首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

To demonstrate the role of IL-6 and pSTAT3 in the inflammatory response to cerebral ischemia/reperfusion following folic acid deficiency (FD).

Methods

The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in adult male Sprague-Dawley rats in vivo, and cultured primary astrocytes were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to emulate ischemia/reperfusion injury in vitro.

Results

Glial fibrillary acidic protein (GFAP) expression significantly increased in astrocytes of the brain cortex in the MCAO group compared to the SHAM group. Nevertheless, FD did not further promote GFAP expression in astrocytes of rat brain tissue after MCAO. This result was further confirmed in the OGD/R cellular model. In addition, FD did not promote the expressions of TNF-α and IL-1β but raised IL-6 (Peak at 12 h after MCAO) and pSTAT3 (Peak at 24 h after MCAO) levels in the affected cortices of MCAO rats. In the in vitro model, the levels of IL-6 and pSTAT3 in astrocytes were significantly reduced by treatment with Filgotinib (JAK-1 inhibitor) but not AG490 (JAK-2 inhibitor). Moreover, the suppression of IL-6 expression reduced FD-induced increases in pSTAT3 and pJAK-1. In turn, inhibited pSTAT3 expression also depressed the FD-mediated increase in IL-6 expression.

Conclusions

FD led to the overproduction of IL-6 and subsequently increased pSTAT3 levels via JAK-1 but not JAK-2, which further promoted increased IL-6 expression, thereby exacerbating the inflammatory response of primary astrocytes.  相似文献   

2.
Angiogenesis is induced in response to ischemia. Thrombospondin-1 (TSP-1) is a potent angiostatic factor. Silencing of TSP-1 expression may contribute to the postischemic angiogenesis. Upregulation of TSP-1, in contrast, may terminate the postischemic angiogenesis. A possible mechanism that silences TSP-1 expression is the DNA methylation of its promoter region. DNA methylation has been reported following cerebral ischemia. The present study aimed to explore whether methylation of the promoter region of TSP-1 regulates its expression after oxygen-glucose deprivation (OGD) in murine cerebral endothelial cells (CECs) in vitro. Sublethal OGD increased the extent of methylation of the promoter region of TSP-1 with a concurrent decrease in TSP-1 mRNA and protein expression in CECs. After reoxygenation, demethylation of the TSP-1 promoter region led to the restoration of TSP-1 mRNA and protein expression. The extent of methylation of the promoter region of TSP-1 was inversely correlated with the extent of TSP-1 gene expression at mRNA and protein levels after OGD. Oxygen-glucose deprivation-induced reduction in the TSP-1 mRNA level was not accompanied by a change in mRNA stability. These findings raise the possibility that OGD downregulation of TSP-1 expression is at least in part due to methylation of its promoter region.  相似文献   

3.
《中国神经再生研究》2016,(7):1134-1140
Heat shock protein 70 (HSP70) maintains Ca2+homeostasis in PC12 cells, which may protect against apoptosis;however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overex-pression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca2+concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca2+concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca2+homeostasis, by upregulating SERCA expression and by downregulating IP3R expression.  相似文献   

4.
目的探究星形胶质细胞内PTEN诱导假定激酶1(PINK1)缺失对缺血时神经保护作用的影响及其作用机制。方法离体培养原代星形胶质细胞,使用小干扰RNA(si RNA)沉默PINK1表达,氧糖剥夺(OGD)建立细胞缺氧模型,分为4组:PINK1沉默组(si RNA+转染剂)、空质粒组(空质粒+转染剂)、转染剂组(只加转染剂)和对照组(星形胶质细胞),各组均与神经元共培养;另设立神经元单独培养组。免疫荧光染色观察神经元凋亡情况。定量PCR及ELISA检测星形胶质细胞促红细胞生成素(EPO)及血管内皮生长因子(VEGF)表达量;Western blot检测星形胶质细胞内缺血诱导因子(HIF)及核因子κB(NF-κB)通路相关蛋白水平。结果 OGD损伤后神经元凋亡率较高,与星形胶质细胞共培养后神经元凋亡率显著降低(P0.05)。PINK1基因沉默后共培养神经元凋亡增加,星形胶质细胞EPO及VEGF分泌量减少、胞内EPO及VEGF转录水平降低(P0.05);HIF-1、HIF-2与NF-κB通路活化水平均显著降低(P0.05)。结论星形胶质细胞对OGD损伤神经元有保护作用,其作用通过EPO及VEGF实现;PINK1基因沉默后星形胶质细胞对缺血神经元保护作用减弱,可能与NF-κB通路活化水平降低、HIF激活受损进而下调EPO和VEGF表达量有关。  相似文献   

