首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported earlier that interactions between Cav2.1α1 and calcium/calmodulin-dependent protein kinase II (CaMKII) in the presynaptic fraction and between the NMDA receptor subunit NR2B and CaMKII in the postsynaptic density (PSD) fraction are important for neuronal function. Cav2.1α1, CaMKII, and NR2B are predominantly expressed in the hippocampus. To examine the above interactions and CaMKII activity in the hippocampal presynapse and PSD of Rolling Nagoya mice carrying a mutation in Cav2.1α1 subunit, we performed immunoprecipitation and Western blot analyses. In the presynapse, the interaction between Cav2.1α1 and CaMKII and the phosphorylation of CaMKII (at Thr286) and its substrate Synapsin I (at Ser603) were decreased in mutant mice compared to wild-type mice. In the PSD, a similar pattern was observed for the interaction between NR2B and CaMKII and the phosphorylation of CaMKII (at Thr286) and its substrate AMPA receptor subunit glutamate receptor 1 (at Ser831) between mutant and wild-type mice. Our data indicate that disruption of the interaction between Cav2.1α1 and CaMKII may down-regulate presynaptic CaMKII activity and that Rolling Nagoya mice would be a useful model for examining presynaptic function.  相似文献   

2.
Summary. The molecular basis for the known intramembrane receptor–receptor interactions among heptahelical receptors (G protein coupled receptors, GPCR) was postulated to be heteromerization based on receptor subtype specific interactions between different types of homomers of GPCR. Adenosine and dopamine receptors in the basal ganglia have been fundamental to demonstrate the existence of receptor heteromers and the functional consequences of such molecular interactions. The heterodimer is only one type of heteromeric complex and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist, assisting in the process of linking the GPCR and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for learning and memory. Heteromerization of D2 dopamine and A2A adenosine receptors is reviewed by Fuxe in another article in this special issue. Here, heteromerization between D1 dopamine and A1 adenosine receptors is reviewed. Heteromers formed by dopamine D1 and D2 receptors and by adenosine A1 and A2A receptors also occur in striatal cells and open new perspectives to understand why two receptors with apparently opposite effects are expressed in the same neuron and in the nerve terminals. The role of accessory proteins also capable of interacting with receptor–receptor heteromers in regulating the traffic and the molecular physiology of these receptors is also discussed. Overall, the knowledge of the reason why such complex networks of receptor–receptor and receptor–protein interactions occur in striatal cells is crucial to develop new strategies to combat neurological and neuropsychiatric diseases.  相似文献   

3.
Voltage-dependent regulation of CaV2.2 channels by G-proteins is performed by the β (Gβ) subunit. Most studies of regulation by G-proteins have focused on channel activation; however, little is known regarding channel inactivation. This study investigated inactivation of CaV2.2 channels in superior cervical ganglion neurons that overexpressed Gβ subunits. CaV2.2 currents were recorded by whole-cell patch clamping configuration. We found that the Gβ1 subunit reduced inactivation, while Gβ5 subunit did not alter at all inactivation kinetics compared to control recordings. CaV2.2 current decay in control neurons consisted of both fast and slow inactivation; however, Gβ1-overexpressing neurons displayed only the slow inactivation. Fast inactivation was restored by a strong depolarization of Gβ1-overexpressing neurons, therefore, through a voltage-dependent mechanism. The Gβ1 subunit shifted the voltage dependence of inactivation to more positive voltages and reduced the fraction of CaV2.2 channels resting in the inactivated state. These results support that the Gβ1 subunit inhibits the fast inactivation of CaV2.2 channels in SCG neurons. They explain the long-observed sustained Ca2+ current under G-protein modulation.  相似文献   

4.
Background Obstructive vascular lesions at the terminal portion of the internal carotid arteries are thought to be the primary and essential lesions in moyamoya disease. The etiology remains unknown. To detect possible mediators of the thickened intima of moyamoya disease, we measured serum alpha-1-antitrypsin (1-AT) levels and characterized the phenotype of patients with familial moyamoya disease.Patients and methods Fifty-six individuals were examined, including 29 patients with moyamoya disease from 14 families. Serum 1-AT levels were analyzed by electroimmunoassay and genomic phenotype by isoelectric focusing.Results All individuals had a normal 1-AT phenotype. The average serum 1-AT level in moyamoya disease patients was significantly higher than that of normal individuals, although both were within the normal range.Conclusions These findings suggest that serum 1-AT level may be a marker, rather than an etiologic factor, indicating the progression of moyamoya disease.  相似文献   

