首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Stress-induced hyperthermia (SIH), which is seen in the last mice removed from the cage, is a novel animal model sensitive to anxiolytic drugs. SIH is antagonized by CL 218872 (25 and 50 mg/kg, os), by tracazolate (5 and 7.5 mg/kg, ip) and by 2-AP-5 (50 and 100 mg/kg, ip). At higher dose, CL 218872 (100 mg/kg, os) and tracazolate (12.5 mg/kg, ip) lose their activity.PK 9084 (5–40 mg/kg, ip) and CGS 9896 (2–20 mg/kg, both ip and os) were also ineffective in preventing SIH. The anti-hyperthermic effect of CL 218872 (25 mg/kg) and tracazolate (7.5 mg/kg) was blocked by the benzodiazepine antagonist Ro 15–1788 (15 mg/kg). CGS 9896 (10 mg/kg, os) also reversed the effect of CL 218872 (25 mg/kg) on SIH.Differently from anxiolytics, MK-801 (0.5–1 mg/kg, os), PCP (2.5 mg/kg, ip) and d-amphetamine (10 mg/kg, ip) evoked hyperthermia in the first set of mice and prevented a further stress-induced rise of body temperature in the last set of mice.  相似文献   

2.
There have been many reports describing modifications of the sensory and motor cortex following various types of disuse. Hypodynamia--hypokinesia is characterized by the absence of weight-bearing and by a decrease in motor activity. We have shown a reorganization of the cortical cartography after hypodynamia--hypokinesia. In order to give an anatomical account for this cortical plasticity, we set out to determine whether cerebral and spinal structures exhibited variations of their neuronal activation. For this purpose, immunocytochemical detection of Fos protein was performed in the rat brain and spinal cord. Following stimulation of the sciatic nerve, Fos protein was detected in the primary and secondary somatosensory cortex in control rats and in rats submitted to an episode of 14 days of hypodynamia--hypokinesia. Results showed that the stimulation of the sciatic nerve induced an increase in the number of Fos-immunoreactive neurons in all these structures. Moreover, after hypodynamia--hypokinesia, the number of Fos-immunoreactive neurons was increased in the primary and secondary somatosensory cortex and in the spinal cord. These results provide evidence for a higher activation of cortical cells after hypodynamia--hypokinesia in comparison to controls. These data support the hypothesis that hypodynamia--hypokinesia contributes to the development of functional plasticity.  相似文献   

3.
4.
Jin S  Lei L  Wang Y  Da D  Zhao Z 《Neuropeptides》1999,33(4):281-284
Intraplantar injection of carrageenan induced significant Fos expression in the superficial and deep spinal dorsal horn at the L(4)-L(5)segments and extensive peripheral edema of the ipsilateral foot in rats. Intraplantar injection of endomorphin-1, endogenous ligand for mu opioid receptor, in the same region produced dose-dependent reduction of carrageenan-induced Fos expression and peripheral edema, which were completely blocked by co-administration of intraplantar injection of naloxone (20 microgram). The systemic injection of the highest dose of endomorphin-1 (50 microgram) had no significant reductory effect on Fos expression and peripheral edema. These results further provided a strong evidence for involvement of mu opioid receptor in peripheral analgesia, particularly in inflammation pain.  相似文献   

5.
There have been many reports describing modifications of the sensory and motor cortex following various types of disuse. Hypodynamia–hypokinesia is characterized by the absence of weight-bearing and by a decrease in motor activity. We have shown a reorganization of the cortical cartography after hypodynamia–hypokinesia. In order to give an anatomical account for this cortical plasticity, we set out to determine whether cerebral and spinal structures exhibited variations of their neuronal activation. For this purpose, immunocytochemical detection of Fos protein was performed in the rat brain and spinal cord. Following stimulation of the sciatic nerve, Fos protein was detected in the primary and secondary somatosensory cortex in control rats and in rats submitted to an episode of 14 days of hypodynamia–hypokinesia. Results showed that the stimulation of the sciatic nerve induced an increase in the number of Fos-immunoreactive neurons in all these structures. Moreover, after hypodynamia–hypokinesia, the number of Fos-immunoreactive neurons was increased in the primary and secondary somatosensory cortex and in the spinal cord. These results provide evidence for a higher activation of cortical cells after hypodynamia–hypokinesia in comparison to controls. These data support the hypothesis that hypodynamia–hypokinesia contributes to the development of functional plasticity.  相似文献   