5.
We investigated the effects of cilostazol, a selective inhibitor of phosphodiesterase 3, on blood–brain barrier (BBB) integrity against ischemia–reperfusion injury enhanced by advanced glycation endproducts (AGEs). We used in vitro BBB models with primarily cultured BBB-related cells from rats (brain capillary endothelial cells, astrocytes and pericytes), and subjected cells to either normoxia or 3-h oxygen glucose deprivation (OGD)/24-h reoxygenation with or without AGEs. Treatment of AGEs did not affect the transendothelial electrical resistance (TEER) in the BBB model under normoxia, but there was a significant decrease in TEER under 3-h OGD/24-h reoxygenation conditions with AGEs. Cilostazol inhibited decreases in TEER induced by 3-h OGD/24-h reoxygenation with AGEs. Immunocytochemical and Western blot analyses showed that AGEs reduced the expression of claudin-5, the main functional protein of tight junctions (TJs). In contrast, cilostazol increased the expression of claudin-5 under 3-h OGD/24-h reoxygenation with AGEs. Furthermore, while AGEs increased the production of extracellular transforming growth factor (TGF)-β1, cilostazol inhibited the production of extracellular TGF-β1 and restored the integrity of TJs. Thus, we found that AGEs enhanced ischemia–reperfusion injury, which mainly included decreases in the expression of proteins comprising TJs through the production of TGF-β1. Cilostazol appeared to limit ischemia–reperfusion injury with AGEs by improving the TJ proteins and inhibiting TGF-β1 signaling.  相似文献   

6.
目的 探讨Polycomb chromobox7(CBX7)对氧糖剥夺/再灌注(Oxygen-glucose deprivation/reperfusion,OGD/R)神经元的影响及其可能的作用机制.方法 收集缺血性脑卒中(Ischemic stroke,IS)组患者和体检健康人群(对照组)外周血,分离外周血单个核细...  相似文献   

7.
Benavides A  Pastor D  Santos P  Tranque P  Calvo S 《Glia》2005,52(4):261-275
Ischemia has different consequences on the survival of astrocytes and neurons. Thus, astrocytes show a remarkable resistance to short periods of ischemia that are well known to cause neuronal death. We have used a cell culture model of stroke, oxygen, and glucose deprivation (OGD), to clarify the mechanisms responsible for the exclusive resistance of astrocytes to ischemia. The expression of genes implicated in both ischemia-induced astrocyte death and post-ischemic survival was analysed by the RNA differential display technique. Our study revealed that the expression of the CEBP homologous protein (CHOP)-coding gene is promptly an intensely upregulated following astrocyte oxygen and glucose deprivation. CHOP mRNA induction was accompanied by the activation of other genes (grp78, grp95) that, alike CHOP, are involved in the endoplasmic reticulum (ER) stress response. In addition, drugs that cause ER calcium depletion or protein N-glycosylation inhibition mimicked the effects of OGD on astrocyte survival, further supporting the involvement of ER in the astrocyte responses to OGD. Our experiments also demonstrated that upregulation of CHOP during the ER stress response is required for ischemia to cause astrocyte death. Not only the levels of CHOP mRNA and protein correlate perfectly with the degree of OGD-triggered cell injury, but also astrocyte death induced by OGD is significantly overcome by CHOP antisense oligonucleotide treatment. Nevertheless, we observed that astrocytes undergo apoptosis only when CHOP is permanently upregulated, and not when CHOP increases are transient. Finally, we found that the extent of CHOP induction is determined by the length of the ischemic stimulus. Taken together, our results indicate that permanent upregulation of CHOP is decisive for the induction of astrocyte death by OGD.  相似文献   