5.
Using microarray analysis, we detected microRNA-124 (miR-124) to be abundantly expressed in the olfactory bulb (OB). miR-124 regulates adult neurogenesis in the subventricular zone (SVZ). However, much less is known about its role in newborn OB neurons. Here, using both gain-of-function and loss-of-function approaches, we demonstrate that brain-specific miR-124 affects dendritic morphogenesis and spine density in newborn OB neurons. Functional Annotation Clustering of miR-124 targets was enriched in “cell morphogenesis involved in neuron differentiation.”  相似文献   

6.
The purpose of the study was to determine whether Aβ1–42 and p-Tau181 cerebral spinal fluid (CSF) levels can predict progression from amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease dementia (ADD) in a 3-year follow-up study. All participants were evaluated blindly by a behavioral neurologist and a neuropsychologist, and classified according to the Petersen criteria for aMCI and according to the Clinical Dementia Rating (CDR) scale. Individuals were also submitted to lumbar puncture at baseline. Levels of Aβ1–42 and p-Tau181 were measured by immunoenzymatic assay. Values were adjusted for age and sex. Thirty-one of 33 (93.9%) participants completed follow-up. Approximately 39% of aMCI individuals progressed to ADD. The relative risk of developing ADD in those with Aβ1–42 CSF levels lower than 618.5 pg/mL was 17.4 times higher than in those whose levels were higher than 618.5 pg/mL (P?=?0.003). p-Tau181 alone did not predict progression to ADD (P?=?0.101). The relative risk in those with a p-Tau181/Aβ1–42 ratio higher than 0.135 was 5.7 times greater (P?<?0.001). Aβ1–42 and p-Tau181 explained 40.1% of the verbal memory test subscore of the Consortium to Establish a Registry for Alzheimer’s Disease (ΔCERADs) variance (P?=?0.008). Aβ1–42 strongly predicted progression from aMCI to ADD. p-Tau181 alone, or its relation to Aβ1–42, was inferior than Aβ1–42 alone as a predictor of progression to ADD.  相似文献   

7.
Methamphetamine (METH) is a psychostimulant that damages nigrostriatal dopaminergic terminals, primarily by enhancing dopamine and glutamate release. α1-adrenergic receptor (AR) subtype involved in METH-induced neurotoxicity in rats was investigated using selective α1-AR antagonists. METH neurotoxicity was evaluated by (1) measuring body temperature; (2) determining tyrosine hydroxylase (TH) immunoreactivity levels; (3) examining levels of dopamine and its metabolites; and (4) assessing glial fibrillary acidic protein (GFAP) and microglial immunoreactivity in the striatum. METH caused a decrease in dopamine and TH levels and induced hyperthermia which is an exacerbating factor of METH neurotoxicity. Concurrently, METH increased GFAP expression and the number of activated microglia. Pretreatment with prazosin, a nonselective α1-AR antagonist, completely abolished METH-induced decrease in both dopamine and TH and caused a partial reduction in hyperthermia. Prazosin also prevented METH-induced increase in both GFAP expression and the number of activated microglia. In vivo microdialysis analysis revealed that prazosin, however, does not alter the METH-induced dopamine release in the striatum. The neuroprotective effects of prazosin could be mimicked by a selective α1D antagonist, BMY 7378, but not by selective α1A or α1B antagonists. These results suggest that the α1D-AR is involved in METH-induced hyperthermia and neurotoxicity in rats.  相似文献   