6.
Wirtshafter D  Asin KE 《Brain research》2001,893(1-2):202-214
Treatment of intact rats with the full D(1) dopamine agonist A-77636 induced Fos-like immunoreactivity in the medial and, to a lesser extent, the lateral portions of the striatum. Pretreatment with the muscarinic antagonist scopolamine hydrobromide (1.5-6 mg/kg) potentiated the response to A-77636 and eliminated the mediolateral staining gradient seen after A-77636 alone. Similar effects were not produced by scopolamine methylbromide, which fails to cross the blood-brain barrier, demonstrating that the actions of scopolamine were centrally mediated. The effects of scopolamine were further compared to those of the D(2)-like dopamine agonist quinpirole using a factorial design in which subjects were pretreated with either scopolamine, quinpirole, or a combination of the two drugs before receiving A-77636. Pretreatment with either scopolamine or quinpirole increased staining in the lateral striatum, but the combination of the two drugs was no more effective than was quinpirole alone. Pretreatment with quinpirole, but not scopolamine, resulted in a markedly "patchy" pattern of staining and actually suppressed staining in the region between patches in the medial striatum. These findings demonstrate that there are both differences and similarities between the effects of scopolamine and quinpirole on D(1) agonist-induced Fos expression and suggest that although inhibition of cholinergic neurons may be one of the mechanisms through which the effects of quinpirole are produced, other factors must also contribute.  相似文献   

7.
Treatment of intact rats with the full D1 dopamine agonist A-77636 induced Fos-like immunoreactivity in the medial and, to a lesser extent, the lateral portions of the striatum. Pretreatment with the muscarinic antagonist scopolamine hydrobromide (1.5–6 mg/kg) potentiated the response to A-77636 and eliminated the mediolateral staining gradient seen after A-77636 alone. Similar effects were not produced by scopolamine methylbromide, which fails to cross the blood–brain barrier, demonstrating that the actions of scopolamine were centrally mediated. The effects of scopolamine were further compared to those of the D2-like dopamine agonist quinpirole using a factorial design in which subjects were pretreated with either scopolamine, quinpirole, or a combination of the two drugs before receiving A-77636. Pretreatment with either scopolamine or quinpirole increased staining in the lateral striatum, but the combination of the two drugs was no more effective than was quinpirole alone. Pretreatment with quinpirole, but not scopolamine, resulted in a markedly ‘patchy’ pattern of staining and actually suppressed staining in the region between patches in the medial striatum. These findings demonstrate that there are both differences and similarities between the effects of scopolamine and quinpirole on D1 agonist-induced Fos expression and suggest that although inhibition of cholinergic neurons may be one of the mechanisms through which the effects of quinpirole are produced, other factors must also contribute.  相似文献   

8.
Zou X  Lin Q  Willis WD 《Brain research》2002,958(2):322-329
In various hypothalamic and adjacent brain regions we have previously found a remarkable increase in nuclear estrogen receptor staining in Alzheimer's disease (AD). In order to see whether this was a general phenomenon or rather specific for those areas that are affected by the AD process we investigated ERalpha and ERbeta expression in the arginine-vasopressin (AVP) neurons of the human dorsolateral suparoptic nucleus (dl-SON), that is the major source of plasma AVP. These neurons remain exceptionally intact in AD. Changes in ER expression were studied in relation to early Alzheimer changes (i.e. hyperphosphorylated tau) and neuronal metabolism in AD as determined by the size of the Golgi apparatus (GA) or cell size. No difference in neuronal metabolism (i.e. GA size or cell size) of AVP neurons was observed between AD and control patients and no early cytoskeletal AD alterations were found confirming the resistance of the dl-SON to AD. While no differences between AD and control patients were present for ERalpha and ERbeta staining except for a lower proportion of nuclear ERbeta AVP-positive neurons in AD subjects, complex sex differences not directly related to AD were observed within each group. The main finding of the present study is that in the dl-SON, that remains active and spared of AD changes, the increase in nuclear ERs seen in adjacent affected areas in AD patients does not occur. This indicates that a rise of nuclear ERs is not a generally occurring phenomenon but rather related to the pathogenetic alterations of the AD process.  相似文献   