8.
Characteristics of the cellular response to oxygen deprivation and subsequent reoxygenation (hypoxia/reoxygenation) include redirection of energy metabolism, increased glucose utilization and expression of oxygen-regulated proteins. Inhibition of protein synthesis during early reoxygenation period prevented effective astrocyte adaptation to hypoxia/reoxygenation, resulting in eventual cell death. To elucidate the role of astrocytes in the central nervous system in response to hypoxia/reoxygenation, we analyzed the cDNA library derived from the cultured rat astrocytes subjected to 24 h of hypoxia followed by reoxygenation by differential display, and isolated a cDNA corresponding to Na/K ATPase alpha1 subunit. The expression of Na/K ATPase alpha1 subunit mRNA as well as beta1subunit mRNA was transiently increased after reoxygenation, whereas hypoxia itself did not induce any gene expression change. Na/K ATPase alpha1 subunit protein was transiently increased, whereas the protein expression for Na/K ATPase beta1 subunit showed sustained induction after reoxygenation. Overexpression of beta1 subunit in HEK 293 cells subjected to hypoxia/reoxygenation promoted survival of the cells. These findings suggest that Na/K ATPases may contribute to maintain the cellular environment of astrocytes subjected to hypoxia/reoxygenation.  相似文献   

9.
Long non-coding RNAs regulate brain microvascular endothelial cell death, the inflammatory response and angiogenesis during and after ischemia/reperfusion and oxygen-glucose deprivation/reoxygenation(OGD/R) insults. The long non-coding RNA, SNHG12, is upregulated after ischemia/reperfusion and OGD/R in microvascular endothelial cells of the mouse brain. However, its role in ischemic stroke has not been studied. We hypothesized that SNHG12 positively regulates ischemic stroke, and therefore we investigated its mechanism of action. We established an OGD/R mouse cell model to mimic ischemic stroke by exposing brain microvascular endothelial cells to OGD for 0, 2, 4, 8, 16 or 24 hours and reoxygenation for 4 hours. Quantitative real-time polymerase chain reaction showed that SNHG12 levels in brain microvascular endothelial cells increased with respect to OGD exposure time. Brain microvascular endothelial cells were transfected with pc DNA-control, pc DNA-SNHG12, si-control, or si-SNHG12. After exposure to OGD for 16 hours, these cells were then analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, trypan blue exclusion, western blot, and capillary-like tube formation assays. Overexpression of SNHG12 inhibited brain microvascular endothelial cell death and the inflammatory response but promoted angiogenesis after OGD/R, while SNHG12 knockdown had the opposite effects. miR-199a was identified as a target of SNHG12, and SNHG12 overexpression reversed the effect of miR-199a on brain microvascular endothelial cell death, the inflammatory response, and angiogenesis. These findings suggest that SNHG12 suppresses endothelial cell injury induced by OGD/R by targeting miR-199a.  相似文献   

10.
Zhang D  Wood CE 《Brain research》2005,1060(1-2):100-107
Prostanoids in the central nervous system define an important linkage between blood pressure and hormonal responses to hypotension/ischemia. Prostaglandin endoperoxide synthase (PGHS)-2, the inducible isoform of this enzyme, is induced by cerebral hypoperfusion/ischemia. To investigate the mechanism of the PGHS-2 gene expression in response to cerebral hypoperfusion/ischemia in neurons, we used a cell culture model (human SK-N-AS cells) to mimic the oxygen and glucose deprivation (OGD) that usually results from ischemia. Whereas OGD stimulated robust increases in PGHS-2 mRNA abundance, neither oxygen nor glucose deprivation alone was effective. Our data demonstrated that induction of both PGHS-2 mRNA and protein reached peak levels ( approximately 10 fold) after 6 h OGD. This was partially blocked by the inhibition of mitogen-activated protein kinase (MAPK) p38, and was almost completely blocked by the inhibition of extracellular signal-related kinases 1/2 (ERK1/2 or p44/42), another MAPK. These results indicate that PGHS-2 gene expression is induced by oxygen and glucose deprivation synergistically in neurons, and this induction is mediated by one or more members of the MAPK family.  相似文献   

