首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary conjugated linoleic acids (CLA) have been reported to have a number of isomer-dependent effects on lipid metabolism including reduction in adipose tissue deposition, changes in plasma lipoprotein concentrations and hepatic lipid accumulation. The aim of this study was to compare the effect of individual CLA isomers against lipogenic and high 'Western' fat background diets. Golden Syrian hamsters were fed a high-carbohydrate rodent chow or chow supplemented with 17.25 % fat formulated to represent the type and amount of fatty acids found in a typical 'Western' diet (including 0.2 % cholesterol). Diets were further supplemented with 0.25 % (w/w) rapeseed oil, cis9, trans11 (c9,t11)-CLA or trans10, cis12 (t10,c12)-CLA. Neither isomer had a significant impact on plasma lipid or lipoprotein concentrations. The t10,c12-CLA isomer significantly reduced perirenal adipose tissue depot mass. While adipose tissue acetyl CoA carboxylase and fatty acid synthase mRNA concentrations (as measured by quantitative PCR) were unaffected by CLA, lipoprotein lipase mRNA was specifically reduced by t10,c12-CLA, on both background diets (P < 0.001). This was associated with a specific reduction of sterol regulatory element binding protein 1c expression in perirenal adipose tissue (P = 0.018). The isomers appear to have divergent effects on liver TAG content with c9,t11-CLA producing lower concentrations than t10,c12-CLA. We conclude that t10,c12-CLA modestly reduces adipose tissue deposition in the Golden Syrian hamster independently of background diet and this may possibly result from reduced uptake of lipoprotein fatty acids, as a consequence of reduced lipoprotein lipase gene expression.  相似文献   

2.
The usefulness of conjugated linoleic acid (CLA) as a nutraceutical remains ambiguous. Our objective was, therefore, to investigate the effect of CLA on body composition, blood lipids, and safety biomarkers in overweight, hyperlipidemic men. A double-blinded, 3-phase crossover trial was conducted in overweight (BMI ≥ 25 kg/m(2)), borderline hypercholesterolemic [LDL-cholesterol (C) ≥ 2.5 mmol/L] men aged 18-60 y. During three 8-wk phases, each separated by a 4-wk washout period, 27 participants consumed under supervision in random order 3.5 g/d of safflower oil (control), a 50:50 mixture of trans 10, cis 12 and cis 9, trans 11 (c9, t11) CLA:Clarinol G-80, and c9, t11 isomer:c9, t11 CLA. At baseline and endpoint of each phase, body weight, body fat mass, and lean body mass were measured by DXA. Blood lipid profiles and safety biomarkers, including insulin sensitivity, blood concentrations of adiponectin, and inflammatory (high sensitive-C-reactive protein, TNFα, and IL-6) and oxidative (oxidized-LDL) molecules, were measured. The effect of CLA consumption on fatty acid oxidation was also assessed. Compared with the control treatment, the CLA treatments did not affect changes in body weight, body composition, or blood lipids. In addition, CLA did not affect the β-oxidation rate of fatty acids or induce significant alterations in the safety markers tested. In conclusion, although no detrimental effects were caused by supplementation, these results do not confirm a role for CLA in either body weight or blood lipid regulation in humans.  相似文献   

3.
We report the effect of an atherogenic diet supplemented with cis-9, trans-11-octadecadienoic acid (c9t11), linoleic acid (LA) or an isomeric mixture of conjugated linoleic acids (CLA) on plasma lipids, weight gain and food intake of male Golden Syrian hamsters. Animals were assigned to three diet groups (n = 10), and fed nonpurified diet, supplemented with 10% hydrogenated coconut oil and 0.05% cholesterol for 6 wk. The first diet group was further supplemented with 1% CLA (CLA group), the second diet group with 0.2% c9t11 (c9t11 group) and the third group with 0.2% LA (LA group). The diets were designed to have equivalent levels of c9t11 in the CLA and c9t11 groups. At 2 and 6 wk of feeding, the CLA group had significantly lower plasma triglyceride and total cholesterol concentrations than either the c9t11 or the LA groups. HDL-cholesterol did not differ among diet groups. The CLA group had significantly lower weight gain but greater food intake than either the c9t11 or the LA groups. There were no significant differences between the c9t11 and the LA groups in any of the variables measured. We conclude that under our experimental conditions of short-term feeding, c9t11, thought to be the active compound in CLA, does not produce the same effect as the isomer mixture.  相似文献   