8.
The effects of co-administration of either the dopamine precursor, L-Dopa, or the directly-acting, mixed dopamine (DA) agonist, apomorphine, with the alpha-adrenoceptor agonists, clonidine and guanfacine, upon the motor activity of hypoactive L-Dopa-tolerant MPTP-treated C57 BL/6 mice were measured in four experiments. In each case, MPTP (2 x 40 mg/kg, s.c., separated by a 24-hr interval) was administered eight-to-ten weeks before behavioural testing. It was found that clonidine co-administered with L-Dopa (20 mg/kg) restored motor activity in a dose- and parameter-related manner: locomotion and total activity were restored by the 1 mg/kg dose, rearing behaviour by the 0.3 and 1 mg/kg doses. The restorative effects of clonidine (1 mg/kg), co-administered with L-Dopa, were antagonised completely by pretreatment with yohimbine (1 mg/kg), but not by prazosin (1 mg/kg). Guanfacine (1 mg/kg) co-administered with L-Dopa (20 mg/kg) restored locomotor, but not rearing, behaviour in L-Dopa-tolerant MPTP-treated mice. The antikinesic action of guanfacine was antagonised completely by yohimbine (1 mg/kg), but not prazosin (1 mg/kg). Clonidine (1 or 3 mg/kg) co-administered with apomorphine (0.1, 0.3, 1.0 or 3.0 mg/kg), directly-acting DA agonist, did not restore motor behaviour in the hypokinesic L-Dopa-tolerant MPTP-treated mice. Nor did apomorphine, by itself, affect the motor activity of these animals. Neurochemical analysis indicated marked DA, DOPAC and HVA depletions in the striatum, and to a much lesser extent in the frontal cortex, of MPTP-treated mice. The synergistic antiparkinsonian action of clonidine with L-Dopa, but not apomorphine, in hypokinetic MPTP mice for the restoration of responding to a suprathreshold dose of L-Dopa, to which "wearing-off" had been induced previously, is discussed.  相似文献   

9.
10.
The changes in the mRNA levels of α2A and α2C adrenoceptors were investigated in unilateral 6-OHDA-lesioned rat model of Parkinson’s disease and l-DOPA-induced dyskinesia using in situ hybridization. In the untreated 6-OHDA-lesioned rats, α2A expression was elevated in the locus coeruleus (160 ± 8% and 142 ± 8% in lesioned and unlesioned sides compared to the comparable side in sham-operated rats). Following long-term (21 days, twice daily) treatment with l-DOPA (25 mg/kg l-DOPA methyl ester plus benserazide 6.25 mg/kg) in 6-OHDA-lesioned rats, levels of α2A adrenoceptor mRNA in the locus coeruleus were decreased, compared to the 6-OHDA-lesioned rats, returning to the levels of α2A mRNA in the sham-operated rats. α2A adrenoceptor expression was not changed in other brain regions in any treatment group. There was no change in α2C expression in the rostral or caudal striatum in which the highest density of α2C mRNA is present. In conclusion, the data presented in this study demonstrate an increase in α2A adrenoceptor mRNA in the locus coeruleus in the 6-OHDA-lesioned rat model of Parkinson’s disease. In addition, the data show that repeated treatment with l-DOPA in 6-OHDA-lesioned rats, which induces dyskinesia, restores α2A mRNA levels. These changes of α2A mRNA expression, observed in the locus coeruleus, might be of importance to basal ganglia transmission and motor function.  相似文献   

11.
Parkinson’s disease (PD) is a neurodegenerative disorder with highly heterogeneous clinical manifestations. This fact has prompted many attempts to divide PD patients into clinical subgroups. This could lead to a better recognition of pathogenesis, improving targeted treatment and the prognosis of PD patients. The aim of the present study was to obtain cerebrospinal fluid (CSF) samples in PD patients and to search for a relationship between neurodegenerative CSF markers (tau protein, beta-amyloid1-42 and index tau protein/beta-amyloid1-42) and the clinical subtypes. PD patients were divided into three subgroups: early disease onset (EDO), tremor-dominant PD (TD-PD), and non-tremor dominant PD (NT-PD) according to the previously published classification. Neurodegenerative markers in the CSF were assessed in these three groups of patients suffering from PD (EDO-17, TD-15, NT-16 patients) and in a control group (CG) of 19 patients suffering from non-degenerative neurological diseases and 18 patients with Alzheimer’s disease (AD). The NT-PD patients were found to have significantly higher levels of CSF tau protein and index tau/beta than the control subjects and other Parkinsonian subgroups, but no significant differences in these markers were found between AD and NT-PD patients. In the context of more rapid clinical progression and more pronounced neuropathological changes in the NT-PD patient group, our results corroborate the opinion that CSF level of tau protein may be regarded as a potential laboratory marker of the presence and severity of neurodegeneration.  相似文献   