11.
目的 探讨环状RNA TLK1(CircRNA TLK1,CircTLK1)对氧糖剥夺/复氧(Oxygen glucose deprivation/Reoxygenation,OGD/R)诱导的神经元HT22损伤的影响以及对微小RNA(microRNA,miR)-424-5p/F-box蛋白3(F-box protein 3,FBXO3)的调控作用。方法 将HT22细胞分为对照组、OGD/R组、sh-NC组、沉默环状RNA TLK1(Silencing circular RNA tlk1,sh-circTLK1)组、sh-circTLK1+抑制剂NC组、sh-circTLK1+miR-424-5p抑制剂组、sh-circTLK1+miR-424-5p抑制剂+sh NC组、sh-circTLK1+miR-424-5p抑制剂+sh FBXO3组,除对照组外其余各组细胞均行OGD/R操作,细胞计数试剂盒8(Cell counting Kit 8,CCK-8)法测定HT22细胞活力; 脂连蛋白V-异硫氰酸荧光素(Adiponectin V-fluorescein isothiocyanate,Annexin V-FITC)细胞凋亡试剂盒测定HT22细胞凋亡; 测定HT22细胞乳酸脱氢酶(Lactate dehydrogenase,LDH)漏出率; 实时荧光定量聚合酶链反应(Real time fluorescent quantitative polymerase chain reaction,RT-qRCR)法测定HT22细胞miR-424-5p,FBXO3 mRNA水平; 蛋白免疫印记法(Western Blot)检测B淋巴细胞瘤-2关联基因X(B lymphoma-2 gene association X,Bax)、活化半胱天冬酶-3(Cleaved caspase-3)、FBXO3水平; 双荧光素酶测定CircTLK1与miR-424-5p以及miR-424-5p与FBXO3靶向关系,并使用RNA下拉实验验证CircTLK1与miR-424-5p关系。结果 与对照组比较,OGD/R组miR-424-5p,HT22细胞活力降低(P<0.05),circTLK1,FBXO3 mRNA水平,HT22细胞凋亡率、Bax,Cleaved caspase-3水平、LDH漏出率升高(P<0.05); 与OGD/R组比较,sh-circTLK1组HT22细胞活力增加(P<0.05),HT22细胞凋亡率、Bax,Cleaved caspase-3水平,LDH漏出率降低(P<0.05); 与sh-circTLK1组比较,sh-circTLK1+miR-424-5p抑制剂组细胞活力降低(P<0.05),HT22细胞凋亡率、Bax,Cleaved caspase-3水平、LDH漏出率升高(P<0.05); 与sh-circTLK1+miR-424-5p抑制剂组比较,sh-circTLK1+miR-424-5p抑制剂+sh FBXO3组细胞活力升高(P<0.05),HT22细胞凋亡率、Bax,Cleaved caspase-3水平、LDH漏出率降低(P<0.05); CircTLK1与miR-424-5p以及miR-424-5p与FBXO3均存在靶向关系。结论 CircTLK1沉默可能通过调控miR-424-5p/FBXO3对OGD/R诱导的HT22细胞损伤来发挥保护作用。  相似文献   

