but dihydropyridine-sensitive Ca2+ channel activity may be essential for their survival promoting actions.  相似文献   

16.
Opioid agonists induced an increase in the intracellular free calcium concentration ([Ca2+]i) or an inhibition of K+ (25 mM)-stimulated increase in [Ca2+]i in different subsets of mouse dorsal root ganglion (DRG) neurons. The total neuronal population was grouped into three classes according to somatic diameter and defined as small (<16 μm), intermediate (16–25 μm), or large (>25 μm) neurons. Substance P-like immunoreactivity was detected mainly in the small and intermediate neurons. The δ, κ, and μ opioid receptor agonists [D-Ser2, Leu5]enkephalin-Thr (DSLET), U69593, and [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO) each induced a transient increase in [Ca2+]i in a small fraction (<30%) of neurons. The increases in [Ca2+]i were blocked by the opioid antagonist naloxone. The dihydropyridine-sensitive calcium channel blocker nifedipine also blocked the increase in [Ca2+]i induced by 1 μM DSLET. The rank order of potency (percentage of cells responding to each opioid agonist) was DSLET > U69593 > DAMGO. The opioid-induced increase in [Ca2+]i was observed mainly in large neurons, with a low incidence in small and intermediate neurons. Opioid agonists also caused inhibition of K+-stimulated increases in [Ca2+]i, which were blocked by naloxone (1 μM). Inhibition of the K+-stimulated increase by 1 μM DSLET or U69593 was greater in small and intermediate neurons than in large neurons. © 1996 Wiley-Liss, Inc.  相似文献   

17.
We compared the effectiveness of Ca2+ entering by Na+/Ca2+ exchange with that of Ca2+ entering by channels produced by membrane depolarization with K+ in inducing catecholamine release from bovine adrenal chromaffin cells. The Ca2+ influx through the Na+/Ca2+ exchanger was promoted by reversing the normal inward gradient of Na+ by preincubating the cells with ouabain to increase the intracellular Na+ and then removing Na+ from the external medium. In this way we were able to increase the cytosolic free Ca2+ concentration ([Ca2+]c) by Na+/Ca2+ exchange to 325 ± 14 nM, which was similar to the rise in [Ca2+]c observed upon depolarization with 35 mM K+ of cells not treated with ouabain. After incubating the cells with ouabain, K+ depolarization raised the [Ca2+]c to 398 ± 31 nM, and the recovery of [Ca2+]c to resting levels was significantly slower. Reversal of the Na+ gradient caused an −6-fold increase in the release of noradrenaline or adrenaline, whereas K+ depolarization induced a 12-fold increase in noradrenaline release but only a 9-fold increase in adrenaline release. The ratio of noradrenaline to adrenaline release was 1.24 ± 0.23 upon reversal of the Na+/Ca2+ exchange, whereas it was 1.83 ± 0.19 for K+ depolarization. Reversal of the Na+/Ca2+ exchange appeared to be as efficient as membrane depolarization in inducing adrenaline release, in that the relation of [Ca2+]c to adrenaline release was the same in both cases. In contrast, we found that for the same average [Ca2+]c, the Ca2+ influx through voltage-gated channels was much more efficient than the Ca2+ entering through the Na+/Ca2+ exchanger in inducing noradrenaline release from chromaffin ceils. This greater effectiveness of membrane depolarization in stimulating noradrenaline release suggests that there is a pool of noradrenaline vesicles which is more accessible to Ca2+ entering through voltage-gated Ca2+ channels than to Ca2+ entering through the Na+/Ca2+ exchanger, whereas the adrenaline vesicles do not distinguish between the source of Ca2+.  相似文献   

18.
The existence of voltage-sensitive Ca2+ channels in type I vestibular hair cells of mammals has not been conclusively proven. Furthermore, Ca2+ channels present in type II vestibular hair cells of mammals have not been pharmacologically identified. Fura-2 fluorescence was used to estimate, in both cell types, intracellular Ca2+ concentration ([Ca2+]i) variations induced by K+ depolarization and modified by specific Ca2+ channel agonists and antagonists. At rest, [Ca2+]i was 90 ± 20 nm in both cell types. Microperifusion of high-K+ solution (50 mm ) for 1 s increased [Ca2+]i to 290 ± 50 nm in type I (n = 20) and to 440 ± 50 nm in type II cells (n = 10). In Ca2+-free medium, K+ did not alter [Ca2+]i. The specific L-type Ca2+ channel agonist, Bay K, and antagonist, nitrendipine, modified in a dose-dependent manner the K+-induced [Ca2+]i increase in both cell types with maximum effect at 2 μm and 400 nm , respectively. Ni2+, a T-type Ca2+ channel blocker, reduced K+-evoked Ca2+ responses in a dose-dependent manner. For elevated Ni2+ concentrations, the response was differently affected by Ni2+ alone, or combined to nitrendipine (500 nm ). In optimal conditions, nitrendipine and Ni2+ strongly depressed by 95% the [Ca2+]i increases. By contrast, neither ω-agatoxin IVA (1 μm ), a specific P- and Q-type blocker, nor ω-conotoxin GVIA (1 μm ), a specific N-type blocker, affected K+-evoked Ca2+i responses. These results provide the first direct evidence that L- and probably T-type channels control the K+-induced Ca2+ influx in both types of sensory cells.  相似文献   

19.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

20.
More than 90% of dorsal horn neurons from embryonic day 15–16 rats responded to the inhibitory amino acids GABA and glycine by a transient elevation of intracellular Ca2+ concentration ([Ca2+]i) when maintained in culture for <1 week. This [Ca2+]i response has previously been shown to be due to depolarization and subsequent Ca2+ entry through voltage-gated Ca2+ channels following activation of bicuculline-sensitive GABAA receptors and strychnine-sensitive glycine receptors. Both the number of cells responding to GABA and glycine and the amplitude of the [Ca2+]i response diminished over time in culture. By 30 days in culture, none of the cells responded to GABA, muscimol or glycine by elevation of [Ca2+]i. The loss of the [Ca2+]i response was not due to a change in the abundance or the properties of voltage-gated Ca2+ channels, since over the same period of time dorsal horn neurons showed a large increase in the amplitude of the [Ca2+]i transient in response to 30 mM K+. Nor was the loss of the [Ca2+]i response due to a loss of GABA and glycine receptors. Instead, the decrease in the [Ca2+]i response over time paralleled a similar change in the electrophysiological responses. More than 90% of the neurons tested were depolarized in response to inhibitory amino acids during the first week in culture. After 30 days, all neurons tested responded to GABA and glycine with a hyperpolarization. These observations add support to the suggestion that GABA and glycine may excite dorsal horn neurons earlyin development and play a role in postmitotic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号