首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Leptin is an adipose‐secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1‐cell polarization and inhibit Th2‐cell responses. Additionally, leptin induces Th17‐cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg‐cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL‐12, TNF‐α, and IL‐6, (iii) increased DC production of TGF‐β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T‐cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin‐free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.  相似文献   

3.
当初始CD4+T细胞接受抗原刺激时,在不同的细胞因子环境中分化为不同的淋巴细胞亚群.Th17作为一种新的T细胞亚群是在TGF-β与IL-6存在时经由孤独核受体(ROB)-γt途径分化而来,而当环境中仅有TGF-β时却分化为CD4+CD25+Foxp3+调节性T细胞(Tr).与Th1一样,Th17被认为在自身免疫性疾病和炎症反应的发生和进展中都发挥重要的病理作用,相反,Tr则起着抗炎和免疫负性调节的作用.因此Th1及Th17倾向的免疫应答可能导致炎症反应与自身免疫性疾病的发生和进展,故在体内阻断其相关的细胞因子IL-17、IL-6等则可使Th1、Th17及Tr重新保持平衡而对自身免疫性疾病产生治疗作用.  相似文献   

4.
Breaking the balance between effector T cells, including Th17 (T helper cell 17) cells, and regulatory T cells (Tregs) is a key link in the pathogenesis of rheumatic immune diseases, which lead to a new concept of regulating immune balance in the treatment of rheumatic immune diseases. Interleukin (IL)‐2 can effectively regulate the differentiation, development and functional activity of regulatory T cells, thus restoring the immune balance between regulatory T cells and effector T cells. Therefore, low‐dose IL‐2 has been used in the treatment of rheumatic immune diseases, and it has become a promising new choice to achieve therapeutic purpose by regulating the immune balance of T cell. Here, we discuss the role of T cells immune imbalance in the pathogenesis of rheumatic immune diseases and the mechanism of IL‐2 in the treatment of rheumatic immune diseases by regulating T cells immune balance and summarize the relevant clinical trials.  相似文献   

5.
The propagation and regulation of an immune response is driven by a network of effector and regulatory T (Treg) cells. The interplay of effector T and Treg cells determines the direction of the immune response towards inflammation or its resolution in an autoimmune disease setting. In autoimmune diseases, this interplay shifts the balance in favor of the development of autoreactive effector T cells, resulting in inflammatory pathology. The objective of an effective therapeutic approach for autoimmune disease is to restore this balance. In this review, we describe the characteristics and development of pathogenic T helper 1 (Th1) and Th17 cells and the beneficial Treg cells in autoimmune diseases and the crucial roles of the cytokine milieu in influencing the balance of these T-cell subsets. Given the importance of cytokines, we discuss current immunotherapeutic strategies using cytokine or cytokine receptor antibodies for the treatment of autoimmune diseases.  相似文献   

6.
How the immune system tailors protective responses to suit the infectious challenge while limiting damage to the host is an emerging theme in T‐cell biology. Although many studies have focused on the pathological aspects of IL‐17‐producing T cells in many autoimmune diseases, their role in protective anti‐microbial immunity has also been increasingly recognized. This increased recognition also applies to their role in anti‐fungal immunity; however, the role of IL‐17‐producing T cells in protection versus pathology in fungal infections is still controversial. Although both positive and negative effects on immune resistance have been attributed to the IL‐23/Th17 axis in experimental models of fungal infections, defective Th17 cell differentiation has been linked to recurrent pneumonia by filamentous fungi and the occurrence of mucocutaneous candidiasis in patients with primary immunodeficiencies. Here we discuss how recent findings in experimental candidiasis and aspergillosis shed new lights on the contribution of Th17 cells to resistance and pathology to fungi.  相似文献   