12.
Objective To determine whether sulforaphane (SFN) protects neurons against injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R) and, if so, to investigate the possible mechanisms. Methods Primary cultures of neurons were prepared from the cerebral cortex of 1-day-old Sprague-Dawley rats. On days 5-6 in vitro, the neurons were exposed to OGD for 1 h, followed by reoxygenation for 24 h. Cells were treated with 0, 0.1, 0.2, 0.5, 1, 2.5, or 5 μmol/L SFN, with or without 10 μmol/L LY294002, a PI3K-specific inhibitor, during OGD/R (a total of 25 h). After 24-h reoxygenation, MTT was used to assess viability and injury was assessed by Hoechst 33258/propidium iodide (PI) staining; immunofluorescence staining and Western blot were performed to detect molecular events associated with apoptosis. Results The MTT assay showed that 1 μmol/L SFN significantly increased viability, and Hoechst 33258/PI staining showed that the numbers of injured neurons were reduced significantly in the SFN group. Furthermore, immunofluorescence staining and Western blot showed that SFN increased Bcl-2 and decreased cleaved caspase-3 levels. Moreover, LY294002 inhibited the phosphorylated-Akt expression evoked by SFN, decreased Bcl-2 expression and increased cleaved caspase-3 expression. Conclusion SFN protects neurons against injury from OGD/R and this effect may be partly associated with an anti-apoptosis pathway.  相似文献   

13.
14.
Energy depletion during ischemia leads to disturbed ionic homeostasis and accumulation of neuroactive substances in the extracellular space, subsequently leading to volume changes in astrocytes. Confocal microscopy combined with 3D reconstruction was used to quantify ischemia-induced astrocyte volume changes in cortical slices of GFAP/EGFP transgenic mice. Twenty-minutes of oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation combined with acidification (OGD(pH 6.8)) revealed the presence of two distinct astrocytic populations, the first showing a large volume increase (HR astrocytes) and the second displaying a small volume increase (LR astrocytes). In addition, changes in resting membrane potential (V(m)), measured by the patch-clamp technique, supported the existence of two astrocytic populations responding differently to ischemia. Although one group markedly depolarized during OGD or OGD(pH 6.8), only small changes in V(m) toward more negative values were observed in the second group. Conversely, acidification (ACF(pH 6.8)) led to a uniform volume decrease in all astrocytes, accompanied by only a small depolarization. Interestingly, two differently responding populations were not detected during acidification. Differences in the expression of inwardly rectifying potassium channels (Kir4.1), glial fibrillary acidic protein (GFAP), and taurine levels in cortical astrocytes were detected using immunohistochemical methods. We conclude that two distinct populations of astrocytes are present in the cortex of GFAP/EGFP mice, based on volume and V(m) changes during exposure to OGD or OGD(pH 6.8). Immunohistochemical analysis suggests that the diverse expression of Kir4.1 channels and GFAP as well as differences in the accumulation of taurine might contribute to the distinct ability of astrocytes to regulate their volume.  相似文献   

15.
Our previous studies have shown that hyperbaric oxygen preconditioning (HBO-PC) induces tolerance to cerebral ischemia/reperfusion (I/R). This study aimed to investigate whether SirT1, a class III histone deacetylase, is involved in neuroprotection elicited by HBO-PC in animal and cell culture models of ischemia. Rats were subjected to middle cerebral artery occlusion for 120 minutes after HBO-PC (once a day for 5 days). Primary cultured cortical neurons were exposed to 2 hours of HBO-PC after 2 hours of oxygen–glucose deprivation (OGD). We showed that HBO-PC increased SirT1 protein and mRNA expression, promoted neurobehavioral score, reduced infarct volume, and improved morphology at 24 hours and 7 days after cerebral I/R. Neuroprotection of HBO-PC was attenuated by SirT1 inhibitor EX527 and SirT1 knockdown by short interfering RNA (siRNA), whereas it was mimicked by SirT1 activator resveratrol. Furthermore, HBO-PC enhanced SirT1 expression and cell viability and reduced lactate dehydrogenase release 24 hours after OGD/re-oxygenation. The neuroprotective effect of HBO-PC was emulated through upregulating SirT1 and, reversely, attenuated through downregulating SirT1. The modulation of SirT1 was made by adenovirus infection carrying SirT1 or SirT1 siRNA. Besides, SirT1 increased B-cell lymphoma 2 (Bcl-2) expression and decrease cleaved caspase 3. These results indicate that SirT1 mediates HBO-PC-induced tolerance to cerebral I/R through inhibition of apoptosis.  相似文献   

