首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Emery-Dreifuss muscular dystrophy (EDMD) and limb-girdle muscular dystrophy type 1B (LGMD1B) are characterized by cardiac dysrhythmias, late-onset cardiomyopathy, slowly progressive skeletal myopathy and contractures of the neck, elbows and ankles. The causative mutation is either in the emerin gene (X-linked recessive EDMD) or lamin A/C gene (autosomal dominant EDMD2 or LGMD1B). We report three cases of EDMD, EDMD2 and LGMD1B. A 14-yr-old boy showed limitation of cervical flexion and contractures of both elbows and ankles. Sinus arrest with junctional escape beats was noted. He was diagnosed as X-linked recessive EDMD (MIM 310300). A 28-yr-old female showed severe wasting and weakness of humeroperoneal muscles. Marked limitation of cervical flexion and contractures of both elbows and ankles were noted. Varying degrees of AV block were noted. She was diagnosed as autosomal dominant EDMD2 (MIM 181350). A 41-yr-old female had contractures of both ankles and limb-girdle type muscular dystrophy. ECG revealed atrial tachycardia with high grade AV block. She was diagnosed as autosomal dominant LGMD1B (MIM 159001). Cardiac dysrhythmias in EDMD and LGMD1B include AV block, bradycardia, atrial tachycardia, atrial fibrillation, and atrial standstill, causing sudden death necessitating pacemaker implantation. Cardiologists should know about these unusual genetic diseases with conduction defects, especially in young adults.  相似文献   

3.
Emery-Dreifuss肌营养不良症是一种相对良性的肌营养不良类型。其遗传方式为X-连锁隐性、常染色体显性和隐性遗传。EMD基因和LMNA基因是引起X-连锁EDMD和常染色体遗传EDMD的致病基因,编码产物分别为emerin蛋白和核纤层蛋白(lamin)A/C。该病确切的发病机制目前尚不清楚,临床特点表现为早期出现关节挛缩,受累肌肉呈肱-腓分布并伴有心脏受累。致病基因的研究使基因治疗该病成为可能。  相似文献   

4.
Emery–Dreifuss muscular dystrophy (EDMD) is a heterogeneous genetic disorder characterized by peripheral muscular weakness often associated with dilated cardiomyopathy. We characterize clinically a large family with a mutation in FHL1 gene (p.Cys255Ser). Penetrance was 44%, 100% for males and 18% for females. The heart was the main organ involved. Affected adult males had mild hypertrophy, systolic dysfunction and restriction with non‐dilated ventricles. Carriers had significant QTc prolongation. The proband presented with resuscitated cardiac arrest. There were two transplants. Pathological study of explanted heart showed fibrofatty replacement and scarring consistent with arrhythmogenic cardiomyopathy and prominent left ventricular trabeculations. Myopathic involvement was evident in all males. Females had no significant neuromuscular disease. Mutations in FHL1 cause unclassifiable cardiomyopathy with coexisting EDMD. Prognosis is poor and systolic impairment and arrhythmias are frequent. Thrombopenia and raised creatine phosphokinase should raise suspicion of an FHL‐1 disorder in X‐linked cardiomyopathy.  相似文献   

5.
Emery-Dreifuss muscular dystrophy (EDMD) is characterised by early contractures, slowly progressive muscle wasting and weakness with a distinctive humero-peroneal distribution and cardiac conduction defects leading to dilated cardiomyopathy. The genes known to be responsible for EDMD encode proteins associated with the nuclear envelope: the emerin and the lamins A and C.  相似文献   

6.
Mutations in the LMNA gene encoding lamins A and C by alternative splicing have been found to cause at least four different kinds of genetic disorders: autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD2; MIM 181350); limb-girdle muscular dystrophy type 1B (LGMD1B; MIM 159001); dilated cardiomyopathy type 1A (CMD1A; MIM 115200); and familial partial lipodystrophy (FPLD; MIM 151660). Recently, we have studied two Korean patients with atrioventricular conduction defects. They had variable extents of muscular dystrophy; one patient was diagnosed with EDMD2 and the other with LGMD1B. We performed a mutation analysis of the LMNA gene by direct sequencing and found two different missense mutations: R249Q and R377L, in the EDMD2 and LGMD1B patient, respectively. The R249Q mutation is located within the central rod domain of the LMNA gene, and has been described in at least five unrelated sporadic EDMD2 patients. On the other hand, the R377L mutation, also located within the rod domain, is a novel mutation, although a histidine substitution instead of leucine (R377H) has been reported previously in an LGMD1B patient. To our knowledge, this is the first report of LMNA gene mutations in Korean patients with EDMD2 and LGMD1B. Received: November 19, 2001 / Accepted: February 8, 2002  相似文献   