4.
Evidence from animal studies suggests that conjugated linoleic acid (CLA) modulates plasma and tissue appearance of newly synthesized PUFA. The effects of a 1.2g (0.5 % energy) daily intake of the cis-9,trans-11 (c9,t11) isomer of CLA, trans-10,cis-12 (t10,c12) isomer of CLA or olive oil (placebo) on linoleic acid (LA) and linolenic acid (LNA) metabolism in healthy human volunteers was investigated. Fifteen subjects were fed an experimental diet and supplemented with c9,t11-CLA, t10,c12-CLA or placebo for 7 d before consuming a tracer dose of U-[(13)C]LA (50 mg) and U-[(13)C]LNA (50 mg). Blood samples were taken at 0, 2, 4, 6, 8, 24, 48, 72 and 168 h and analysed using high-precision MS. No differences between the groups in peak plasma [(13)C]LA (10.3-11.6 % of dose), [(13)C]LNA (2.5-2.9 % of dose), [(13)C]arachidonic acid (0.09-0.12 % of dose), [(13)C]EPA (0.04-0.06 % of dose) or [(13)C]DHA (0.06-0.10 % of dose) were detected. Concentration v. time curves (area under the curve) also showed no significant differences between groups. This suggests that, in healthy human subjects consuming a diet with adequate intake of essential fatty acids, CLA does not affect metabolism of LA or LNA.  相似文献   

5.
6.
To investigate the effects of 2 conjugated linoleic acid (CLA) isomers and trans11-18:1 (TVA) on de novo lipogenesis and desaturation in liver and mammary gland, lactating mice were fed diets containing 3% canola oil (control) or 2% canola oil plus 1% stearic acid (SA), TVA, cis9,trans11 CLA (c9t11), or trans10,cis12 CLA (t10c12). In mammary tissue, TVA and CLA isomers reduced mRNA for acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) compared with control, but only c9t11 and t10c12 reduced mammary ACC activity. Of the 2 CLA isomers, t10c12 caused a greater reduction in mammary ACC activity. Hepatic ACC or FAS activity and mRNA abundance were not affected by dietary treatments. Feeding TVA, c9t11, or t10c12 reduced mammary stearoyl-CoA desaturase 1 (SCD) mRNA and activity. Reduction was greater due to feeding t10c12 compared with c9t11. Hepatic SCD mRNA was not affected by dietary treatments, but both CLA isomers depressed hepatic SCD activity. Results indicated that t10c12 is a more potent inhibitor of mammary lipogenesis and desaturation than is c9t11. A net gain of 77 and 1690 micro g of c9t11 in liver and mammary tissue, respectively, was found in the TVA-fed group over the control and SA-fed group. However, reduced mammary SCD mRNA or activity due to feeding TVA may indicate a limited capacity for desaturation of dietary TVA to c9t11 in vivo.  相似文献   