16.
ObjectiveWe attempt to investigate the role of TNFRSF1A and its underlying mechanism in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in rat pheochromocytoma PC12 cells.MethodsPublic datasets GSE61616 and GSE106680 were downloaded from GEO database. PC12 cells were used to construct OGD/R models. QRT-PCR and western blot were implemented to test the relative mRNA and protein levels, respectively. The miRNA online prediction website TargetScan was used to predict TNFRSF1A upstream regulated miRNAs, which were then confirmed by luciferase reporter assay. The changes in cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8), lactose dehydrogenase (LDH), and flow cytometry assays.ResultsBioinformatics analysis demonstrated that the expression of TNFRSF1A was upregulated in CI/RI and middle cerebral artery occlusion models compared with control, respectively. And a significant upregulation was also observed in OGD/R-damaged PC12 cells. Depletion of TNFRSF1A can notably enhance the cells proliferation after OGD/R treatment, while enlargement of TNFRSF1A presented the opposite outcomes. Moreover, miR-29a-3p was shown to be the upstream regulatory miRNA of TNFRSF1A. The levels of TNFRSF1A were inversely mediated by miR-29a-3p. Overexpression of miR-29a-3p can raise the cell viability, decrease the LDH activity, and reduce the apoptotic ratio in OGD/R-treated cells. Besides, TNFRSF1A can attenuate the protective effect of miR-29a-3p on OGD/R-treated cells. Furthermore, miR-29a-3p mimic inhibited, while overexpression of TNFRSF1A promoted the activation of NF-κB signaling pathway, and TNFRSF1A can attenuate the suppressive effect of miR-29a-3p on the NF-κB pathway.ConclusionOur research illustrated that the potential regulatory role of miR-29a-3p/TNFRSF1A axis in neurons cells suffered from OGD/R, and their effects on NF-κB signaling pathway, providing a possible bio-target for protecting cells from OGD/R damage .  相似文献   

17.
Our previous studies have demonstrated that TP53-induced glycolysis and apoptosis regulator(TIGAR) can protect neurons after cerebral ischemia/reperfusion. However, the role of TIGAR in neonatal hypoxic-ischemic brain damage(HIBD) remains unknown. In the present study, 7-day-old Sprague-Dawley rat models of HIBD were established by permanent occlusion of the left common carotid artery followed by 2-hour hypoxia. At 6 days before induction of HIBD, a lentiviral vector containing short hairpin RNA of either TIGAR or gasdermin D(LV-sh_TIGAR or LV-sh_GSDMD) was injected into the left lateral ventricle and striatum. Highly aggressively proliferating immortalized(HAPI) microglial cell models of in vitro HIBD were established by 2-hour oxygen/glucose deprivation followed by 24-hour reoxygenation. Three days before in vitro HIBD induction, HAPI microglial cells were transfected with LV-sh_TIGAR or LV-sh_GSDMD. Our results showed that TIGAR expression was increased in the neonatal rat cortex after HIBD and in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Lentivirusmediated TIGAR knockdown in rats markedly worsened pyroptosis and brain damage after hypoxia/ischemia in vivo and in vitro. Application of exogenous nicotinamide adenine dinucleotide phosphate(NADPH) increased the NADPH level and the glutathione/oxidized glutathione ratio and decreased reactive oxygen species levels in HAPI microglial cells after oxygen/glucose deprivation/reoxygenation. Additionally, exogenous NADPH blocked the effects of TIGAR knockdown in neonatal HIBD in vivo and in vitro. These findings show that TIGAR can inhibit microglial pyroptosis and play a protective role in neonatal HIBD. The study was approved by the Animal Ethics Committee of Soochow University of China(approval No. 2017 LW003) in 2017.  相似文献   