9.
As adolescence is a critical period when dopaminergic neuronal maturation peaks, we hypothesized that 6-hydroxydopamine (OHDA) lesions of the medial prefrontal cortex (mPFC) in adolescent rats would have more negative effects than lesions in adult rats. Therefore, we investigated the effects of 6-OHDA lesions of the mPFC in adolescent and adult rats on stress-induced c-fos expression in the brain. Adolescent and adult Sprague–Dawley rats, aged 4 and 7 weeks on arrival, respectively, were studied. 6-OHDA (8.0 µg) for the lesion groups and ascorbic acid for the sham groups were injected bilaterally into the mPFC. All animals were pretreated with desipramine 30 min before being anesthetized. The control group did not undergo any surgery-related procedure except the desipramine injection. After recovery for 1 week, the rats were subjected to restraint stress for 1 h. Immediately after the stress, the rats were killed and c-fos immunohistochemistry was examined. The c-fos expression in the nucleus accumbens core (AcbC), nucleus accumbens shell (AcbSh), CA1, CA3, dentate gyrus (DG), central amygdaloid (Ce), basolateral amygdaloid (BL), and temporal cortex (Tc) was compared. Adolescent rats with 6-OHDA lesions subjected to restraint stress had greater c-fos expression in the AcbC, AcbSh, DG, Ce, BL, and Tc, compared to the sham and control groups, whereas these differences were not observed among the adult groups. These results suggest that a hypodopaminergic state in the mPFC of adolescent rats, but not adult rats, is related to increased sensitivity to stress, suggesting that damage to or maldevelopment of dopaminergic neurons during adolescence has an age-specific effect. Further research is warranted to investigate the mechanism of the age-specific effect of 6-OHDA lesions of the mPFC.  相似文献   

10.
The effect of electrical stimulation of the cerebellar cortex at 10-30 c/s on metabolism in the intracerebellar nuclei has been studied using the [14C]2-deoxyglucose method. The experiments, performed on anesthetized or immobilized animals did not produce any detectable changes in the radioautographic labeling of the intracerebellar nuclei compared with controls. Experiments were also performed in animals pretreated with 3-acetylpyridine neurotoxin which selectively destroys the inferior olive and produces an intense labeling of the intracerebellar nuclei. Less marking was observed in restricted regions of the intracerebellar nuclei receiving the axon terminals of the stimulated Purkinje cells if the experiments were done within the first few hours. Following 3-acetylpyridine intoxication, in this early phase, destruction of the inferior olivary cell bodies occurs, but the climbing fibers remain intact. At 2 days or more following 3-acetylpyridine, changes in marking with stimulation could no longer be obtained. The finding is interpreted as being due to an actual reduction of the Purkinje cell activity upon stimulation of the cerebellar cortex, leading to a reduction of the metabolic activity at their presynaptic terminals.  相似文献   