7.
Bee G 《The Journal of nutrition》2000,130(9):2292-2298
Conjugated linoleic acids (CLA) have been shown to affect fatty acid synthesis in various tissues. The objective of the study was to compare the effect of a commercial source of CLA with a linoleic acid-enriched oil (LA), supplied to 12 multiparous sows during gestation and lactation, on adipose tissue and milk fatty acid composition. The CLA isomers detected in the CLA oil were (in order of magnitude) c9,t11; t10,c12; c9,c11; t9,t11/t10,t12 and c10,c12 and amounted to 58.9 g/100 g fat. Biopsies were taken from the backfat on d 7 and 97 of gestation and milk samples were collected on d 2, 9, 16 and 23 after farrowing. Collection of colostrum and mature milk samples took place at 1100 h for sows who farrowed in the morning or at 1500 h for those who farrowed in the afternoon. All major CLA isomers in the supplement were transferred to the tissue and milk fat and, compared with the LA group, significantly increased saturated fatty acid and decreased monounsaturated fatty acid levels in the tissue and milk. These findings suggest a distinct involvement of CLA in the de novo fatty acid synthesis and desaturation process in the adipose tissue and mammary gland. Estimated transfer efficiency of dietary CLA isomers was 41-52% for the backfat and 55-69% for the mature milk. The incorporation and uptake efficiency seemed to be selective with the highest values found for c9,t11-CLA. Overall, dietary CLA supplementation of sows during gestation and lactation markedly altered backfat and milk fatty acid composition.  相似文献   

8.
Effects of the conjugated linoleic acid (CLA) isomers cis-9, trans-11 (c9,t11 CLA) and trans-10, cis-12 (t10,c12 CLA) on lipid metabolism and markers of peroxisome proliferation were investigated in hamsters fed on purified diets containing 30% energy as fat and 0.1 g cholesterol/kg for 8 weeks. Four groups (n 32 each) received diets without CLA (control), with a mixture of equal amounts of c9,t11 and t10,c12 CLA (CLA mix), with c9,t11 CLA, and with t10,c12 CLA. The total amount of CLA isomers was 1.5% energy of 6.6g/ kg diet. CLA was incorporated into glycerides and exchanged for linoleic acid in the diet. Compared with the control, the CLA mix and t10,c12 CLA decreased fasting values of LDL- (21 and 18% respectively) and HDL-cholesterol (8 and 11%), increased VLDL-triacylglycerol (80 and 61%, and decreased epididymal fat pad weights (9 and 16%), whereas c9,t11 CLA had no significant effects. All CLA preparations increased liver weight, but not liver lipids. However, the increase in liver weight was much less in the c9,t11 CLA group (8%) than in the other two groups (25%) and might have been caused by the small amount of t10,c12 CLA present in the c9,t11 CLA preparation. Liver histology revealed that increased weight was due to hypertrophy. Markers of peroxisome proliferation, such as cyanide-insensitive palmitoyl CoA oxidase (EC 1.3.3.6) and carnitine acetyl transferase (EC 2.3.1.7) activities, were not increased by CLA. Both c9,t11 CLA and t10,c12 CLA were incorporated into phospholipids and triacylglycerols, but t10,c12 CLA only about half as much as c9,t11 CLA. In addition, linoleic acid and linolenic acid concentrations were lower in lipids of the t10,c12 CLA group compared with the c9,t11 CLA group. These data suggest that t10,c12 CLA stimulated the oxidation of all C18 polyunsaturated fatty acids. The results indicate that the t10,c12 CLA isomer, and not the so-called natural CLA isomer (c9,t11), is the active isomer affecting lipid levels in hamsters.  相似文献   