18.
BackgroundCerebral ischemia/reperfusion (I/R) injury after ischemic stroke is usually accompanied with the activation of inflammasome which seriously impairs neurological function. MiR-139 has been reported to be associated with inflammatory regulation in multiple diseases. However, its effect and mechanism on inflammation regulation after cerebral I/R injury are still poorly understood.MethodsAn in vitro model of cerebral I/R injury was constructed with oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. TargetScan bioinformatics analysis and dual luciferase reporter assay were utilized to confirm the targeted relationship between miR-139 and c-Jun. Cell pyroptosis was verified by flow cytometry and Caspase-1 Detection Kit. qRT-PCR assay was performed to detect the expression levels of miR-139, c-Jun, NLRP3 and ASC. Western blotting was applied to measure the protein levels of c-Jun and pyroptosis-related markers NLRP3, ASC, caspase-1, GSDMDNterm. The ELISA assay was applied to measure the release of IL-1β, IL-18 and LDH.ResultsMiR-139 was significantly downregulated whereas c-Jun was obviously upregulated after OGD/R treatment. TargetScan analysis predicted that c-Jun was a potential target of miR-139, which was verified by the dual-luciferase reporter assay. Also, overexpression of miR-139 repressed c-Jun expression. Furthermore, miR-139 inhibited OGD/R-induced cell pyroptosis and the upregulation of NLRP3, caspase-1, ASC, GSDMDNterm, and the release of IL-1β, IL-18 and LDH, while miR-139 inhibition exerted the opposite effects. However, overexpression of c-Jun aggravated OGD/R-induced nerve injury and partly abolished the neuroprotective effect of miR-139.ConclusionUpregulation of miR-139 exerted neuroprotection against OGD/R-induced nerve injury by negatively regulating c-Jun/NLRP3 inflammasome signaling. This study offered insights for providing potential therapeutic targets for treating cerebral I/R injury.  相似文献   

19.
目的探讨神经生长导向因子slit2及其受体robo1在氧糖剥夺(oxygen-glucose deprivation,OGD)不同时间后大鼠皮质星形胶质细胞的表达变化及其意义。方法建立培养乳大鼠皮质星形胶质细胞OGD模型,并分为OGD 0h组(对照组)、2h组、4h组、6h组和12h组。相差显微镜观察各组的细胞形态,MTT法检测各组的细胞活力,RT-PCR法检测各组slit2mRNA和robo1 mRNA的相对表达情况。结果 (1)对照组、OGD 2h组、4h组、6h组和12h组的细胞活力(OD值)分别为0.756±0.013、0.681±0.016、0.563±0.033、0.404±0.024和0.222±0.026,细胞活力随着氧糖剥夺时间延长而下降,呈时间依赖性(P0.01)。(2)氧糖剥夺后,统计结果显示不同组别星形胶质细胞slit2 mRNA和robo1 mRNA表达先逐渐升高,6h组达高峰(与对照组比,P0.05),12h组明显下降(与6h组比,P0.01)。结论 slit2/robo1信号通路可能参与缺血后抑制性微环境的形成,影响神经的再生修复过程。  相似文献   

20.
Purpose of the study: Induction of endogenous antioxidants is one of the key molecular mechanisms of cell resistance to hypoxia/ischemia. Thioredoxin1 (Trx1) is a small multifunctional ubiquitous antioxidant with redox-active dithiol and plays an important role in cell apoptosis through mitochondrial apoptosis pathways. The specific role of Trx1 in ischemia-reperfusion induced astrocyte apoptosis, however, remains unclear.

Materials and methods: In this study, we investigated the effect of Trx1 on apoptosis of astrocyte using an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model which mimics ischemic/reperfusion conditions in vivo. The astrocytes prepared from newborn Sprague-Dawley rats were exposed to OGD for 4 h followed by reoxygenation for 24 h. Next, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to assess cell viability while cell damage was assessed by lactate dehydrogenase (LDH).

Results: We found that OGD/R increased cell death as well as the expression of Trx1 and that the interference of Trx1 further aggravated astrocyte damage under OGD/R condition. Furthermore, we detected an increase in the intracellular expressions of Ras2, cAMP, and PKA under OGD/R condition, which paralleled cell injury.

Conclusions: Notably, the deletion of Trx1 exacerbated astrocyte apoptosis via the Ras2-cAMP-PKA signaling pathway. We concluded that Trx1 protects astrocytes against apoptotic injury induced by OGD/R, and this protective effect may be partly related to the Ras2-cAMP-PKA signaling pathway.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号