7.
《Autoimmunity reviews》2013,12(2):300-304
Fibrotic autoimmune diseases are characterized by an inflammatory process in which fibrogenic cytokines, such as TGFβ and IL6, have a major role. Interestingly, these cytokines are also involved in the generation and function of both an effector T lymphocyte subpopulation, the Th17 cells, and the regulatory T lymphocytes (Treg). These evidences raised the hypothesis that an unbalanced equilibrium induced by the overproduction of the fibrogenic cytokines may have pathogenic relevance in fibrotic autoimmune diseases.On this basis, this review analyzes the available data concerning Th17 and Treg generation and function in two representative fibrotic autoimmune diseases, primary biliary cirrhosis (PBC) and systemic sclerosis (SSc), as models for organ-specific and systemic diseases, respectively.With regard to the Th17 cells, their expansion was found to be a common feature associated with a relative contraction of Th1 immune responses. Concerning to the regulatory T cell compartment, quantitative and qualitative alterations were observed in both diseases. However, while PBC patients showed defects only in the CD8 + Treg subset, SSc patients demonstrated abnormalities regarding to both the CD4 + CD25 + and the CD8 + Treg subpopulations. Hence, the CD8 + Treg subset seems to be the most involved in the pathogenic cascade leading to fibrotic disease onset and maintenance.Collectively, the reviewed data support the concept that altered homeostasis between effector and regulatory T cell circuits is present in fibrotic autoimmune diseases and that the major factors responsible for such disequilibrium are Th17 cells in the effector arm and CD8 + Treg in the regulatory arm.  相似文献   

8.
9.
Citation Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T‐cell paradigm in pregnancy. Am J Reprod Immunol 2010 T‐helper (Th) cells play a central role in modulating immune responses. The Th1/Th2 paradigm has now developed into the new Th1/Th2/Th17 paradigm. In addition to effector cells, Th cells are regulated by regulatory T (Treg) cells. Their capacity to produce cytokines is suppressed by immunoregulatory cytokines such as transforming growth factor (TGF)‐β and interleukin (IL)‐10 or by cell‐to‐cell interaction. Here, we will review the immunological environment in normal pregnancy and complicated pregnancy, such as implantation failure, abortion, preterm labor, and preeclampsia from the viewpoint of the new Th1/Th2/Th17 and Treg paradigms.  相似文献   

10.
11.
大肠癌是全球最常见的恶性肿瘤之一,大肠癌的发生、发展与肠内慢性炎症(CRC)密切相关,而部分炎症细胞及其分泌的细胞因子在这一过程中扮演着重要角色,肿瘤浸润效应T细胞与多种类型肿瘤病人的预后密切相关,辅助性T细胞17(Th17)是新近发现的一类CD4+效应T细胞亚群,在炎症、自身免疫性疾病和肿瘤中发挥积极作用.调节性T细胞(Tregs)在功能上是T细胞的免疫抑制亚群,在自身免疫耐受和抗肿瘤免疫中起重要作用.Th17细胞和Treg细胞之间的动态平衡在保持免疫调控功能中至关重要.  相似文献   

12.
Recent reports have provided convincing evidence that IL‐17‐producing T cells play a key role in the pathogenesis of organ‐specific autoimmune diseases, a function previously attributed exclusively to IFN‐γ‐secreting Th1 cells. Furthermore, it appears that IL‐17‐producing T cells can also function with Th1 cells to mediate protective immunity to pathogens. Although much of the focus has been on IL‐17‐secreting CD4+ T cells, termed Th17 cells, CD8+ T cells, γδ T cells and NKT cells are also capable of secreting IL‐17. The differentiation of Th17 cells from naïve T cells appears to involve signals from TGF‐β, IL‐6, IL‐21, IL‐1β and IL‐23. Furthermore, IL‐1α or IL‐1β in synergy with IL‐23 can promote IL‐17 secretion from memory T cells. The induction or function of Th17 cells is regulated by cytokines secreted by the other major subtypes of T cells, including IFN‐γ, IL‐4, IL‐10 and at high concentrations, TGF‐β. The main function of IL‐17‐secreting T cells is to mediate inflammation, by stimulating production of inflammatory cytokines, such as TNF‐α, IL‐1β and IL‐6, and inflammatory chemokines that promote the recruitment of neutrophils and macrophages.  相似文献   