11.
Previously, we determined the pattern of stress-induced c-fos mRNA expression throughout the brain in order to gain further insight into the identification of the neural circuits mediating stress-induced regulation of the hypothalamic-pituitary-adrenal axis. In the present study, we determined if rapid effects of increased glucocorticoid levels after stress contribute to changes in c-fos mRNA expression. To this end, stress-induced c-fos expression was characterized in adrenalectomized (ADX) or adrenalectomized and corticosterone replaced (ADX/B) male rats. Animals were sacrificed 30 min post-onset of a 10 min swim stress, and in situ hybridization histochemistry was used to detect c-fos mRNA throughout the brain. The pattern of c-fos induction in the ADX and ADX/B animals was similar to that observed in the sham operated animals. Additionally, densitometric measurements were made to quantify the c-fos response in the paraventricular nucleus of the hypothalamus and the CA1/2 region of the hippocampus. We found that ADX did not alter the magnitude of the c-fos response to stress in these areas, but there was a slight dampening of the response in ADX/B animals. In sum, these results suggest that the pattern of c-fos expression observed 30 min post-stress is independent of stress-induced increases in circulating glucocorticoid concentrations.  相似文献   

12.
Previous studies have demonstrated that sublethal ischemic insults protect from subsequent ischemia in the intact brain. There are two windows for the induction of tolerance by ischemic preconditioning (IPC). One occurs within 1 h following IPC, and the other one develops from 1 to 3 days after IPC. The goal of this study was to determine whether IPC neuroprotection may be mediated by expression of known neuroprotective genes and to characterize the temporal and spatial expression patterns of these genes. IPC was produced by bilateral carotid artery occlusions and hypotension (50 mmHg) for 2 min. After various survival times, the expression of MAP-2, brain-derived neurotrophic factor (BDNF), c-jun, c-fos, nerve growth factor (NGF) and HSP70 was assessed by in situ hybridization of coronal brain sections with 35S labeled probes. BDNF, NGF, and c-jun were significantly upregulated in the hippocampus. c-fos was detected in the hippocampus, cortex and striatum. HSP70 mRNA was induced in the cortex, hippocampus, striatum, and thalamus. MAP-2 showed no change in expression, confirming previous studies that no cell death occurs following IPC. The increase in expression of these stress-related, neurotrophic and immediate early genes in response to a mild preconditioning insult may help mediate the protection of vulnerable neurons to subsequent lethal ischemic insults.  相似文献   

13.
Objectives There is a need to explore novel mechanisms of action of existing/new antipsychotics. One potential candidate is the endocannabinoid system (ECS). The present study tried to elucidate the effects of the antipsychotic paliperidone on stress-induced ECS alterations. Methods Wister rats were submitted to acute/chronic restraint stress. Paliperidone (1?mg/kg) was given prior each stress session. Cannabinoid receptors and endocannabinoids (eCBs) synthesis and degradation enzymes were measured in prefrontal cortex (PFC) samples by RT-PCR and Western Blot. Results In the PFC of rats exposed to acute stress, paliperidone increased CB1 receptor (CB1R) expression. Furthermore, paliperidone increased the expression of the eCB synthesis enzymes N-acylphosphatidylethanolamine- hydrolysing phospholipase D and DAGLα, and blocked the stress-induced increased expression of the degrading enzyme fatty acid amide hydrolase. In chronic conditions, paliperidone prevented the chronic stress-induced down-regulation of CB1R, normalised DAGLα expression and reverted stress-induced down-regulation of the 2-AG degrading enzyme monoacylglycerol lipase. ECS was analysed also in periphery. Acute stress decreased DAGLα expression, an effect prevented by paliperidone. Contrarily, chronic stress increased DAGLα and this effect was potentiated by paliperidone. Conclusions The results obtained described a preventive effect of paliperidone on stress-induced alterations in ECS. Considering the diverse alterations on ECS described in psychotic disease, targeting ECS emerges as a new therapeutic possibility.  相似文献   

14.
Corticotropin-releasing factor (CRF) is a key regulator of the stress response. We investigated the effects of the atypical antipsychotic drug quetiapine on CRF mRNA expression in the rat hypothalamus following immobilization stress. Pretreatment with 10 mg/kg quetiapine significantly reduced the immobilization stress-induced increase in CRF mRNA expression in the paraventricular nucleus of the hypothalamus. These results suggest that quetiapine may modulate the stress response via regulation of CRF mRNA expression.  相似文献   