9.
Conjugated linoleic acid isomers and cancer   总被引:2,自引:0,他引:2  
We reviewed the literature regarding the effects of conjugated linoleic acid (CLA) preparations enriched in specific isomers, cis9, trans11-CLA (c9, t11-CLA) or trans10, cis12-CLA (t10, c12-CLA), on tumorigenesis in vivo and growth of tumor cell lines in vitro. We also examined the potential mechanisms by which CLA isomers may alter the incidence of cancer. We found no published reports that examined the effects of purified CLA isomers on human cancer in vivo. Incidence of rat mammary tumors induced by methylnitrosourea was decreased by c9, t11-CLA in all studies and by t10, c12-CLA in just a few that included it. Those 2 isomers decreased the incidence of forestomach tumors induced by benzo (a) pyrene in mice. Both isomers reduced breast and forestomach tumorigenesis. The c9, t11-CLA isomer did not affect the development of spontaneous tumors of the intestine or mammary gland, whereas t10, c12-CLA increased development of genetically induced mammary and intestinal tumors. In vitro, t10, c12-CLA inhibited the growth of mammary, colon, colorectal, gastric, prostate, and hepatoma cell lines. These 2 CLA isomers may regulate tumor growth through different mechanisms, because they have markedly different effects on lipid metabolism and regulation of oncogenes. In addition, c9, t11-CLA inhibited the cyclooxygenase-2 pathway and t10, c12-CLA inhibited the lipooxygenase pathway. The t10, c12-CLA isomer induced the expression of apoptotic genes, whereas c9, t11-CLA did not increase apoptosis in most of the studies that assessed it. Several minor isomers including t9, t11-CLA; c11, t13-CLA; c9, c11-CLA; and t7, c11-CLA were more effective than c9, t11-CLA or t10, c12-CLA in inhibiting cell growth in vitro. Additional studies with purified isomers are needed to establish the health benefit and risk ratios of each isomer in humans.  相似文献   

10.
11.
Trans vaccenic acid (TVA; trans-11 18:1) is a positional and geometric isomer of oleic acid and it is the predominant trans isomer found in ruminant fats. TVA can be converted into cis-9, trans-11 conjugated linoleic acid (c9, t11-CLA), a CLA isomer that has many beneficial effects, by stearoyl CoA desaturase 1 (SCD1) in the mammary gland. The health benefits associated with CLA are well documented, but it is unclear whether trans fatty acids (TFAs) from ruminant products have healthy effects. Therefore, the effects of TVA on the proliferation of MCF-7 human breast adenocarcinoma cells and MCF-10A human breast epithelial cells were investigated in the present study. Results showed that TVA inhibited the proliferation of MCF-7 cells but not MCF-10A cells by down-regulating the expression of Bcl-2 as well as procaspase-9. In addition, the suppressive effect of TVA was confirmed in SCD1-depleted MCF-7 cells. Our results suggested that TVA exerts a direct anti-carcinogenic effect on MCF-7 cells. These findings provided a better understanding of the research on the anti-carcinogenic effects of TVA and this may facilitate the manufacture of TVA/c9, t11-CLA fortified ruminant products.  相似文献   

12.
Conjugated linoleic acid (CLA), a naturally occurring anticarcinogen found in dairy products, is an intermediary product of ruminal biohydrogenation of polyunsaturated fatty acids. Few data exist on the CLA content of the human blood plasma. The determination of a "normal" content could help in estimating if a person consumes satisfactory amounts of CLA with the diet and thus takes advantage of its potential beneficial effects on health. The purpose of this study was to compare the plasma CLA content of individuals not consuming dairy products (group 1, n = 12), individuals consuming normal amounts of dairy products (group 2, n = 77) and individuals consuming CLA supplement (group 3, n = 12). The only CLA isomer that presented higher percentage than the detection limit (0.03% of total fatty acids) was rumenic acid (cis9, trans11-octadecadienoic acid). An interesting finding is that compared to the other two groups, group 3 members show the highest average plasma content in rumenic acid, i.e. 0.20% of total fatty acids. The present study could be characterized as the first step in the direction of establishing a normal CLA content of human plasma. Based on these results, it could be suggested that the lower limit of the plasma CLA content is approximately 0.1% of total fatty acids.  相似文献   