12.
Increasing evidence suggests an important role of alpha-synuclein (α-Syn) in the pathogenesis of Parkinson’s disease (PD). The inter-neuronal spread of α-Syn via exocytosis and endocytosis has been proposed as an explanation for the neuropathological findings of PD in sub-clinical and clinical phases. Therefore, interfering the uptake of α-Syn by neurons may be an important step in slowing or modifying the propagation of the disease. The purposes of our study were to investigate if the uptake of α-Syn fibrils can be specifically interfered with monomeric β-Amyloid1–40 (Aβ40) and to characterise the core acting site of interference. Using a radioisotope-labelled uptake assay, we found an 80 % uptake reduction of α-Syn fibrils in neurons interfered with monomeric Aβ40, but not β-Amyloid1–42 (Aβ42) as compared to controls. This finding was further confirmed by enzyme-linked immunosorbent assay (ELISA) with α-Syn uptake reduced from about 80 % (Aβ42) to about 20 % (Aβ40) relative to controls. To define the region of Aβ40 peptide capable of the interference, we explored shorter peptides with less amino acid residues from both the C-terminus and N-terminus. We found that the interference effect was preserved if amino acid residue was trimmed to position 11 (from N-terminus) and 36 (from C-terminus), but dropped off significantly if residues were trimmed beyond these positions. We therefore deduced that the “core acting site” lies between amino acid residue positions 12–36. These findings suggest α-Syn uptake can be interfered with monomeric Aβ40 and that the core acting site of interference might lie between amino acid residue positions 12–36.  相似文献   

13.
Sarizotan, a 5-HT1A agonist with additional affinity for D3 and D4 receptors, has been demonstrated to have anti-dyskinetic effects. The mechanism by which these effects occur is not clear. Using unilateral 6-hydroxydopamine-lesioned rats that received chronic intraperitoneal (ip) administration of l-3,4-dihydroxyphenylalanine (l-DOPA) we investigated the involvement of D3 and 5-HT1A receptors in the effects of sarizotan on contraversive circling and abnormal involuntary movements (AIMs). Before sensitization by chronic l-DOPA treatment (12.5 with 3.25 mg/kg benserazide ip, twice daily for 21 days), no effect of the selective D3 agonist, PD128907 (1 or 3 mg/kg ip), or the selective D3 antagonist, GR103691 (0.5 or 1.5 mg/kg ip), was observed. Treatment with sarizotan (1 or 5 mg/kg ip) dose-dependently inhibited the l-DOPA-induced contraversive turning and AIMs. In co-treatment with the 5-HT1A antagonist, WAY100635 (1 mg/kg ip), sarizotan failed to affect this behaviour, confirming the prominent 5-HT1A receptor-mediated mechanism of action. In the presence of PD128907 (3 mg/kg ip), the effects of sarizotan on contraversive turning, locomotive dyskinesia and axial dystonia, but not on orolingual and forelimb dyskinesia, were blocked. On its own, PD128907 had no effect on the behavioural effects of l-DOPA except that it tended to reduce orolingual and forelimb dyskinesia. GR103691 had no effect on its own or in combination with sarizotan. These data identify an involvement of D3 receptors in the action of sarizotan on some, but not all l-DOPA-induced motor side effects. This selective involvement is in contrast to the more general involvement of 5-HT1A receptors in the anti-dyskinetic effects of sarizotan.  相似文献   