15.
Xu H  Chen Z  He J  Haimanot S  Li X  Dyck L  Li XM 《Hippocampus》2006,16(6):551-559
Clinical studies show better response rates of patients with depression and schizophrenia to combinations of atypical antipsychotics and antidepressants, compared to responses to either type of drugs alone. Animal studies demonstrate that some antipsychotics and antidepressants increase neurogenesis and BDNF expression in the hippocampus, which is reduced in volume in patients with depression or schizophrenia. We hypothesized that the better therapeutic effects of combined treatment seen in schizophrenia and depression patients are related to the additive or synergistic effects of combined treatment on hippocampal neurogenesis and BDNF expression. To test this hypothesis, we investigated the effects of chronic administration of quetiapine, venlafaxine, and their combination, on hippocampal cell proliferation and BDNF expression in rats, when subjected to chronic restraint stress (CRS) during the last 2 weeks of a 3-week drug administration period. We found (1) CRS decreased hippocampal cell proliferation and BDNF expression; (2) chronic administration of quetiapine or venlafaxine dose-dependently prevented these decreases in hippocampal cell proliferation and BDNF expression caused by CRS (6 h/day for 14 days); (3) the combination of lower doses of quetiapine (5 mg/kg) and venlafaxine (2.5 mg/kg) increased hippocampal cell proliferation and prevented BDNF decrease in stressed rats, whereas each of the drugs exerted mild or no effects; (4) individual higher doses of quetiapine (10 mg/kg) or venlafaxine (5 mg/kg) exerted effects comparable to those produced by their combination. These results support our hypothesis and can lead to future studies to develop new therapeutic approaches for treatment-resistant depression and the negative symptoms of schizophrenia.  相似文献   

16.
Shuyusan, a traditional Chinese medicine, was shown to improve depression symptoms and behavioral scores, as well as increase 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid, and 5-hydroxytryptophan levels, in a rat model of chronic stress-induced depression. However, dopamine, noradrenalin, and 3-methoxy-4-hydroxyphenylglycol expressions remained unchanged following Shuyusan treatment. Compared with the model group, the number of 5-HT-positive neurons in layers 4-5 of the frontal cortex, as well as ...  相似文献   

17.
Zheng H  Li YF  Weiss M  Mayhan WG  Patel KP 《Brain research》2002,956(2):268-275
We sought to identify the areas that have altered neuronal activity within the hypothalamus of diabetic rats by mapping neuronal expression of c-fos protein (Fos) and Fos-related antigens. After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity was observed in the paraventricular nucleus (PVN), supraoptic nucleus (SON), median preoptic area (MnPO), anterior hypothalamus (AH) and posterior hypothalamus (PH) of control (vehicle; n=6) and diabetic rats (Sprague-Dawley rats injected with STZ 65 mg/kg/ip 4 weeks prior to the experiment; n=6). Blood glucose levels were significantly elevated in the diabetic group (370+/-8 mg/dl) compared to control group (104+/-3 mg/dl). Diabetic rats had a significantly higher number of Fos-positive cells in PVN (2.5x), SON (7x) and MnPO (2x) compared to the control rats. However, diabetic rats had significantly fewer Fos-positive cells in the AH (0.3x) and no difference was observed in the PH between the diabetic and control rats. Despite the elevated number of Fos-positive cells in the diabetic rats, dehydration (water withdrawal for 24 h) or hypertonic challenge (1.5 ml of 0.1 M NaCl i.p. injection) produced a further increase in the number of Fos-positive cells in the PVN, SON and MnPO. Dehydration did not alter the number of Fos-positive cells in the AH or PH, but hypertonic challenge produced a significant increase in the Fos-positive cells in both the AH and PH of diabetic rats. This study demonstrates that: (1) there is increased basal neuronal activity in the PVN, SON and MnPO, a decrease in neuronal activity in the AH and no change in neuronal activity in the PH as indicated by Fos staining in diabetic rats; and (2) dehydration or hypertonic challenge produces a further increase in the number of Fos-positive cells in the PVN, SON, and MnPO which is comparable to control rats. These data support the conclusion that vasopressin producing neurons in the PVN and SON and autonomic areas within the lamina terminalis and hypothalamus are activated during diabetes and may contribute to the elevated levels of vasopressin and autonomic dysfunction during diabetes.  相似文献   