7.
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by slowly progressive muscle wasting and weakness; early contractures of the elbows, Achilles tendons, and spine; and cardiomyopathy associated with cardiac conduction defects. Clinically indistinguishable X-linked and autosomal forms of EDMD have been described. Mutations in the STA gene, encoding the nuclear envelope protein emerin, are responsible for X-linked EDMD, while mutations in the LMNA gene encoding lamins A and C by alternative splicing have been found in patients with autosomal dominant, autosomal recessive, and sporadic forms of EDMD. We report mutations in LMNA found in four familial and seven sporadic cases of EDMD, including seven novel mutations. Nine missense mutations and two small in-frame deletions were detected distributed throughout the gene. Most mutations (7/11) were detected within the LMNA exons encoding the central rod domain common to both lamins A/C. All of these missense mutations alter residues in the lamin A/C proteins conserved throughout evolution, implying an essential structural and/or functional role of these residues. One severely affected patient possesed two mutations, one specific to lamin A that may modify the phenotype of this patient. Mutations in LMNA were frequently identified among patients with sporadic and familial forms of EDMD. Further studies are needed to identify the factors modifying disease phenotype among patients harboring mutations within lamin A/C and to determine the effect of various mutations on lamin A/C structure and function.  相似文献   

8.
X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) is inherited through mutations in EMD, which encodes a nuclear membrane protein named emerin. Emerin is expressed in most cells, but EDMD strikes specific tissues. This review summarizes growing evidence that emerin has roles in both tissue-specific gene regulation and the mechanical integrity of the nucleus and discusses how these roles might impact EDMD.  相似文献   

9.
Emery‐Dreifuss muscular dystrophy (EDMD) is characterized by slowly progressive muscle wasting and weakness; early contractures of the elbows, Achilles tendons, and spine; and cardiomyopathy associated with cardiac conduction defects. Clinically indistinguishable X‐linked and autosomal forms of EDMD have been described. Mutations in the STA gene, encoding the nuclear envelope protein emerin, are responsible for X‐linked EDMD, while mutations in the LMNA gene encoding lamins A and C by alternative splicing have been found in patients with autosomal dominant, autosomal recessive, and sporadic forms of EDMD. We report mutations in LMNA found in four familial and seven sporadic cases of EDMD, including seven novel mutations. Nine missense mutations and two small in‐frame deletions were detected distributed throughout the gene. Most mutations (7/11) were detected within the LMNA exons encoding the central rod domain common to both lamins A/C. All of these missense mutations alter residues in the lamin A/C proteins conserved throughout evolution, implying an essential structural and/or functional role of these residues. One severely affected patient possesed two mutations, one specific to lamin A that may modify the phenotype of this patient. Mutations in LMNA were frequently identified among patients with sporadic and familial forms of EDMD. Further studies are needed to identify the factors modifying disease phenotype among patients harboring mutations within lamin A/C and to determine the effect of various mutations on lamin A/C structure and function. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
Emery-Dreifuss muscular dystrophy (EDMD) is a neuromuscular disorder exhibiting a cardiomyopathy with cardiac conduction defects. X-linked EDMD arises from mutations in the EMD gene, which encodes for a nuclear membrane protein termed emerin. In this study, we describe novel and recurrent EMD mutations identified in 18 probands and three carriers from a cohort of 255 North American patients referred for EDMD genetic mutation analysis. Eight of these mutations are novel including six frameshift mutations (p.D9GfsX24, p.F39SfsX17, p.R45KfsX16, p.F190YfsX19, p.R203PfsX34 and p.R204PfsX7) and two non-sense mutations (p.S143X, p.W200X). Our data augment the number of EMD mutations by 13.8%, equating to an increase of 5.2% in the total known EMD mutations and to an increase of 6.0% in the number of different mutations. Analysis of the exon distribution of mutations within the EMD gene, suggests a nonrandom distribution, with exon 2 as a hot spot. This phenomenon may be due to its high GC content, which at 60% is the most GC-rich exon in the EMD gene.  相似文献   