13.
In addition to their capacity to differentiate, BM stromal cells (BMSC) have immunosuppressive qualities that make them strong candidates for use in cell therapy against human autoimmune diseases. We studied the immunoregulatory activities of BMSC on experimental autoimmune myasthenia gravis (EAMG) in vitro and in vivo. Intravenous administration of syngenic BMSC to EAMG‐model rats on the day of their second immunization was effective in ameliorating the pathological features of the disease. In vitro, the proliferative ability of T cells or B cells from EAMG rats was inhibited when they were cocultured with BMSC at proper ratios. This inhibitory effect was at least partially dependent on the secretion of IDO. We also determined that the development of EAMG is accompanied by an imbalance among the Th1, Th2, Th17, and Treg cell subsets, and that this can be corrected by the administration of BMSC, which leads to an increase of Th2 (IL‐4) and Treg (Foxp3) cells, and a reduction of Th1 (IFN‐γ) and Th17 (IL‐17) cells, through an IDO‐dependent mechanism. These results provide further insights into the pathogenesis of MG, EAMG, and other immune‐mediated diseases, and support a potential role for BMSC in their treatment.  相似文献   

14.
Dendritic cells (DCs) are critical regulators of immune responses. This study was to observe the effect of DCs from peripheral blood on the differentiation of Th17 in patients with rheumatoid arthritis (RA). Peripheral blood samples were collected from 30 patients with RA and 20 healthy controls, respectively. Flow cytometry results showed that in contrast to Treg cells, the proportion of Th17 cells in T cells and the Th17/Treg ratio were both increased in patients with RA. The RT‐PCR results showed that Foxp3、ROR γt and miR‐363 expression in PBMC of patients with RA were reduced, but the ITGAV expression was increased, which was negatively related to miR‐363 expression. IL‐17, TGF‐β and IL‐6 levels detected by ELISA were increased in peripheral blood serum of patients with RA. Moreover, we noted that the CD11C+αν+/CD11C+ DCs ratio was obvious increased in patients with RA and has positive correlation to the Th17/Treg ratio. In cocultured system, Th17 cell differentiation was significantly inhibited in the presence of ITGF‐β suggesting that Th17 cell differentiation was controlled by active TGF‐β (aTGF‐β). After DCs transfecting with miR‐363 mimics and cocultured with T cells, Th17 cell number, IL‐17 level and ROR‐γt expression were significantly reduced in the presence of latent TGF‐β (ITGF‐β). In addition, the integrin αv protein expression was both reduced in the presence of aTGF‐β or ITGF‐β. These data demonstrated that DCs induced Th17 cell differentiation through miR‐363/Integrin αv/TGF‐β pathway in patients with RA.  相似文献   

15.
C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen‐derived DC results in increased production of TGF‐β leading to de novo differentiation of Foxp3+ Treg within 12 h after co‐incubation with CD4+ T cells from DO11.10/RAG2?/? mice. Stimulation of C5aR?/? DC with OVA and TLR2 ligand Pam3CSK4 increased TGF‐β production and induced high levels of IL‐6 and IL‐23 but only minor amounts of IL‐12 leading to differentiation of Th cells producing IL‐17A and IL‐21. Th17 differentiation was also found in vivo after adoptive transfer of CD4+ Th cell into C5aR?/? mice immunized with OVA and Pam3CSK4. The altered cytokine production of C5aR?/? DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17‐cell differentiation through regulation of DC function.  相似文献   

16.
Th17 cells are a heterogeneous population of pro‐inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune‐mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010–1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN‐γ‐producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL‐17‐producing capacities in the gut in a mouse model of colitis, and in response to TGF‐β and IL‐6 in vitro. TGF‐β induced Runx1, and together with IL‐6 was shown to render the ROR‐γt and IL‐17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co‐produce IL‐17 and IFN‐γ, and consider possible implications of this Th1‐to‐Th17‐cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.  相似文献   