13.
Background Atherosclerosis is characterized by extensive thickening of the arterial intima partially resulting from deposition of collagen by vascular smooth muscle cells (SMCs). Polyunsaturated fatty acids stimulate collagen formation through NF-κB activation. Aim of the study The present study aimed to explore the effect of conjugated linoleic acids (CLAs) which are known to inhibit NF-κB activation on collagen formation by SMCs. Methods Vascular SMCs were cultured with 50 μmol/l of CLA isomers (c9t11-CLA, t10c12-CLA) or linoleic acid (LA) and analysed for collagen formation and NF-κB p50 transactivation. Results Treatment with CLA isomers but not LA significantly reduced PDGF-stimulated [3H] proline incorporation into cell layer protein of SMCs without altering cell proliferation. Simultaneous treatment with the PPARγ inhibitor T0070907 abrogated this effect. Treatment of SMCs with c9t11-CLA and t10c12-CLA significantly reduced PDGF-induced NF-κB p50 activation. Conclusions CLA isomers inhibit PDGF-stimulated collagen production by vascular SMCs, which is considered to be a hallmark of atherosclerosis, in a PPARγ-dependent manner. Whether inhibition of the NF-κB-pathway is of significance for the reduction of collagen formation by CLA isomers needs further investigation.  相似文献   

14.
Cis 9, trans 11 (c 9, t11)-18:2 and trans 10, cis 12 (t10, c12)-18:2 are the major conjugated linoleic acid (CLA) isomers in dietary supplements which reduce milk fat content in nursing women. The present study evaluated the effects of each CLA isomer or vaccenic acid on body composition and tissue fatty acids during lactation in mice. Dams were fed 30 g rapeseed oil (control)/kg diet or 20 g control plus 10 g 18:0, trans 11-18:1 (t11-18:1), c 9, t11-18:2, or t10, c12-18:2. Dietary t10, c12-18:2 reduced food intake by 18 % and carcass fat weight of the dams by 49 % compared with the other treatments. Milk fat percentage ranked by treatment was 18:0>t11-18:1=c 9, t11-18:2>t10, c12-18:2. The sum of saturated 12:0 to 16:0 in milk fat was lower when c 9, t11-18:2 was fed compared with the control, 18:0, or t11-18:1 treatments. Dietary t10, c12-18:2 caused further reductions in milk fat 12:0 to 16:0. The proportion of CLA isomers was 3-fold greater in milk fat than in the carcasses of the dams. The pups nursing from the dams fed t10, c12-18:2 had the lowest body weights and carcass fat, protein, and ash contents. Nursing from the dams fed c 9, t11-18:2 also resulted in lower carcass fat compared with the 18:0 or t11-18:1 treatments. The ratios of cis 9-16:1:16:0 or cis 9-18:1:18:0, proxies for Delta(9)-desaturase activity, were markedly lower in the carcasses of the dams and pups fed t10, c12-18:2. The ratio of 20:4n-6:18 : 2n-6, a proxy for Delta(6)- and Delta(5)-desaturase and elongase activity, in the liver of the dams and pups fed t10, c12-18:2 also was lower. Dietary t11-18:1 enhanced the content of c 9, t11-18:2 in milk fat and carcasses. As in previous studies, the reduction in food intake by t10, c12-18:2 could not entirely account for the marked decrease in carcass fat content and milk fat concentration. T10, c12-18:2 probably had a negative effect on Delta(9)-desaturase and mammary de novo fatty acid synthesis. Although these effects need to be confirmed in lactating women, the results suggest that the consumption of supplements containing t10, c12-18:2 should be avoided during the nursing period.  相似文献   

15.
《Nutrition reviews》1992,50(2):54-56
The position of the trans double bond of linoleic acid isomers affects the incorporation of the isomers in tissue lipids and their metabolic conversion to other metabolites. The 9 trans, 12 cis isomer of linoleic acid is a poor substrate and the 9 cis, 12 trans isomer is a good substrate for the enzyme that desaturates dienoic acids at position six.  相似文献   