11.
Emerin is a nuclear membrane protein which is missing or defective in Emery-Dreifuss muscular dystrophy (EDMD). It is one member of a family of lamina-associated proteins which includes LAP1, LAP2 and lamin B receptor (LBR). A panel of 16 monoclonal antibodies (mAbs) has been mapped to six specific sites throughout the emerin molecule using phage- displayed peptide libraries and has been used to localize emerin in human and rabbit heart. Several mAbs against different emerin epitopes did not recognize intercalated discs in the heart, though they recognized cardiomyocyte nuclei strongly, both at the rim and in intranuclear spots or channels. A polyclonal rabbit antiserum against emerin did recognize both nuclear membrane and intercalated discs but, after affinity purification against a pure-emerin band on a western blot, it stained only the nuclear membrane. These results would not be expected if immunostaining at intercalated discs were due to a product of the emerin gene and, therefore, cast some doubt upon the hypothesis that cardiac defects in EDMD are caused by absence of emerin from intercalated discs. Although emerin was abundant in the membranes of cardiomyocyte nuclei, it was absent from many non-myocyte cells in the heart. This distribution of emerin was similar to that of lamin A, a candidate gene for an autosomal form of EDMD. In contrast, lamin B1 was absent from cardiomyocyte nuclei, showing that lamin B1 is not essential for localization of emerin to the nuclear lamina. Lamin B1 is also almost completely absent from skeletal muscle nuclei. In EDMD, the additional absence of lamin B1 from heart and skeletal muscle nuclei which already lack emerin may offer an alternative explanation of why these tissues are particularly affected.   相似文献   

12.
Dystroglycanopathies are a genetically heterogeneous subset of congenital muscular dystrophies that exhibit autosomal recessive inheritance and are characterized by abnormal glycosylation of α-dystroglycan. In particular, POMT2 (protein O-mannosyltransferase-2) mutations have been identified in congenital muscular dystrophy patients with a wide range of clinical involvement, ranging from the severe muscle-eye-brain disease and Walker–Warburg syndrome to limb girdle muscular dystrophy without structural brain or ocular involvement. Cardiovascular disease is thought to be uncommon in congenital muscular dystrophy, with rare reports of cardiac involvement. We describe three brothers aged 21, 19, and 17 years with an apparently homozygous POMT2 mutation who all presented with congenital muscular dystrophy, intellectual disabilities, and distinct cardiac abnormalities. All three brothers were homozygous for a p.Tyr666Cys missense mutation in exon 19 of the POMT2 gene. On screening echocardiograms, all siblings demonstrated significant dilatation of the aortic root and depressed left ventricular systolic function and/or left ventricular wall motion abnormalities. Our report is the first to document an association between POMT2 mutations and aortopathy with concomitant depressed left ventricular systolic function. On the basis of our findings, we suggest patients with POMT2 gene mutations be screened not only for myocardial dysfunction but also for aortopathy. In addition, given the potential for progression of myocardial dysfunction and/or aortic dilatation, longitudinal surveillance imaging is recommended both for patients with disease as well as those that have normal baseline imaging.  相似文献   

13.
Very recently, mutations within the LMNA gene on chromosome 1q21.2 were shown to result in forms of muscular dystrophy, conduction-system disease, cardiomyopathy, and partial lipodystrophy. The LMNA gene encodes for the nucleophilic A-type lamins, lamin A and lamin C. These isoforms are generated by different splicing within exon 10 of LMNA. Thus lamin A/C is, besides emerin, the first known nucleophilic protein which plays a role in human disease. To date, 41 different mutations, predominantly missense, in the LMNA gene are known causing variable phenotypes. Twenty-three different mutations of LMNA have so far been shown to cause autosomal-dominant Emery-Dreifuss muscular dystrophy (EDMD2), three mutations were reported to cause limb-girdle muscular dystrophy (LGMD1B), eight mutations are known to result in dilated cardiomyopathy (CMD1A), and seven mutations were reported to cause familial partial lipodystrophy (FPL). The reports of lamin mutations including the corresponding phenotype are of great interest in order to gain insights into the function of lamin A/C. Here we summarize the mutations published to date in LMNA encoding lamin A/C.  相似文献   

14.
Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder characterized by slowly progressive skeletal muscle weakness in a humero-peroneal distribution, early contractures and prominent cardiomyopathy with conduction block. Mutations in EMD, encoding emerin, and LMNA, encoding A-type lamins, respectively, cause X-linked and autosomal dominant EDMD. Emerin and A-type lamins are proteins of the inner membrane of the nuclear envelope. Whereas the genetic cause of EDMD has been described and the proteins well characterized, little is known on how abnormalities in nuclear envelope proteins cause striated muscle disease. In this study, we analyzed genome-wide expression profiles in hearts from Emd knockout mice, a model of X-linked EDMD, using Affymetrix GeneChips. This analysis showed a molecular signature similar to that we previously described in hearts from Lmna H222P knock-in mice, a model of autosomal dominant EDMD. There was a common activation of the ERK1/2 branch of the mitogen-activated protein kinase (MAPK) pathway in both murine models, as well as activation of downstream targets implicated in the pathogenesis of cardiomyopathy. Activation of MAPK signaling appears to be a cornerstone in the development of heart disease in both X-linked and autosomal dominant EDMD.  相似文献   