14.
Activation of P2X7 receptor (P2X7R) and pannexin have been implicated in membrane permeabilization associated with ischemic cell death and many other inflammatory processes. P2X7R has a unique property of forming large pore upon repeated or prolonged application of agonist like ATP or 2′, 3′-(4-benzoyl) benzoyl ATP. It has been proposed that pannexin 1 (panx1) hemichannel associates with P2X7R to form large pore, though the actual mechanism is not yet understood. Calcium concentration in extracellular milieu drops in many patho-physiological conditions, e.g. ischemia, when P2X7R/pannexin is also known to be activated. Therefore, we hypothesize that extracellular calcium ([Ca2+]o) plays an important role in the coupling of P2X7R–panx1 and subsequent membrane permeabilization. In this study we show that membrane permeability of the P2X7R and panx1 expressing N2A cell increases in ([Ca2+]o)-free solution. In [Ca2+]o-free solution, fluorescent dye calcein trapped cells exhibited time-dependent dye leakage resulting in about 50% decrease of fluorescence intensity in 30 min. Control cells in 2 mM [Ca2+]o did not show such leakage. Like N2A cells, mixed culture of neuron and glia, derived from hippocampal progenitor cells showed similar dye leakage. Dye leakage was blocked either by pannexin-specific blocker, carbenoxolone or P2X7R antagonists, Brilliant Blue G, and oxidized ATP. Furthermore P2X7R and panx1 were co-immunoprecipitated. The amount of P2X7R protein pulled-down with panx1, increased by twofold when cells were incubated 30 min in [Ca2+]o-free buffer. Taken together, the results of this study demonstrate the activation and association of P2X7R–panx1, triggered by the removal of [Ca2+]o.  相似文献   

15.
Different types of atherosclerotic (AS) lesions can be distinguished histologically and represent different stages of AS plaque development. Late-stage lesions more frequently develop complications such as plaque rupture and thrombosis with vessel occlusion than early AS lesions. To clarify whether protective, destructive, and inflammatory proteins are differentially expressed in early-stage and late-stage AS plaques we examined the proteinase inhibitor α2-macroglobulin (A2M), the neutrophil elastase (NE)—an enzyme degrading elastin and collagen fibers—and the proinflammatory protein interleukin-1α (IL-1α) in all types of AS plaques in the arteries of the circle of Willis from 78 human autopsy cases of both genders (61–91 years of age). Paraffin sections of AS plaques were immunostained with antibodies directed against A2M, NE and IL-1α. In initial AS lesions A2M was found, whereas NE and IL-1α were absent. NE and IL-1α became detectable as soon as a significant number of macrophages occurred within AS lesions. With increasing histopathological type of AS lesions, a marked increase of the area of the plaque exhibiting NE and IL-1α was observed. The area which exhibits A2M in AS plaques, on the other hand, did not vary significantly between the different stages. Thus, our results indicate a disproportionately high increase of the destructive enzyme NE and the proinflammatory protein IL-1α in relation to A2M with the progression of the grade of AS lesions pointing to the transgression of the protective capacity of A2M by NE and IL-1α in late-stage plaques. Therefore, our findings support the hypothesis that NE-induced tissue damage in late-stage AS plaques contributes to the development of plaque rupture and subsequent thrombosis.  相似文献   

16.
The α2δ-1 subunit of the voltage-gated Ca2+ channel (VGCC) is a molecular target of gabapentin (GBP), which has been used as a first-line drug for the relief of neuropathic pain. GBP exerts its anti-nociceptive effects by disrupting trafficking of the α2δ-1 subunit to the presynaptic membrane, resulting in decreased neurotransmitter release. We previously showed that GBP has an anti-allodynic effect in the first two weeks; but this is followed by insensitivity in the later stage after repeated administration in a rat model of central post-stroke pain (CPSP) hypersensitivity induced by intra-thalamic hemorrhage. To explore the mechanisms underlying GBP insensitivity, the cellular localization and time-course of expression of the α2δ-1 subunit in both the thalamus and spinal dorsal horn were studied in the same model. We found that the α2δ-1 subunit was mostly localized in neurons, but not astrocytes and microglia. The level of α2δ-1 protein increased in the first two weeks after injury but then decreased in the third week, when GBP insensitivity occurred. Furthermore, the α2δ-1 down-regulation was likely caused by later neuronal loss in the injured thalamus through a mechanism other than apoptosis. In summary, the present results suggest that the GBP receptor α2δ-1 is mainly expressed in thalamic neurons in which it is up-regulated in the early stage of CPSP but this is followed by dramatic down-regulation, which is likely associated with GBP insensitivity after long-term use.  相似文献   