16.
Conjugated linoleic acids (CLA) have positive health effects in experimental models. Our objective was to determine the effect of CLA supplementation on milk of dairy cows. A commercial source of CLA was infused abomasally to by-pass rumen fermentation. The supplement contained 61.2% CLA; the major CLA isomers were cis/trans 8,10, cis/trans 9,11, cis/trans 10,12 and cis/trans 11,13. Four Holstein cows were used in a 4 x 4 Latin square design. Treatments were 5-d infusions of 0, 50, 100 and 150 g/d of CLA supplement. Infusion increased milk fat content of CLA from 6.8 mg/g fat (zero dose) to 63.6 mg/g fat (highest dose). All of the major CLA isomers in the supplement were transferred to milk fat in a dose-dependent manner. Apparent efficiency of transfer to milk fat was 22.5, 22.5, 10.2 and 26.3% for cis/trans 8,10, cis/trans 9,11, cis/trans 10,12 and cis/trans 11,13, respectively. CLA infusion had no effect on milk protein and little effect on milk yield (21.5, 20.4, 20.9 and 18.3 kg/d for 0, 50, 100 and 150 g/d CLA supplement, respectively). However, CLA infusion dramatically reduced milk fat. On average, the content and yield of milk fat were reduced by 52 and 55%, respectively. The role of specific CLA isomers and mechanism(s) for the reduction in milk fat have not been established, although the pattern of milk fatty acids demonstrated effects were most pronounced on de novo fatty acid synthesis and the desaturation process. Overall, dietary supplemention of CLA increased milk fat content of CLA, altered milk fatty acid composition and markedly reduced the content and yield of milk fat.  相似文献   

17.
Conjugated linoleic acid (CLA) reduces body fat reserves, and reduces atherogenesis and type II diabetes in animal experiments. It has been reported that CLA have isomeric-specificity, such as c9, t11 CLA with anticancer activity. The antiproliferative effects of two isomers of CLA (c9, t11-CLA, t9, t11-CLA) and their mixture on the human colon adenocarcinoma cell line Caco-2 were investigated in this paper. Caco-2 were incubated in serum-free medium. The antiproliferative effects of different concentrations (0, 25, 50, 100, 200 micromol/L) of linoleic acid (LA), c9, t11-CLA, t9, t11-CLA (the purity of LA and CLA was 96%) and a mixture of c9, t11-CLA and t9, t11- CLA (1:1 v/v) on caco-2 in various action time (1d, 2d, 3d, 4d) were tested in the present study. The antiproliferative effects of four substances in the same concentration and with the same action time were compared. All substances tested could inhibit Caco-2 cell proliferation. The higher anti-proliferation activity in the four materials is the mixture of CLA, then is t9,t11-CLA, c9,t11-CLA, and linoleic acid respectively. The activity is closely related to treatment time and concentration. The isomer t9, t11-CLA itself was found to have antiproliferative activity.  相似文献   

18.
Conjugated linoleic acid and human health-related outcomes   总被引:1,自引:0,他引:1  
Summary There has been increasing interest in health benefits of conjugated linoleic acid (CLA) based on findings with laboratory animals. Some human studies have also suggested health benefits of CLA, but because of the mixes used these could not be readily associated with a particular isomer of CLA. A recent study examined the separate effects of near‐pure cis‐9,trans‐11 CLA (c9,t11 CLA) or trans‐10,cis‐12 CLA (t10,c12 CLA) on health‐related outcomes in healthy young males. The CLA isomers were provided in capsules and at three doses (up to about 2.5 g/day) each for 8 weeks. Both c9,t11 and t10,c12 CLA were incorporated in a dose–response fashion into blood lipids and cells. At the doses and durations used, neither isomer of CLA affected bodyweight, body mass index or body composition, insulin sensitivity, immune function or markers of inflammation. However, at the doses and durations used, c9,t11 and t10,c12 CLA had opposing effects on blood lipid concentrations. Altered dairy cow‐feeding practices were used to produce c9,t11 CLA‐rich milk and, from this ultra heat‐treated milk, cheese and butter were produced. The milk and the dairy products made from it had ninefold higher contents of c9,t11 CLA, higher contents of n‐3 fatty acids and lower contents of total fat and of saturated fatty acids. They also contained much higher contents of trans‐vaccenic acid (tVA). The modified dairy products were used in a 6‐week controlled dietary intervention study in healthy middle‐aged males. c9,t11 CLA and tVA were incorporated from dairy products into blood lipids and cells. Consumption of the CLA‐rich (and tVA‐rich) dairy products did not affect bodyweight or body mass index, insulin sensitivity or inflammatory markers. However, there were some detrimental effects on blood lipids. These effects may be due to tVA rather than to c9,t11 CLA, as they are consistent with the effects of trans fatty acids and not consistent with the effects of c9,t11 CLA identified in the earlier study with c9,t11 CLA in capsules.  相似文献   