15.
16.
Mutations in LMNA cause a variety of diseases affecting striated muscle including autosomal Emery‐Dreifuss muscular dystrophy (EDMD), LMNA‐associated congenital muscular dystrophy (L‐CMD), and limb‐girdle muscular dystrophy type 1B (LGMD1B). Here, we describe novel and recurrent LMNA mutations identified in 50 patients from the United States and Canada, which is the first report of the distribution of LMNA mutations from a large cohort outside Europe. This augments the number of LMNA mutations known to cause EDMD by 16.5%, equating to an increase of 5.9% in the total known LMNA mutations. Eight patients presented with either p.R249W/Q or p.E358K mutations and an early onset EDMD phenotype: two mutations recently associated with L‐CMD. Importantly, 15 mutations are novel and include eight missense mutations (p.R189P, p.F206L, p.S268P, p.S295P, p.E361K, p.G449D, p.L454P, and p.W467R), three splice site mutations (c.IVS4 + 1G>A, c.IVS6 ? 2A>G, and c.IVS8 + 1G>A), one duplication/in frame insertion (p.R190dup), one deletion (p.Q355del), and two silent mutations (p.R119R and p.K270K). Analysis of 4 of our lamin A mutations showed that some caused nuclear deformations and lamin B redistribution in a mutation specific manner. Together, this study significantly augments the number of EDMD patients on the database and describes 15 novel mutations that underlie EDMD, which will contribute to establishing genotype–phenotype correlations. Hum Mutat 31:–16, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
18.
Muscular dystrophies are broadly classed as skeletal muscle disease entities of genetic origin. Accordingly, the development and application of gene therapy treatment modalities has focused on skeletal muscle gene replacement. Irrespective of this generalization, most forms of dystrophy are accompanied by progressive cardiomyopathy and cardiac involvement in muscular dystrophies is now recognized as an independent risk for patient morbidity. In this review, we summarize the available murine strains most suitable for modeling the dystrophic myocardium and discuss the use of adenoviral based vector systems as the preferred gene delivery vehicle for modulating dystrophic cardiomyopathy.  相似文献   

19.
Seventeen families with Emery-Dreifuss muscular dystrophy (EDMD) have been studied both by DNA sequencing and by emerin protein expression. Fourteen had mutations in the X-linked emerin gene, while three showed evidence of autosomal inheritance. Twelve of the 14 emerin mutations caused early termination of translation. An in-frame deletion of six amino acids from the C-terminal transmembrane helix caused almost complete absence of emerin from muscle with no localization to the nuclear membrane, although mRNA levels were normal. This shows that mutant emerin proteins are unstable if they are unable to integrate into a membrane. A 22 bp deletion in the promoter region was expected to result in reduced emerin production, but normal amounts of emerin of normal size were found in leucocytes and lymphoblastoid cell lines. This shows that DNA analysis is necessary to exclude emerin mutations in suspected X-linked EDMD. Emerin levels in female carriers often deviated from the expected 50% and this was due, in at least two families, to skewed emerin mRNA expression from the normal and mutated alleles. In one family with a novel deletion of the last three exons of the emerin gene, a carrier had a cardiomyopathy and very low emerin levels (<5% of normal) due to skewed X-inactivation. In the three autosomal cases of EDMD, emerin was normal on western blots of blood cells, which suggests that autosomal EDMD is not caused by indirect reduction of emerin levels.   相似文献   

20.
Emery-Dreifuss muscular dystrophy (EDMD) is a heterogeneous late-onset disease involving skeletal muscle wasting and heart defects caused, in a minority of cases, by mutations in either of two genes encoding the inner nuclear membrane (INM) proteins, emerin and lamins A/C. Nesprin-1 and -2 are multi-isomeric, spectrin-repeat proteins that bind both emerin and lamins A/C and form a network in muscle linking the nucleoskeleton to the INM, the outer nuclear membrane, membraneous organelles, the sarcomere and the actin cytoskeleton. Thus, disruptions in nesprin/lamin/emerin interactions might play a role in the muscle-specific pathogenesis of EDMD. Screening for DNA variations in the genes encoding nesprin-1 (SYNE1) and nesprin-2 (SYNE2) in 190 probands with EDMD or EDMD-like phenotypes identified four heterozygous missense mutations. Fibroblasts from these patients exhibited nuclear morphology defects and specific patterns of emerin and SUN2 mislocalization. In addition, diminished nuclear envelope localization of nesprins and impaired nesprin/emerin/lamin binding interactions were common features of all EDMD patient fibroblasts. siRNA knockdown of nesprin-1 or -2 in normal fibroblasts reproduced the nuclear morphological changes and mislocalization of emerin and SUN2 observed in patient fibroblasts. Taken together, these data suggest that EDMD may be caused, in part, by uncoupling of the nucleoskeleton and cytoskeleton because of perturbed nesprin/emerin/lamin interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号