18.
The immediate-early genes, including c-fos, have been proposed to be involved in learning and memory. In this report, we examine stress-induced Fos-like immunoreactivity (Fos-li) in subregions of the prefrontal cortex during a conditioned fear paradigm. During the acquisition phase, the rats were conditioned to fear a formerly neutral tone by pairing the tone with a mild footshock. The rats were then tested for fearful behavior by reexposure to the tone without additional footshock. During acquisition, Fos-li was increased in the medial prefrontal cortex (infralimbic and prelimbic) but not the anterior cingulate and M1 motor cortex. However, during the extinction phase, no significant increase in Fos-li was observed in any region. These findings indicate that acquisition, but not extinction, of conditioned fear is associated with an increase in Fos-li in subregions of the medial prefrontal cortex. In other animals, an antisense oligonucleotide directed against the c-fos mRNA was injected into the infralimbic/prelimbic cortex 12 or 72 hr before the acquisition session. Antisense treatment given 12, but not 72, hr earlier suppressed Fos production without altering behavior during the acquisition session. Three days after the acquisition session, rats were tested for fearful behavior as before. The antisense oligonucleotide blockade of Fos production during acquisition was associated with a significantly less fearful response during the extinction session. These results support a role for Fos in the medial prefrontal cortex during the acquisition of aversive learning.  相似文献   

19.
Corticosterone regulates both basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity in a negative-feedback fashion. However, the cellular and molecular mechanisms of this negative feedback have yet to be explicitly characterized. By comparing stress-induced c-fos and corticotropin-releasing hormone (CRH) expression in the paraventricular nucleus (PVN), we may be able to determine whether acute glucocorticoid treatment affects the net neural excitatory input to the PVN (represented primarily by c-fos mRNA expression) or directly affects the ability of cells in the PVN to respond to that input (represented primarily by CRH hnRNA expression). In the following studies, we observed the effect of acute glucocorticoid (RU28362) treatment on subsequent HPA axis reactivity by measuring stress-induced plasma hormone concentration [corticosterone and adrenocorticotropic hormone (ACTH)] and gene expression (c-fos and CRH) in the PVN. First, we examined the dose-response relationship between systemically administered RU28362 (1-150 microg/kg, i.p) and suppression of the stress-induced corticosterone response. We then confirmed central nervous system access of the maximally suppressive dose of RU28362 (150 microg/kg) by an ex vivo radioligand binding assay. RU28362 selectively occupied the majority of glucocorticoid receptors in the hippocampus and hypothalamus while having no effect on mineralocorticoid receptors. In separate studies, RU28362 (150 microg/kg) and corticosterone (5 mg/kg) were injected i.p. 1 h before restraint stress. Compared to vehicle-treated controls, rats treated with RU28362 and corticosterone had substantially blunted stress-induced corticosterone and ACTH production, respectively. Furthermore, treatment with RU28362 significantly blunted stress-induced CRH hnRNA expression in the PVN. By contrast, neither RU28362 nor corticosterone treatment had an effect on stress-induced neuronal activation as measured by c-fos mRNA and its protein product in the PVN. This dissociation between c-fos and CRH gene expression suggests that glucocorticoid suppression of HPA activity within this time-frame is not a result of decreased excitatory neural input to the PVN, but instead depends on some direct effect of RU28362 on cells intrinsic to the HPA axis.  相似文献   

20.
1. Male, albino, Sprague Dawley rats underwent surgical cingulotomy or sham operation and were then implanted with subcutaneous morphine pellets or exposed to forced running. 2. The conditions of cingulotomy or forced running alone did not cause a significant increase in plasma i.r. Beta endorphin concentrations. 3. The combined treatment of cingulotomy plus forced running caused a significant elevation of plasma beta-endorphin concentrations. 4. The cingulum is involved in the elicitation of stress hormone responses in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号