17.
Experimental autoimmune neuritis (EAN), an animal model of human Guillain–Barré syndrome, has long been considered as a T helper (Th) 1 cell–mediated autoimmune disorder. However, deficiency of IFN‐γ, a signature Th1 cytokine, aggravated EAN, with features of elevated production of IL‐17A, despite an alleviated systemic Th1 immune response. We hypothesized that Th17 cells and their cytokines might play a pathogenic role in EAN. To further clarify the roles of these Th and regulatory T cell (Treg) cytokines in the pathogenesis of EAN and their interrelationship, we investigated the expression of Th1/Th2/Th17/Treg cytokines in EAN in this study. We found that the levels of Th17 cells and IL‐17A in cauda equina (CE)‐infiltrating cells and splenic mononuclear cells (MNCs) as well as in serum paralleled the disease evolution, which increased progressively during the initiation stage and reached higher value at the peak of EAN. The same pattern was also noticed for the expression of IL‐22. The diverse expression profiles of FoxP3, IL‐17 receptors A and C were seen in CE‐infiltrating cells and splenic MNCs in EAN. These findings indicate a major pro‐inflammatory role of Th17 cells and IL‐17A in the pathogenesis of EAN. Therapeutic interventions may be focused upon inhibiting Th17 cells and their cytokines in the early phase of EAN, so as to delay and suppress clinical signs of the disease, which has relevance for future studies on pathogenesis and treatment of GBS in humans.  相似文献   

18.
This study (1) analysed the percentage of γδ T cells, γδ T cell subsets, Th17 cells and regulatory T cells (Treg cells) and (2) determined the role of IL ‐23 in primary nephrotic syndrome (PNS ) patients with active disease and in remission. Eighty‐four patients with PNS and 51 healthy age‐matched controls were included in this study. The percentage of γδ T cells, γδ T cell subsets, Th17 cells and Treg cells in peripheral blood mononuclear cells (PBMC s) were analysed by fluorescence‐activated cell sorting. PMBC s from PNS patients with active disease were cultured in the presence of IL ‐23, IL ‐23 and an IL ‐23 antagonist, or IL 23 and an anti‐IL ‐21 monoclonal antibody (mA b). The percentage of γδ T cells, IL ‐23R+ γδ T cells and IL ‐17+ γδ T cells were significantly increased in PNS patients with active disease. There was a positive correlation between the percentage of γδ T cells, IL ‐23R+ γδ T cells, IL ‐17+ γδ T cells and the Th17/Treg ratio. IL ‐23 increased the percentage of γδ T cells and Th17 cells and decreased the percentage of Treg cells in PBMC s isolated from PNS patients with active disease. Anti‐IL ‐21 mA b reduced the percentage of γδ T cells and Th17 cells, but increased the percentage of Treg cells. γδ T cells, IL ‐17+ γδ T cells and IL ‐23R+ γδ T cells may be involved in the pathogenesis of paediatric PNS by modulating the balance of Th17/Treg cells. γδ T cells may cause an imbalance in Th17/Treg cells by secreting IL ‐21 in the presence of IL ‐23.  相似文献   

19.
Multiple sclerosis (MS) is an autoimmune disease that is characterized by recurrent episodes of T‐cell‐mediated immune attack on central nervous system (CNS) myelin, leading to axon damage and progressive disability. Interferon regulatory factor 4 (IRF4) is expressed predominantly in the immune system and plays an important role in its development and function. Recent study demonstrated that IRF4 was critical for the generation of IL‐17‐producing Th17 cells. However, the effect of IRF4 on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, needs to be further investigated. In our current study, inhibition of IRF4 with IRF4 siRNA (SiIRF4) decreases EAE scores and infiltration of Th1 and Th17 cells, but increases Treg infiltration. SiIRF4 inhibits Th1 and Th17 cell differentiation in vivo and in vitro. In our DC‐T‐cell coculture system, SiIRF4‐treated DCs resulted in significantly less IFN‐γ and IL‐17 production from T cells. Next, we adoptively transfer CD11c+ DCs from SiIRF4‐treated mice into recipient mice and found that these CD11c+ DCs ameliorated EAE. Furthermore, CD11c+ DCs from SiIRF4‐treated naive mice exhibited significantly reduced expression of pro‐inflammatory cytokines TNF‐α, IL‐1β, IL‐6 and IL‐12/IL‐23 (p40), and a corresponding increase in anti‐inflammatory IL‐10 expression. In conclusion, inhibition of IRF4 suppresses Th1 and Th17 cell differentiation and ameliorates EAE, via a direct regulation of DCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号