17.
In this study, the effect of ovariectomy and amyloid P1-42 (Aβ1-42)on eight-armed radial maze performance, acetylcholine (ACh) release, α7nACh receptor (α7nAChR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression, and apoptosis of CA1 neurons in the dorsal hippocampus were investigated in rat. The results showed that the dorsal hippocampus of sham rats contains 136.7 ± 16.7 to 160.4 ± 21.1 fmol/μl ACh, and respective 201 ± 22.9 and 416.6 ± 66.3 expression of mRNA for α7nAChR and GAPDH. Ovariectomy alone, after 4 weeks, did not impair memory, and neither induced apoptosis nor changed the basal ACh release. On the other hand, Aβ1-42 (600 pmol/10 μl/body/day i.c.v. for 7 days) impaired memory, an effect characterized by increased error choices and reduced (50–59%) ACh release, but only with slight apoptosis. Moreover, ovariectomy combined with Aβ1-42 induced memory impairment characterized by decreased numbers of correct choices and increased numbers of errors. This effect was accompanied by a decrease of the basal ACh level (67%), α7nAChR mRNA expression (52%) and α7nAChR/GAPDH ratio (44%) without induction of apoptosis in the dorsal hippocampus. The high K+-evoked ACh release was not altered in ovariectomized rats, but was decreased by Aβ1-42 (43%) and ovariectomy + Aβ1-42 (80%). These results suggest that ovariectomy-induced hormonal deprivation after 4 weeks, when accompanied by Aβ1-42 accumulation in the dorsal hippocampus, could impair memory by decreasing ACh release and α7nAChR expression without inducing apoptosis in the CA1 field of the dorsal hippocampus.  相似文献   

18.
To examine the effect of subcutaneous injection of insulin-like growth factor-1 (IGF-1) on the expression of the amyloid protein (Aβ1–40), α-secretase (ADAM10), β-secretase (BACE1), and γ-secretase (PS1) in APP/PS1 double transgenic mice. APP/PS1 double transgenic mice and wild-type mice were divided into wild-type group, wild-type therapy group, transgenome group, and transgenic therapy group. Subcutaneous injection of IGF-1 (50 μg/kg day) was administered once daily to the wild-type therapy group and transgenic therapy group for 8 weeks, respectively. The expression of the Aβ1–40 in the cortex and hippocampus was detected by immunohistochemistry 8 weeks after administration. The levels of Aβ1–40, DAM10, BACE1, and PS1 were analysed by Western blot. The expression of the Aβ1–40 in the cortex of the gene therapy group was significantly lower than that of the transgenome group (p?<?0.05). In APP/PS1 double transgenic mice, BACE1 expression was markedly higher in both the hippocampus (p?<?0.001, p?=?0.00009) and the cortex (p?=?0.001), compared to that of the wild-type mice. The treatment of IGF-1 markedly reduced ADAM10 expression in the hippocampus in both transgenic mice and wild-type mice (p?<?0.05), whereas the treatment mainly decreased BACE1 expression in transgenic mice but not in the wild-type mice (p?<?0.05). No significant differences in PS1 levels were detected in all groups. IGF decreased Aβ1–40 over-expression in the cortex and hippocampus and might inhibit the damage induced by Aβ1–40 in APP/PS1 double transgenic mice. Our study suggests that IGF-1 should inhibit Aβ production through α-secretase and β-secretase but not γ-secretase.  相似文献   

19.
Prolonged spin–spin relaxation times in tumour tissue have been observed since some of the earliest nuclear magnetic resonance investigations of the brain. Over the last three decades, numerous studies have sought to characterize tumour morphology and malignancy using quantitative assessment of T 2 relaxation times, although attempts to categorize and differentiate tumours have had limited success. However, previous work must be interpreted with caution as relaxation data were typically acquired using a variety of multiple echo sequences with a range of echoes and T 2 decay curves and were frequently fit with monoexponential analysis. We defined the distribution of T 2 components in three different human brain tumours (glioblastoma, oligodendroglioma, meningioma) using a multi-echo sequence with a greater number of echoes and a longer acquisition window than previously used (48 echoes, data collection out to 1120 ms) with no a priori assumptions about the number of exponential components contributing to the T 2 decay. T 2 relaxation times were increased in tumour tissue and each tumour showed a distinct T 2 distribution profile. Tumours have complex and unique compartmentalization characteristics. Quantitative assessment of T 2 relaxation in brain cancer may be useful in evaluating different grades of brain tumours on the basis of their T 2 distribution profile, and has the potential to be a non-invasive diagnostic tool which may also be useful in monitoring therapy. Further study with a larger sample size and varying grades of tumours is warranted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号