19.
Conjugated linoleic acid (CLA) isomers are potent inhibitors of mammary tumor cell growth. Evidence suggests that CLA modulates essential fatty acid (EFA) metabolism; however, it is not clear which parts of this pathway are important regulatory points modulated by CLA. Enriched mixtures of D9-cis,11-trans (D9c,11t)- and D10-trans,12-cis (D10t,12c)-18:2 were used to assess outcome measures of EFA metabolism pertaining to membrane phospholipid incorporation, tumor cell growth, and prostaglandin E2 (PGE2) synthesis in the MDA-MB-231 mammary tumor cell line. Tumor cells were treated with linoleic acid (LA), an equal mixture (Mix), or enriched preparations of D9c,11t- or D10t,12c-18:2. Treatment with Mix or the enriched mixture of D10t,12c-18:2 significantly inhibited the synthesis of arachidonic acid (AA) from LA, resulting in increased levels of LA and decreased levels of AA in membrane phosphatidylcholine and phosphatidylethanolamine (P < 0.05). LA and AA levels were not altered in cells treated with enriched D9c,11t-18:2 and were similar to those in LA control treated cells. All CLA treatments reduced [3H]thymidine uptake, an indicator of tumor cell growth, by more than one-half relative to LA controls. MDA-MB-231 cells challenged with AA in the presence of all CLA mixtures resulted in significantly reduced PGE2 synthesis relative to controls treated with LA (P < 0.05). It is evident that individual isomers exert inhibitory effects at specific steps of EFA metabolism, which correspondingly leads to a reduction in PGE2 synthesis and, ultimately, tumor growth.  相似文献   

20.
Conjugated linoleic acid (CLA) and some trans fatty acids (FA) decrease tumor growth and alter tumor and host lipid uptake and storage. The goal of this study was to test the hypothesis that the acute inhibitory effects of CLA isomers and trans FAs on FA transport in tumors and white adipose tissue are mediated via an inhibitory G-protein coupled (GPC), FFA receptor (FFAR). Experiments were performed in hepatoma 7288CTC and inguinal fat pads in Buffalo rats during perfusion in situ. CLA isomers and trans FAs (0.03-0.4 mmol/L, in plasma) were added to the arterial blood, and FA uptake or release was measured by arterial minus venous difference. In hepatoma 7288CTC, the CLA isomers, t10,c12-CLA > (+/-)-9-HODE [13-(S)-hydroxyoctadecadienoic acid] > t9,t11-CLA, and the trans FAs, linolelaidic = vaccenic > elaidic, decreased cAMP content and inhibited FA uptake, 13(S)-HODE release, extracellular signal-regulated kinase p44/p42 phosphorylation, and [(3)H]thymidine incorporation. Other CLA isomers, c9,t11-CLA, 13-(S)-HODE, c9,c11-CLA, and c11,t13-CLA, had no effect. In inguinal fat pads, FA transport was inhibited by t10,c12-CLA = linolelaidic acid > trans vaccenic acid, whereas c9,t11-CLA had no effect. In both hepatoma 7288CTC and inguinal fat pad, addition of either pertussis toxin or 8-Br-cAMP to the arterial blood reversed the inhibitions of FA transport. These results support the idea that an inhibitory GPC FFAR reduces cAMP and controls FA transport by CLA isomers and trans FAs. Ligand activity is conferred by the presence of a trans double bond proximal to the carboxyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号